DEGGENDORF
INSTITUTE o
TECHNOLOGY

Master of Applied Computer Science
Embedded Acceleration
Summer Term 2021
Hardware Accelerated Steganography
Group 17

Vipin Koshy Thomas
Majd Victor Hafiri

Date 05-07-2021

Contents

Overview and objectives 2
LSB Manipulation Algorithm 2
Steganography IP 4
Schedule Viewer 5
Test benches 7
Block diagram 9
Jupyter Notebook 9
Timing and speedup comparison 9
Issues and Solutions 15
Future Improvement Scope 16
Conclusion 16

References 17

Overview and objectives

Steganography is a method of hiding secret information in digital files such as
images, audio files etc. In this project , we implemented an FPGA based solution to
hide a secret word in images by changing some pixel values at some positions
without being detected by human eyes. Moreover, it can also reveal the hidden
word in an encoded image.

The goal of our project is to perform the steganography technique faster using the
FPGA and the CPU together rather than the Software only solution. We have also
implemented a Software Only solution which is used to compare the execution
time and speed ups between both.

LSB Manipulation Algorithm

Images are made up of tiny pixels where each pixel consists of 3 values which are
Red, Green and Blue colors. Any changes on RGB values will make the image
look different, Unless these changes to the pixel values are very small. In
Steganography, hiding a secret data in the pixels of an image , is all about
changing the Least significant bit of Red or Green or Blue value of a Pixel, and
changing the LSB of the value won’t be visible to Human eyes and The image will
look untouched. However, It can be detected using Software and Hardware
solutions.

We have created a Least significant bit (LSB) manipulation algorithm for our
project which changes and calculates the LSB of RGB values for the selected
pixels (position).

How it works

For concealing the word in pixel values , the algorithm takes the decimal value and
strips it to integer numbers of two digits. Each 2 digit value represents a character
of the word. For every 2 digit value , the algorithm converts this number to a
binary value of 8 bit and for each bit , the algorithm checks one value of the passed
data (Pixel RGB values) if it’s even or odd. If the bit is 1 and data is even ,it
changes the LSB of the value to 1 , and if the bit is 0 and the data is odd , it

changes the LSB of the value to 0 , otherwise it remains the same.

Input data:

Hidden data:

Output data:

1/e/1/o/1]1]o/o 1]1]1]0/0/1/0|1| 0/1/0]1]1/0|1]2] 0[1/1]0/0|2]2]2
1|o/1/1/1/0/olo (1]e[1]1]1]0/0/0

1/e/1/o[1]1]0[1] 1[1]1]o[0[1]0f0] o[1]0[1]1]0]1f2] 01/1/0[0[1]21]

Ref: https://www.irjet.net/archives/V3/i12/IRJET-V3I1247 .pdf

the structure of data of pixels looks like the following:

8 values = 8 bits = 1 character

Red Green Blue Red Green Blue Red Green Blue
140 255 22 210 111 0 10 20 30
''_‘__,-'-'"':; J_,ﬂ-r""} I It
o e
e
(4 7
.-'”'ff’
Pixel 1 Pixel 2 Pixel 3

This process continues for the other characters until it reaches the end of the data
stream and the last character in the secret word.

For decoding and revealing the secret word , the algorithm checks the Least
significant bit of the data stream and finds the binary value for every 8 data
packets. When this process is done , it writes the decimal value for the character to
be used by the software side.

Steganography IP

The hardware accelerated solution focuses on the LSB manipulation on the input
image constrained by the positions provided through any key exchange algorithms
like Diffie Hellman(not explained here, out of scope) using FPGA. We have used
Vitis HLS to process the C++ pixel function to produce solutions for Vivado.

We are using HLS streams to send and receive image data using send channel and
receive channel. Other than that AXI Lite bus is used to set the values of
Registers, which will be used as the controlling parameters on the process. We are
not using No block-level 1/O protocol and using the reference pointer to write the
decoded value to the registers.

portion of the
input image

Steganograp portion of the

hy IP image array
El -\

Figure 1

Two Direct Memory Access blocks were used in the project. DMAO is used for
input and DMAT 1is used for the output(Figure 1), which are connected to High

performance port HPO and HP1 respectively through an AXI Interconnect(Figure
2).

m—)

AXI
Interconnect

—

Figure 2

Schedule Viewer

In the CPP code some functions are used to convert integer to Binary and Binary to
Integer. The functions use loop which are unrolled and using #pragma HLS unroll
which will help the FPGA to run the unrolled loop which can be run in parallel.

X - - - - no E 42 12570 19573

@ pow_generic_double_s = 3 = = yes 30 28 6925 10890
VITIS_ LOOP 123 1 - - - - -
VITIS_LOOP_153_1

Read operation and first loop

Operation\Control Step

- SR
_1(phi_mux)
bin(phi_mux)
n_assign_4(phi_mux)
icmp_In123(icmp)
br_In123(br)
tmp_38(bitselect)
trunc_In125(trunc)

itconcatenate)

p_and_t(bitconcatenate)
b_In125_1(
rem(selecty
Ishr_In126_1(partselect)
Zext_In126(zext)
sub_In126(
Ishr_In126_2(partselect)
Zext_In126_1(zext)
select_In126(
mul_In127(%)

i3(+)
sext_In127(sext)
bin_1(+)
br_In123(

4

dec(phi_mux)
ssign_3(phi_mux)

tmp_52(partselect)
(trunc)
zext_ In510(zext)

tmp_43(bitselect)
Zzext_In662(zext)

tmp_22(partselect)

srem_In157(:
sub_In158(-)

rem_1(trunc)
convs._i(sitodp)

p_Result_26(bitselect)
tmp_S4(partselect)

zext_In510_2(zext)

add_In510_1(+)
eg_2(bitselect)

sub_In1311_1(

Test benches

Debugging and co simulation options have been used to check the correctness of
the pixel function and improve it, out of those can be found below.

y any of the 2 hls::stream() instances in the design is
ating C post check test bench ...

Explanation:

Value to Encode: 72
Binary value of 72: 01001000

Stream Count = 8(stream size)
Test Input array : [255,255, 255, 255, 255, 255, 255, 255]

Encoded Output array is generated as follows

1) 0100100 | O(LSB) => 255(11111111) => 254(11111110)(updated value with
LSB =0)

2) 010010 | O(LSB) => 255(11111111) => 254(11111110)(updated value with
LSB =0)

3) 01001 | O(LSB) => 255(11111111) => 254(11111110)(updated value with
LSB =0)

4) 0100 | I(LSB) => 255(11111111) => 255(11111111)(updated value with
LSB =1)

50 010| O(LSB) => 255(11111111) => 254(11111110)(updated value with LSB
:())

6) 01 | O(LSB) => 255(11111111) => 254(11111110)(updated value with LSB

7) 0| I(LSB) => 255(11111111) => 255(11111111)(updated value with LSB
:])

8) | O(LSB) => 255(11111111) => 254(11111110)(updated value with LSB =0)

So the output array will be [254,254,254,255,254,254,255,254] which is the same
as the CSIM output.

Co-Simulation outputs show the encoded value and output array. We have used

main.cpp to call the pixel function, which is given in the Test bench directory of
the git repo along with all other necessary files.

Wave Debug diagram on Vivado:

Wave Debug diagrams can be used to check the internal signals and data flow with
respect to clock cycles, which can be used to improve the circuit.

Block diagram

https://mygit.th-deg.de/vt16684/embedded-acceleration/-/blob/master/Stegano
graphy%201P%20Block%20Diagram.pdf

Jupyter Notebook

https://mygit.th-deg.de/vt16684/embedded-acceleration/-/blob/master/Pixel I
mage Steganography 1 .ipynb

Timing and speedup comparison

We were testing the IP with different clock frequencies namely 50,100,150,200
MHz, for the final IP synthesis we have used a clock frequency of 150MHz.
During the Timing analysis we have found out time taking for encoding and
decoding the secret word is indirectly proportional to the number of characters in
the word, i.e. embedded accelerated solution performs better when number of
characters increases.

So we can say:

Embedded accelerated solution performance
compared to software only solution oc number of characters

https://mygit.th-deg.de/vt16684/embedded-acceleration/-/blob/master/Steganography%20IP%20Block%20Diagram.pdf
https://mygit.th-deg.de/vt16684/embedded-acceleration/-/blob/master/Steganography%20IP%20Block%20Diagram.pdf
https://mygit.th-deg.de/vt16684/embedded-acceleration/-/blob/master/Pixel_Image_Steganography_1_.ipynb
https://mygit.th-deg.de/vt16684/embedded-acceleration/-/blob/master/Pixel_Image_Steganography_1_.ipynb

The speedups charts were giving 1.17 to more than 7 times speedups for hardware
accelerated solutions. During our analysis we also found out decoding was taking
less time than encoding since it was not manipulating the bits, but just reading the
input data. For initial image transfer IP was taking almost double/triple time to
encode/decode the values, It might be because of the “DMA to Memory” mapping,
we can confirm that by checking the times for the multi image encoding / decoding
which was almost same time for each transfer (more time compared to the first
case since allocating and freeing up the arrays). In the Pixel function there two
loops which is dealing with binary - decimal conversions, we have used #HLS
pragma unroll to run the independent variables updates to make it faster along with
that we are using POW() function which is also running parallely, since POW is a
resource hungry function, the concurrent unrolling the of the function make the
entire process way faster than sequential software only solutions.

Time Comparison for 4 Character word

Time comparaison between PS and PL for encoding multiple different Image . DPme comparaison between PS and PL for decoding multiple different Image
006

005 204

004
"

L]
€

=
2

c 003

Time in seconds

=
=

E
F
ooz

L)}
ool

0og 000

L s

Time comparaison between PS and PL

Time comparaison between PS and PL - Decoding

0.006 0.006
—n

PS
0.005 0.005

0.004

0.003 0.003
o002 0.002
i=th run

Time
Time
R

10

Time Comparison for 3 Character word

0012
0010
0008

"
E

= 0006

0.004

0.002

Time comparaison between PS and PL for encoding multiple different Ima

Time comparaison between PS and PL - Encoding

A — PL
/\ PS

0 2 4 6 8
i-th run

ge

0040

0035

0030

0025

0020

Time in seconds

0015

0010

0005

0.000

Time comparaison between PS and PL - Decoding

0008
A — P
0007 / \ Ps
0006 [\

0.005 / \

Time
/

0004 1 / N
0003

0002

0 2 4 6 8

L o

Time comparaison between PS and PL for decoding multiple different Image

00175

00150

00125

0.0100

00075

Time in seconds

0.0050

0.0025

0.0000

Time Comparison for 2 Character word

Time

Time in seconds

Time comparaison between PS and PL - Encoding

Time comparaison between PS and PL - Decoding

000325
00045 { \ s 000300 A \
\ PS / \
00040 000275 / \
/ \
00035 0002501 N o
00030 2 000225
15
aoms 0.00200
00020 000175
0.00150
00015
. - . . . 000125
0 2 4 6 8 T T T T T
i-th run 0 2 4 3 8
i-th run
Time comparaison between PS and PL for encoding multiple different Ima Time comparaison between PS and PL for decoding multiple different Image
0016
0014
0014
0012
0012
,, 0010
0010 b
g
aioos & 0008
€
o
0006 £ o006
0.004 0.004
0.002 0002
0.000

11

Time Comparison for 1 Character word

00035

0.0030

~ 00025

00020

00015

Time comparaison between PS and PL for encoding multiple different Image

Time comparaison between PS and PL - Encoding

— P
[

0030

0025

0.020

0015

Time in seconds

0010

0005

speedupsEncoding

e Of lm g
é'ook 50 O’\' Gk
8 o
6
4 '
, BEg

?0 04 ‘?504 (73

00035

0.0030

0.0025

Time

0.0020

00015

00010

0.012

0010

Time in seconds.

0.004

0.002

0.000

0.008

0.006

Time comparaison between PS and PL - Decoding

— [
P f

Time comparaison between PS and PL for decoding multiple different Image

Better
® FPGA
® CPU

12

o
7
4
6
8 O
2 s
?
] 4 Y
S 3 oo
=1 ' .
=2
It=) 2
o o
1
S'r‘;oqlkgo';(}o 0\(_
€ of ime 395 A00% % 35
A .
€px 500 4
8 []
1)
E 7
2
c 6
=]
@ 5
z
= 4
m
3
=
LR
BRNR Y
3
@ o ‘ ° ~. L
200K
8 2
2o 30(%%(% ®
Of. 00\(
"N A a5k 3
9@.0 QQ\F‘ " 3, 5
+* 550 7

Better
® FPGA
® CPU

Better
® FPGA
® CPU

13

)
[]
4
g ‘.. ¢
® 3.5
@ o
[= 3
-
2 25 o
c
g 2 *
o o0
a 1 o O 04 4
a a o
‘%33 0.5
® 2
o
1% K 15 1
% 00 3 %5 7 4
\§

Detailed 3d Speedup plots can be found in jupyter notebook

Better
® CPU
® FPGA

14

https://mygit.th-deg.de/vt16684/embedded-acceleration/-/blob/master/Pixel_Image_Steganography_1_.ipynb

Issues and Solutions

We encountered the following issues and errors while working on the project:

e ERROR: [COSIM 212-345] Cosim only supports the following 'ap ctrl none'
designs: (1) combinational designs; (2) pipelined design with II of 1; (3) designs
with array streaming or hls_stream or AXI4 stream ports.

- https:/www.xilinx.com/html docs/xilinx2020 2/vitis doc/cosimulati
oninvitishls.html

- [Note] Using the ap ctrl none mode might prevent the design from
being verified using the C/RTL co-simulation feature.

e HLS stream input and output for Test bench main.cpp
- Created input and output from the ap axis data structure
e %matplotlib widget not working for 3d interactive arrays

- We Have tried to solve the issue by enabling widgets and installing
ipympl, but were not successful so we solved the issue by using plotly
lib

e RuntimeError: Failed to allocate Memory! on PYNQ board

- As a workaround we have freed up all the unused buffers and
shutdown the unused jupyter notebooks

15

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/cosimulationinvitishls.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/cosimulationinvitishls.html

Future Improvement Scope

The project can be improved in many ways, some suggestions are given below,

1. Character pointers or character vectors for storing the secret data to embed
over combined ascii values as a number. As of now we can use only ascii
values of 4 characters(MAX) as the secret data.

2. Can use memory map over HLS stream, since in this project there is not
much use of it, since we have a single IP block connected to ZYNQ7. We
were using the HLS stream to get familiar with it.

3. Control the HLS stream with loop and limit it to stream_count
And use #pragma HLS PIPELINE II=1 for optimization.

4. Can use HLS Pragmas for optimization such as
#pragma HLS ARRAY PARTITION for character arrays.

Conclusion

To conclude , FPGAs are powerful resources when it comes to data processing due
to the fact that the data is processed in parallel. Even if we have not used Hardware
acceleration to its full potential, we have noticed in the time comparison, the
execution time for FPGA gets better and better with the number of secret word
characters.

Embedded accelerated solution performance
compared to software only solution oc number of characters

16

References

1. HLS Pragmas
2. Optimization Techniques

3. HLS stream

4. PYNQ Introduction — Python productivity for Zynq (Pynq)

17

https://www.xilinx.com/html_docs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/vitis_hls_optimization_techniques.html#kcq1539734224846
https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/hls_stream_library.html#ivv1539734234667__ad398476
https://pynq.readthedocs.io/en/v2.6.1/index.html

