Newer
Older
Fadi Gattoussi
committed
import pandas as pd
Fadi Gattoussi
committed
from data_processing import DataPreprocessor as dp
from modeling import Model
import RegressionModel
from pyqtgraph import PlotWidget, plot
import pyqtgraph as pg
from PyQt6.QtWidgets import (QApplication, QMainWindow, QWidget,
QVBoxLayout, QHBoxLayout, QGridLayout,
QLabel, QPushButton, QSlider, QDateTimeEdit,
QLineEdit, QComboBox, QDateEdit, QTabWidget, QCheckBox)
from PyQt6.QtGui import QPalette, QColor, QIcon
Fadi Gattoussi
committed
from sklearn.model_selection import train_test_split
import joblib
class MyTabs(QMainWindow):
def __init__(self):
super().__init__()
# Create your custom pages (e.g., TradeView and OrderView)
trade_view = MainWindow()
order_view = Advanced()
# Create a tab widget
tab_widget = QTabWidget(self)
tab_widget.addTab(trade_view, "Main")
tab_widget.addTab(order_view, "Advanced")
# Set the central widget
self.setCentralWidget(tab_widget)
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setMinimumSize(720, 640)
# Create a central widget
central_widget = QWidget(self)
self.setCentralWidget(central_widget)
# Create a grid layout and set it to the central widget
grid_layout = QGridLayout(central_widget)
# Create labels and input fields
self.labels_text = ['Cut', 'Colour', 'Clarity', 'Carat', 'Depth', 'Table', 'X', 'Y', 'Z']
self.input_fields = [QComboBox(self), QComboBox(self), QComboBox(self), QLineEdit(self),
QLineEdit(self), QLineEdit(self), QLineEdit(self), QLineEdit(self),
QLineEdit(self)]
Fadi Gattoussi
committed
self.input_fields[0].addItems(cut)
self.input_fields[1].addItems(colors)
self.input_fields[2].addItems(clarity)
# add a button to capture all the data
self.calculate_button = QPushButton('Calculate Price', self)
self.calculate_button.clicked.connect(self.update_values)
# Add labels and input fields to the grid layout
for i in range(len(self.labels_text)):
label = QLabel(self.labels_text[i], self)
grid_layout.addWidget(label, 0, i)
grid_layout.addWidget(self.input_fields[i], 1, i)
# Create a plot widget
graphWidget = pg.PlotWidget(self)
graphWidget.setBackground('w')
Fadi Gattoussi
committed
graphWidget.plot(diamonds['carat'], diamonds['price'])
# Add the plot widget to the grid layout
grid_layout.addWidget(self.calculate_button, 2, 0, 1, 2)
grid_layout.addWidget(graphWidget, 3, 0, 1, 9)
grid_layout.addWidget(QLabel("Predicted Price: ", self), 4, 0, 1, 1)
Fadi Gattoussi
committed
self.display_price = QLabel(str(RegressionModel.price))
grid_layout.addWidget(self.display_price, 4, 2, 1, 1)
# grid_layout.addWidget(QLabel(str(RegressionModel.price), self), 4, 2, 1, 1)
# Remember to add the predicted price
self.setWindowTitle('Assistance Systems')
self.show()
def update_values(self):
Fadi Gattoussi
committed
menu_items = {3: 'carat',
0: 'cut',
1: 'color',
2: 'clarity',
4: 'depth', 5: 'table',
for key, value in menu_items.items():
Fadi Gattoussi
committed
# print(key)
if key < 3:
RegressionModel.GUI_selections[value] = self.input_fields[key].currentText()
else:
RegressionModel.GUI_selections[value] = self.input_fields[key].text()
Fadi Gattoussi
committed
# print(RegressionModel.GUI_selections)
# convert GUI_selections to dataframe
X_test = pd.DataFrame(RegressionModel.GUI_selections, index=[0])
X_test['cut'] = X_test['cut'].map({'Ideal': 0, 'Premium': 1, 'Very Good': 2, 'Good': 3, 'Fair': 4})
X_test['color'] = X_test['color'].map({'E': 0, 'I': 1, 'J': 2, 'H': 3, 'F': 4, 'G': 5, 'D': 6})
X_test['clarity'] = X_test['clarity'].map({'SI2': 0, 'SI1': 1, 'VS1': 2, 'VS2': 3, 'VVS2': 4, 'VVS1': 5, 'IF': 7, 'I1': 6})
price = model.predict_price(X_test)
# price = model.predict(X_test)[0]
self.display_price.setText(str(price))
class Advanced(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowIcon(QIcon("icon.ico"))
self.setMinimumSize(720, 640)
central_widget = QWidget(self)
self.setCentralWidget(central_widget)
# Create a grid layout and set it to the central widget
grid_layout = QGridLayout(central_widget)
self.graph_selector_X = QComboBox(self)
self.graph_selector_Y = QComboBox(self)
self.regression_model = QComboBox(self)
self.check_labels = ['Cut', 'Colour', 'Clarity', 'Carat', 'Depth', 'Table', 'X', 'Y', 'Z']
self.graph_selector_X.addItems((self.check_labels + ['price']))
self.graph_selector_Y.addItems((self.check_labels + ['price']))
self.regression_model.addItems(["Linear Regression", "XG Boost", "XGBRegressor", "Neural Network"])
grid_layout.addWidget(QLabel("select features to include in Modelling"), 0, 0, 1, 0)
# grid_layout.addWidget(self.graph_selector_X, 1, 2)
# grid_layout.addWidget(self.graph_selector_Y, 1, 3)
grid_layout.addWidget(self.regression_model, 2, 1)
# grid_layout.addWidget(QLabel("X-PLOT", self), 0, 2)
# grid_layout.addWidget(QLabel("Y-PLOT", self), 0, 3)
grid_layout.addWidget(QLabel("Regression Model : ", self), 2, 0,1,1)
for i, label in enumerate(self.check_labels):
checkbox = QCheckBox(label, self)
checkbox.setChecked(True)
checkbox.stateChanged.connect(self.handle_checkbox_state) # Connect signal
grid_layout.addWidget(checkbox, 1, i)
self.checkboxes.append(checkbox) # Store checkboxes in the list
def handle_checkbox_state(self):
for i, checkbox in enumerate(self.checkboxes):
state = checkbox.checkState()
if state == Qt.CheckState.Unchecked:
RegressionModel.Advanced_selections.append(checkbox.text())
Fadi Gattoussi
committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
diamonds = pd.read_csv('diamonds.csv')
diamonds.dropna(inplace=True)
cut = list(diamonds["cut"].unique())
colors = list(diamonds["color"].unique())
clarity = list(diamonds["clarity"].unique())
# diamonds_numerical = diamonds.copy()
# cut_mapping = {cut: i for i, cut in enumerate(diamonds['cut'].unique())}
# color_mapping = {color: i for i, color in enumerate(diamonds['color'].unique())}
# clarity_mapping = {clarity: i for i, clarity in enumerate(diamonds['clarity'].unique())}
# diamonds_numerical['cut'] = diamonds['cut'].map(cut_mapping)
# diamonds_numerical['color'] = diamonds['color'].map(color_mapping)
# diamonds_numerical['clarity'] = diamonds['clarity'].map(clarity_mapping)
# X = diamonds_numerical.drop('price', axis = 1)
# y = diamonds_numerical['price']
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# model = Model(X_train, X_test, y_train, y_test,'RF')
# model.train()
# joblib.dump(model, 'RF.joblib')
model = joblib.load('RF.joblib')
print(type(model))
price = 0
app = QApplication(sys.argv)