{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aea43308-a588-4730-a10e-48156b0d1aa5",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import numpy as np\n",
    "from sdv.single_table import CTGANSynthesizer\n",
    "from sdv.single_table import TVAESynthesizer \n",
    "from sdv.single_table import CopulaGANSynthesizer\n",
    "from sdv.metadata import SingleTableMetadata\n",
    "from sdmetrics.reports.single_table import QualityReport\n",
    "from sdmetrics.reports.single_table import DiagnosticReport\n",
    "from table_evaluator import TableEvaluator\n",
    "import matplotlib.pyplot as plt\n",
    "from sdmetrics.single_column import StatisticSimilarity\n",
    "import math\n",
    "from sdmetrics.single_column import RangeCoverage\n",
    "from sdmetrics.visualization import get_column_plot\n",
    "import os\n",
    "import plotly.io as py\n",
    "import string"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f6e0f097-891b-42fc-9e20-85145c8d24ac",
   "metadata": {},
   "outputs": [],
   "source": [
    "#loading the preprocessed datasets \n",
    "\n",
    "# real_data = pd.read_csv('Datasets/Preprocessed_Datasets/benign.csv')\n",
    "# real_data = pd.read_csv('Datasets/Preprocessed_Datasets/bot_attacks.csv')\n",
    "# real_data = pd.read_csv('Datasets/Preprocessed_Datasets/bruteforce_attacks.csv')\n",
    "# real_data = pd.read_csv('Datasets/Preprocessed_Datasets/doS_attacks.csv')\n",
    "# real_data = pd.read_csv('Datasets/Preprocessed_Datasets/infilteration_attacks.csv')\n",
    "\n",
    "print(real_data.shape)\n",
    "print(real_data.Label.unique())\n",
    "\n",
    "# if bruteforce_attack or dos_attacks are used then uncomment the below line and change the name of the dataset accordingly\n",
    "#real_data=real_data[real_data.Label=='DoS attacks-Hulk'] # change according to the dataset\n",
    "real_data = real_data.iloc[:300000, :]\n",
    "print(real_data.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bc6915d1-0c8a-4d7e-8b87-0c56ae9c6431",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Categorical columns & Continuous columns\n",
    "def get_data_info(df):\n",
    "    \"\"\"Crates the categorical columns, continuous columns, and metadata of a dataframe.\n",
    "\n",
    "    Args:\n",
    "        df (pandas.Dataframe): The input dataframe containing continuous and categorical values.\n",
    "\n",
    "    Returns:\n",
    "        list: the list of categorical column names. Specifically, columns with only 4 uniques values\n",
    "        list: The list of continuous column names.\n",
    "        metadata: The metadata of the dataframe. for more informatin visit https://docs.sdv.dev/sdv/reference/metadata-spec/single-table-metadata-json\n",
    "    \"\"\"\n",
    "    #createing \n",
    "    categorical_columns = ['Label']\n",
    "    continuous_columns = []\n",
    "\n",
    "    for i in df.columns:\n",
    "        if i not in categorical_columns:\n",
    "            continuous_columns.append(i)\n",
    "    \n",
    "    #creating metadat\n",
    "    metadata = SingleTableMetadata()\n",
    "    metadata.detect_from_dataframe(df)\n",
    "    \n",
    "    for column in categorical_columns:\n",
    "        metadata.update_column(\n",
    "            column_name = column,\n",
    "            sdtype = 'categorical'\n",
    "        )\n",
    "    \n",
    "    for column in continuous_columns:\n",
    "        metadata.update_column(\n",
    "            column_name = column,\n",
    "            sdtype = 'numerical'  \n",
    "        )\n",
    "    # validating metadata\n",
    "    metadata.validate()\n",
    "    metadata.validate_data(data=real_data)\n",
    "    \n",
    "    return categorical_columns, continuous_columns, metadata\n",
    "\n",
    "\n",
    "categorical_columns, continuous_columns, metadata = get_data_info(real_data)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bd625bf1-52ed-4bda-9e69-b62009c0422f",
   "metadata": {},
   "outputs": [],
   "source": [
    "#fiting the synthesizer\n",
    "# for more info check https://docs.sdv.dev/sdv/single-table-data/modeling/synthesizers\n",
    "#availabel options CTGANSynthesizer, CopulaGANSynthesizer, and TVAESynthesizer\n",
    "\n",
    "#uncomment below for CTGANSynthesizer and CopulaGANSynthesizer\n",
    "# synthesizer = CTGANSynthesizer(metadata, enforce_min_max_values=True, enforce_rounding=True, embedding_dim=128, generator_dim=(256, 256), \n",
    "#                                discriminator_dim=(256, 256), generator_lr=0.000001, generator_decay=0.000001, epochs=500, discriminator_lr=0.000001, \n",
    "#                                discriminator_decay=0.000001, batch_size=300, discriminator_steps=3, log_frequency=True, verbose=True, pac=10)\n",
    "\n",
    "\n",
    "#uncommnet below for TVAESynthesizer\n",
    "# synthesizer = TVAESynthesizer(metadata, enforce_min_max_values=True, enforce_rounding=True, embedding_dim=100, compress_dims=(128, 128), \n",
    "#                               decompress_dims=(128, 128), l2scale=0.000001, batch_size=500, epochs=500, loss_factor=2, cuda=True)\n",
    "\n",
    "\n",
    "\n",
    "synthesizer.fit(real_data)\n",
    "synthesizer.save(filepath='CopulaGAN_Results/Hulk/CopulaGAN.pkl') # change the path accordingly\n",
    "synthetic_data = synthesizer.sample(300000) # change the instances you want to be genereated"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "60019781-cf26-4a21-a1b5-0fd099f07972",
   "metadata": {},
   "outputs": [],
   "source": [
    "# evaluating synthetic data with table_evaluator cumulative sum per features and distribution\n",
    "table_evaluator = TableEvaluator(real_data, synthetic_data, cat_cols = categorical_columns)\n",
    "table_evaluator.visual_evaluation()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "273ea89c-161b-4c73-ac96-412effb4e8bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "#saving and visualizing column pair trend and column shapes\n",
    "metadata = metadata.to_dict()\n",
    "my_report = QualityReport()\n",
    "my_report.generate(real_data, synthetic_data, metadata)\n",
    "my_report.save(filepath='CopulaGAN_Results/Hulk/quality.pkl')\n",
    "my_report.get_visualization(property_name='Column Pair Trends')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "169f33e3-f1e3-4677-b092-742db80d9aa6",
   "metadata": {},
   "outputs": [],
   "source": [
    "#saving and visualiztation data validity\n",
    "my_report = DiagnosticReport()\n",
    "my_report.generate(real_data, synthetic_data, metadata)\n",
    "my_report.save(filepath='CopulaGAN_Results/Hulk/diagnostic.pkl')\n",
    "my_report.get_visualization('Data Validity')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a46d7cdd-d907-4a49-bb8a-cac585c1776b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#statistical similarity metric\n",
    "sstest=[]\n",
    "for i in real_data.columns:\n",
    "    y=StatisticSimilarity.compute(\n",
    "        real_data=real_data[i],\n",
    "        synthetic_data=synthetic_data[i],\n",
    "        statistic='median'\n",
    "        )\n",
    "    sstest.append(y)\n",
    "\n",
    "df = pd.DataFrame(sstest, columns=['SS Test'])\n",
    "\n",
    "print(df['SS Test'].mean())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c23e2399-5b2c-40aa-9ce7-1bc36ccbe119",
   "metadata": {},
   "outputs": [],
   "source": [
    "#range coverage metric\n",
    "range_coverage=[]\n",
    "for i in real_data.columns:\n",
    "    \n",
    "    y=RangeCoverage.compute(\n",
    "    real_data=real_data[i],\n",
    "    synthetic_data=synthetic_data[i]\n",
    "    )\n",
    "    range_coverage.append(y)\n",
    "df = pd.DataFrame(range_coverage, columns=['Range Coverage'])\n",
    "\n",
    "print(df['Range Coverage'].mean())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d7e00eb7-5133-4374-a7dc-1d131ddc387f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# checking the number of unique synthetic data instances\n",
    "df = pd.concat([real_data, synthetic_data], axis=0)\n",
    "print(df.shape)\n",
    "df.dropna(inplace=True)\n",
    "df.drop_duplicates(inplace=True)\n",
    "print(df.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "85b532bf-91f1-4cb5-8fee-7a74d71a000c",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Saving the distribution of each column\n",
    "def sanitize_column_name(column_name):\n",
    "    valid_chars = \"-_.() %s%s\" % (string.ascii_letters, string.digits)\n",
    "    return ''.join(c for c in column_name if c in valid_chars)\n",
    "\n",
    "for i in real_data.columns:\n",
    "    fig = get_column_plot(\n",
    "        real_data=real_data,\n",
    "        synthetic_data=synthetic_data,\n",
    "        column_name=i,\n",
    "        plot_type='bar'\n",
    "    )\n",
    "\n",
    "    sanitized_column_name = sanitize_column_name(i)\n",
    "\n",
    "    # Save the figure in the 'Pics' directory, change the location accordingly\n",
    "    py.write_image(fig, os.path.join('CopulaGAN_Results/Hulk/Pics', f\"{sanitized_column_name}.png\")) \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "edf6097f-6274-4a32-8b13-c91cea49166f",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}