diff --git a/README.md b/README.md
index 50e73109a34f188df4fbc85796c181622413d341..ae001fafffeb819bd2bc61c2464fd9eec3aa4e58 100644
--- a/README.md
+++ b/README.md
@@ -1 +1,97 @@
-womens-diabetics-prediction-system
\ No newline at end of file
+
+**Members:**
+
+Member 1: Haque, Syed Wassi Ul  22108223
+<br/><br/>
+Member 2: Mahir, Wasik , 00817406
+
+<br/><br/>
+
+
+**Title:**  Women Diabetes Prediction System
+
+<br/><br/>
+
+**MyGit Repository Link: https://mygit.th-deg.de/sh13223/womens-diabetics-prediction-system**
+
+**MyGit Wiki Repository Link:__**
+
+<br/><br/>
+
+
+**Project description:** 
+
+A machine learning model designed to predict diabetes in female patients. 
+This project uses SVM(Support Vector Machine) Algorithm  to train on a given dataset. 
+Interactive GUI is developed using PyQt6 and css.
+
+
+**Prerequisites:** 
+
+1. Pycharm or Vscode or any types of  IDE.
+
+2.  Creating a virtual environment.
+
+3. Libraries to be installed in virtual environment:
+    - PyQt6 = 6.6.1   
+    - Pyqtgraph = 0.13.3   
+    - Python = 3.11.7  
+    - Numpy = 1.26.3 
+    - Matplotlib = 3.8.2  
+    - Pandas = 2.1.4  
+    - Scikit-learn = 1.3.2
+
+4. Diabetes Dataset(Source: Kaggle):
+Link to download the data:    (https://www.kaggle.com/code/sandragracenelson/diabetes-prediction/input)
+
+**Installation:**
+
+  - Create and run  a virtual environment
+  
+  - Clone the git repository with the dataset file.
+  
+  - Install necessary packages from requirement.txt file.
+  
+  - Run  main_diabetics.py.
+
+**Basic Usage:**
+
+1. Run the main_diabetics.py in any IDE.
+2. Upon execution, a window will prompt the user to input their Glucose level, Blood Pressure, Age, Insulin, BMI, and Pregnancy status using sliding buttons. For Pregnancy status, use a tick button to indicate if applicable.
+3. After inputting all details, click the "Predict" button to determine diabetic status."
+4. To exit the widget, simply press the cross button in the top right corner of the widget.
+
+
+
+**Implementation of the Requests:**
+1. A Desktop App with PyQT6 has been developed.
+2. A requirements.txt file is added with the necessary python libraries.
+3. A README.md file is created with the structure description.
+4. Virtual environment (venv) is created and used.
+5. A free data source has been from  Kaggle(Link has given above).
+6. Data has been imported using csv format. (File name: diabetes_clean_03042021.csv) and  can be seen from the terminal after running the app.
+7. The data must be analyzed with Pandas methods, so that a user gets an overview.
+8. The following functions have been used to get the overview of the data: dataframe.info(), dataframe.describe(),dataframe.corr(), dataframe.head(), dataframe.tail().
+9. Three input widgets have been created.
+10. Model has been trained using Scikit training model algorithm.( for our case we used SVM model algorithm)
+11. Two output canvas have been for data visualization.
+12. The app is reacting interactively according to the change of input parameter with a new prediction.
+
+<br/><br/>
+
+**Contribution List:** 
+
+
+1. Syed Wassi Ul Haque:
+     - Worked on Collection and Preprocessing of Dataset using Pandas.
+     - Modifying and Preparing Data with use of numpy arrays.
+     - Bug solving and creating Main window Graph to visualize the data on  app using matplotlib.pyplot.
+     - Creating  Histogram window Interface using PyQt6.
+     - Designing the app using css stylesheet.
+ 
+2. Wasik Mahir:
+     - Creating a GUI Interface using PyQt6( Main window, Plot graph window)
+     - Getting User-Inputs using different GUI elements or creating widgets.
+     - Training and working Scikit-learn SVM Model.
+     - Integrating or connecting Scikit learn model with pyqt6 in order to get predictions in the app.
+     - Designing the app using css stylesheet.
diff --git a/chart-medium.png b/chart-medium.png
new file mode 100644
index 0000000000000000000000000000000000000000..a4093d0d4a9f04b7b68547c0d2c23de13d2cd0d7
Binary files /dev/null and b/chart-medium.png differ
diff --git a/diabetes_clean_03042021.csv b/diabetes_clean_03042021.csv
new file mode 100644
index 0000000000000000000000000000000000000000..46fe6af0da2d8b94c287546d264b747fc3d0aaeb
--- /dev/null
+++ b/diabetes_clean_03042021.csv
@@ -0,0 +1,769 @@
+count,Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome
+0,1,148.0,72.0,35.0,79.79947916666667,33.6,0.627,50,1
+1,1,85.0,66.0,29.0,79.79947916666667,26.6,0.351,31,0
+2,1,183.0,64.0,20.536458333333332,79.79947916666667,23.3,0.672,32,1
+3,1,89.0,66.0,23.0,94.0,28.1,0.167,21,0
+4,0,137.0,40.0,35.0,168.0,43.1,2.288,33,1
+5,1,116.0,74.0,20.536458333333332,79.79947916666667,25.6,0.201,30,0
+6,1,78.0,50.0,32.0,88.0,31.0,0.248,26,1
+7,1,115.0,69.10546875,20.536458333333332,79.79947916666667,35.3,0.134,29,0
+8,1,197.0,70.0,45.0,543.0,30.5,0.158,53,1
+9,1,125.0,96.0,20.536458333333332,79.79947916666667,31.992578124999977,0.232,54,1
+10,1,110.0,92.0,20.536458333333332,79.79947916666667,37.6,0.191,30,0
+11,1,168.0,74.0,20.536458333333332,79.79947916666667,38.0,0.537,34,1
+12,1,139.0,80.0,20.536458333333332,79.79947916666667,27.1,1.441,57,0
+13,1,189.0,60.0,23.0,846.0,30.1,0.398,59,1
+14,1,166.0,72.0,19.0,175.0,25.8,0.587,51,1
+15,1,100.0,69.10546875,20.536458333333332,79.79947916666667,30.0,0.484,32,1
+16,0,118.0,84.0,47.0,230.0,45.8,0.551,31,1
+17,1,107.0,74.0,20.536458333333332,79.79947916666667,29.6,0.254,31,1
+18,1,103.0,30.0,38.0,83.0,43.3,0.183,33,0
+19,1,115.0,70.0,30.0,96.0,34.6,0.529,32,1
+20,1,126.0,88.0,41.0,235.0,39.3,0.704,27,0
+21,1,99.0,84.0,20.536458333333332,79.79947916666667,35.4,0.388,50,0
+22,1,196.0,90.0,20.536458333333332,79.79947916666667,39.8,0.451,41,1
+23,1,119.0,80.0,35.0,79.79947916666667,29.0,0.263,29,1
+24,1,143.0,94.0,33.0,146.0,36.6,0.254,51,1
+25,1,125.0,70.0,26.0,115.0,31.1,0.205,41,1
+26,1,147.0,76.0,20.536458333333332,79.79947916666667,39.4,0.257,43,1
+27,1,97.0,66.0,15.0,140.0,23.2,0.487,22,0
+28,1,145.0,82.0,19.0,110.0,22.2,0.245,57,0
+29,1,117.0,92.0,20.536458333333332,79.79947916666667,34.1,0.337,38,0
+30,1,109.0,75.0,26.0,79.79947916666667,36.0,0.546,60,0
+31,1,158.0,76.0,36.0,245.0,31.6,0.851,28,1
+32,1,88.0,58.0,11.0,54.0,24.8,0.267,22,0
+33,1,92.0,92.0,20.536458333333332,79.79947916666667,19.9,0.188,28,0
+34,1,122.0,78.0,31.0,79.79947916666667,27.6,0.512,45,0
+35,1,103.0,60.0,33.0,192.0,24.0,0.966,33,0
+36,1,138.0,76.0,20.536458333333332,79.79947916666667,33.2,0.42,35,0
+37,1,102.0,76.0,37.0,79.79947916666667,32.9,0.665,46,1
+38,1,90.0,68.0,42.0,79.79947916666667,38.2,0.503,27,1
+39,1,111.0,72.0,47.0,207.0,37.1,1.39,56,1
+40,1,180.0,64.0,25.0,70.0,34.0,0.271,26,0
+41,1,133.0,84.0,20.536458333333332,79.79947916666667,40.2,0.696,37,0
+42,1,106.0,92.0,18.0,79.79947916666667,22.7,0.235,48,0
+43,1,171.0,110.0,24.0,240.0,45.4,0.721,54,1
+44,1,159.0,64.0,20.536458333333332,79.79947916666667,27.4,0.294,40,0
+45,0,180.0,66.0,39.0,79.79947916666667,42.0,1.893,25,1
+46,1,146.0,56.0,20.536458333333332,79.79947916666667,29.7,0.564,29,0
+47,1,71.0,70.0,27.0,79.79947916666667,28.0,0.586,22,0
+48,1,103.0,66.0,32.0,79.79947916666667,39.1,0.344,31,1
+49,1,105.0,69.10546875,20.536458333333332,79.79947916666667,31.992578124999977,0.305,24,0
+50,1,103.0,80.0,11.0,82.0,19.4,0.491,22,0
+51,1,101.0,50.0,15.0,36.0,24.2,0.526,26,0
+52,1,88.0,66.0,21.0,23.0,24.4,0.342,30,0
+53,1,176.0,90.0,34.0,300.0,33.7,0.467,58,1
+54,1,150.0,66.0,42.0,342.0,34.7,0.718,42,0
+55,1,73.0,50.0,10.0,79.79947916666667,23.0,0.248,21,0
+56,1,187.0,68.0,39.0,304.0,37.7,0.254,41,1
+57,0,100.0,88.0,60.0,110.0,46.8,0.962,31,0
+58,0,146.0,82.0,20.536458333333332,79.79947916666667,40.5,1.781,44,0
+59,0,105.0,64.0,41.0,142.0,41.5,0.173,22,0
+60,1,84.0,69.10546875,20.536458333333332,79.79947916666667,31.992578124999977,0.304,21,0
+61,1,133.0,72.0,20.536458333333332,79.79947916666667,32.9,0.27,39,1
+62,1,44.0,62.0,20.536458333333332,79.79947916666667,25.0,0.587,36,0
+63,1,141.0,58.0,34.0,128.0,25.4,0.699,24,0
+64,1,114.0,66.0,20.536458333333332,79.79947916666667,32.8,0.258,42,1
+65,1,99.0,74.0,27.0,79.79947916666667,29.0,0.203,32,0
+66,0,109.0,88.0,30.0,79.79947916666667,32.5,0.855,38,1
+67,1,109.0,92.0,20.536458333333332,79.79947916666667,42.7,0.845,54,0
+68,1,95.0,66.0,13.0,38.0,19.6,0.334,25,0
+69,1,146.0,85.0,27.0,100.0,28.9,0.189,27,0
+70,1,100.0,66.0,20.0,90.0,32.9,0.867,28,1
+71,1,139.0,64.0,35.0,140.0,28.6,0.411,26,0
+72,1,126.0,90.0,20.536458333333332,79.79947916666667,43.4,0.583,42,1
+73,1,129.0,86.0,20.0,270.0,35.1,0.231,23,0
+74,1,79.0,75.0,30.0,79.79947916666667,32.0,0.396,22,0
+75,1,120.89453125,48.0,20.0,79.79947916666667,24.7,0.14,22,0
+76,1,62.0,78.0,20.536458333333332,79.79947916666667,32.6,0.391,41,0
+77,1,95.0,72.0,33.0,79.79947916666667,37.7,0.37,27,0
+78,0,131.0,69.10546875,20.536458333333332,79.79947916666667,43.2,0.27,26,1
+79,1,112.0,66.0,22.0,79.79947916666667,25.0,0.307,24,0
+80,1,113.0,44.0,13.0,79.79947916666667,22.4,0.14,22,0
+81,1,74.0,69.10546875,20.536458333333332,79.79947916666667,31.992578124999977,0.102,22,0
+82,1,83.0,78.0,26.0,71.0,29.3,0.767,36,0
+83,0,101.0,65.0,28.0,79.79947916666667,24.6,0.237,22,0
+84,1,137.0,108.0,20.536458333333332,79.79947916666667,48.8,0.227,37,1
+85,1,110.0,74.0,29.0,125.0,32.4,0.698,27,0
+86,1,106.0,72.0,54.0,79.79947916666667,36.6,0.178,45,0
+87,1,100.0,68.0,25.0,71.0,38.5,0.324,26,0
+88,1,136.0,70.0,32.0,110.0,37.1,0.153,43,1
+89,1,107.0,68.0,19.0,79.79947916666667,26.5,0.165,24,0
+90,1,80.0,55.0,20.536458333333332,79.79947916666667,19.1,0.258,21,0
+91,1,123.0,80.0,15.0,176.0,32.0,0.443,34,0
+92,1,81.0,78.0,40.0,48.0,46.7,0.261,42,0
+93,1,134.0,72.0,20.536458333333332,79.79947916666667,23.8,0.277,60,1
+94,1,142.0,82.0,18.0,64.0,24.7,0.761,21,0
+95,1,144.0,72.0,27.0,228.0,33.9,0.255,40,0
+96,1,92.0,62.0,28.0,79.79947916666667,31.6,0.13,24,0
+97,1,71.0,48.0,18.0,76.0,20.4,0.323,22,0
+98,1,93.0,50.0,30.0,64.0,28.7,0.356,23,0
+99,1,122.0,90.0,51.0,220.0,49.7,0.325,31,1
+100,1,163.0,72.0,20.536458333333332,79.79947916666667,39.0,1.222,33,1
+101,1,151.0,60.0,20.536458333333332,79.79947916666667,26.1,0.179,22,0
+102,0,125.0,96.0,20.536458333333332,79.79947916666667,22.5,0.262,21,0
+103,1,81.0,72.0,18.0,40.0,26.6,0.283,24,0
+104,1,85.0,65.0,20.536458333333332,79.79947916666667,39.6,0.93,27,0
+105,1,126.0,56.0,29.0,152.0,28.7,0.801,21,0
+106,1,96.0,122.0,20.536458333333332,79.79947916666667,22.4,0.207,27,0
+107,1,144.0,58.0,28.0,140.0,29.5,0.287,37,0
+108,1,83.0,58.0,31.0,18.0,34.3,0.336,25,0
+109,0,95.0,85.0,25.0,36.0,37.4,0.247,24,1
+110,1,171.0,72.0,33.0,135.0,33.3,0.199,24,1
+111,1,155.0,62.0,26.0,495.0,34.0,0.543,46,1
+112,1,89.0,76.0,34.0,37.0,31.2,0.192,23,0
+113,1,76.0,62.0,20.536458333333332,79.79947916666667,34.0,0.391,25,0
+114,1,160.0,54.0,32.0,175.0,30.5,0.588,39,1
+115,1,146.0,92.0,20.536458333333332,79.79947916666667,31.2,0.539,61,1
+116,1,124.0,74.0,20.536458333333332,79.79947916666667,34.0,0.22,38,1
+117,1,78.0,48.0,20.536458333333332,79.79947916666667,33.7,0.654,25,0
+118,1,97.0,60.0,23.0,79.79947916666667,28.2,0.443,22,0
+119,1,99.0,76.0,15.0,51.0,23.2,0.223,21,0
+120,0,162.0,76.0,56.0,100.0,53.2,0.759,25,1
+121,1,111.0,64.0,39.0,79.79947916666667,34.2,0.26,24,0
+122,1,107.0,74.0,30.0,100.0,33.6,0.404,23,0
+123,1,132.0,80.0,20.536458333333332,79.79947916666667,26.8,0.186,69,0
+124,0,113.0,76.0,20.536458333333332,79.79947916666667,33.3,0.278,23,1
+125,1,88.0,30.0,42.0,99.0,55.0,0.496,26,1
+126,1,120.0,70.0,30.0,135.0,42.9,0.452,30,0
+127,1,118.0,58.0,36.0,94.0,33.3,0.261,23,0
+128,1,117.0,88.0,24.0,145.0,34.5,0.403,40,1
+129,0,105.0,84.0,20.536458333333332,79.79947916666667,27.9,0.741,62,1
+130,1,173.0,70.0,14.0,168.0,29.7,0.361,33,1
+131,1,122.0,56.0,20.536458333333332,79.79947916666667,33.3,1.114,33,1
+132,1,170.0,64.0,37.0,225.0,34.5,0.356,30,1
+133,1,84.0,74.0,31.0,79.79947916666667,38.3,0.457,39,0
+134,1,96.0,68.0,13.0,49.0,21.1,0.647,26,0
+135,1,125.0,60.0,20.0,140.0,33.8,0.088,31,0
+136,0,100.0,70.0,26.0,50.0,30.8,0.597,21,0
+137,0,93.0,60.0,25.0,92.0,28.7,0.532,22,0
+138,0,129.0,80.0,20.536458333333332,79.79947916666667,31.2,0.703,29,0
+139,1,105.0,72.0,29.0,325.0,36.9,0.159,28,0
+140,1,128.0,78.0,20.536458333333332,79.79947916666667,21.1,0.268,55,0
+141,1,106.0,82.0,30.0,79.79947916666667,39.5,0.286,38,0
+142,1,108.0,52.0,26.0,63.0,32.5,0.318,22,0
+143,1,108.0,66.0,20.536458333333332,79.79947916666667,32.4,0.272,42,1
+144,1,154.0,62.0,31.0,284.0,32.8,0.237,23,0
+145,0,102.0,75.0,23.0,79.79947916666667,31.992578124999977,0.572,21,0
+146,1,57.0,80.0,37.0,79.79947916666667,32.8,0.096,41,0
+147,1,106.0,64.0,35.0,119.0,30.5,1.4,34,0
+148,1,147.0,78.0,20.536458333333332,79.79947916666667,33.7,0.218,65,0
+149,1,90.0,70.0,17.0,79.79947916666667,27.3,0.085,22,0
+150,1,136.0,74.0,50.0,204.0,37.4,0.399,24,0
+151,1,114.0,65.0,20.536458333333332,79.79947916666667,21.9,0.432,37,0
+152,1,156.0,86.0,28.0,155.0,34.3,1.189,42,1
+153,1,153.0,82.0,42.0,485.0,40.6,0.687,23,0
+154,1,188.0,78.0,20.536458333333332,79.79947916666667,47.9,0.137,43,1
+155,1,152.0,88.0,44.0,79.79947916666667,50.0,0.337,36,1
+156,1,99.0,52.0,15.0,94.0,24.6,0.637,21,0
+157,1,109.0,56.0,21.0,135.0,25.2,0.833,23,0
+158,1,88.0,74.0,19.0,53.0,29.0,0.229,22,0
+159,1,163.0,72.0,41.0,114.0,40.9,0.817,47,1
+160,1,151.0,90.0,38.0,79.79947916666667,29.7,0.294,36,0
+161,1,102.0,74.0,40.0,105.0,37.2,0.204,45,0
+162,0,114.0,80.0,34.0,285.0,44.2,0.167,27,0
+163,1,100.0,64.0,23.0,79.79947916666667,29.7,0.368,21,0
+164,0,131.0,88.0,20.536458333333332,79.79947916666667,31.6,0.743,32,1
+165,1,104.0,74.0,18.0,156.0,29.9,0.722,41,1
+166,1,148.0,66.0,25.0,79.79947916666667,32.5,0.256,22,0
+167,1,120.0,68.0,20.536458333333332,79.79947916666667,29.6,0.709,34,0
+168,1,110.0,66.0,20.536458333333332,79.79947916666667,31.9,0.471,29,0
+169,1,111.0,90.0,12.0,78.0,28.4,0.495,29,0
+170,1,102.0,82.0,20.536458333333332,79.79947916666667,30.8,0.18,36,1
+171,1,134.0,70.0,23.0,130.0,35.4,0.542,29,1
+172,1,87.0,69.10546875,23.0,79.79947916666667,28.9,0.773,25,0
+173,1,79.0,60.0,42.0,48.0,43.5,0.678,23,0
+174,1,75.0,64.0,24.0,55.0,29.7,0.37,33,0
+175,1,179.0,72.0,42.0,130.0,32.7,0.719,36,1
+176,1,85.0,78.0,20.536458333333332,79.79947916666667,31.2,0.382,42,0
+177,0,129.0,110.0,46.0,130.0,67.1,0.319,26,1
+178,1,143.0,78.0,20.536458333333332,79.79947916666667,45.0,0.19,47,0
+179,1,130.0,82.0,20.536458333333332,79.79947916666667,39.1,0.956,37,1
+180,1,87.0,80.0,20.536458333333332,79.79947916666667,23.2,0.084,32,0
+181,0,119.0,64.0,18.0,92.0,34.9,0.725,23,0
+182,1,120.89453125,74.0,20.0,23.0,27.7,0.299,21,0
+183,1,73.0,60.0,20.536458333333332,79.79947916666667,26.8,0.268,27,0
+184,1,141.0,74.0,20.536458333333332,79.79947916666667,27.6,0.244,40,0
+185,1,194.0,68.0,28.0,79.79947916666667,35.9,0.745,41,1
+186,1,181.0,68.0,36.0,495.0,30.1,0.615,60,1
+187,1,128.0,98.0,41.0,58.0,32.0,1.321,33,1
+188,1,109.0,76.0,39.0,114.0,27.9,0.64,31,1
+189,1,139.0,80.0,35.0,160.0,31.6,0.361,25,1
+190,1,111.0,62.0,20.536458333333332,79.79947916666667,22.6,0.142,21,0
+191,1,123.0,70.0,44.0,94.0,33.1,0.374,40,0
+192,1,159.0,66.0,20.536458333333332,79.79947916666667,30.4,0.383,36,1
+193,1,135.0,69.10546875,20.536458333333332,79.79947916666667,52.3,0.578,40,1
+194,1,85.0,55.0,20.0,79.79947916666667,24.4,0.136,42,0
+195,1,158.0,84.0,41.0,210.0,39.4,0.395,29,1
+196,1,105.0,58.0,20.536458333333332,79.79947916666667,24.3,0.187,21,0
+197,1,107.0,62.0,13.0,48.0,22.9,0.678,23,1
+198,1,109.0,64.0,44.0,99.0,34.8,0.905,26,1
+199,1,148.0,60.0,27.0,318.0,30.9,0.15,29,1
+200,0,113.0,80.0,16.0,79.79947916666667,31.0,0.874,21,0
+201,1,138.0,82.0,20.536458333333332,79.79947916666667,40.1,0.236,28,0
+202,0,108.0,68.0,20.0,79.79947916666667,27.3,0.787,32,0
+203,1,99.0,70.0,16.0,44.0,20.4,0.235,27,0
+204,1,103.0,72.0,32.0,190.0,37.7,0.324,55,0
+205,1,111.0,72.0,28.0,79.79947916666667,23.9,0.407,27,0
+206,1,196.0,76.0,29.0,280.0,37.5,0.605,57,1
+207,1,162.0,104.0,20.536458333333332,79.79947916666667,37.7,0.151,52,1
+208,1,96.0,64.0,27.0,87.0,33.2,0.289,21,0
+209,1,184.0,84.0,33.0,79.79947916666667,35.5,0.355,41,1
+210,1,81.0,60.0,22.0,79.79947916666667,27.7,0.29,25,0
+211,0,147.0,85.0,54.0,79.79947916666667,42.8,0.375,24,0
+212,1,179.0,95.0,31.0,79.79947916666667,34.2,0.164,60,0
+213,0,140.0,65.0,26.0,130.0,42.6,0.431,24,1
+214,1,112.0,82.0,32.0,175.0,34.2,0.26,36,1
+215,1,151.0,70.0,40.0,271.0,41.8,0.742,38,1
+216,1,109.0,62.0,41.0,129.0,35.8,0.514,25,1
+217,1,125.0,68.0,30.0,120.0,30.0,0.464,32,0
+218,1,85.0,74.0,22.0,79.79947916666667,29.0,1.224,32,1
+219,1,112.0,66.0,20.536458333333332,79.79947916666667,37.8,0.261,41,1
+220,0,177.0,60.0,29.0,478.0,34.6,1.072,21,1
+221,1,158.0,90.0,20.536458333333332,79.79947916666667,31.6,0.805,66,1
+222,1,119.0,69.10546875,20.536458333333332,79.79947916666667,25.2,0.209,37,0
+223,1,142.0,60.0,33.0,190.0,28.8,0.687,61,0
+224,1,100.0,66.0,15.0,56.0,23.6,0.666,26,0
+225,1,87.0,78.0,27.0,32.0,34.6,0.101,22,0
+226,0,101.0,76.0,20.536458333333332,79.79947916666667,35.7,0.198,26,0
+227,1,162.0,52.0,38.0,79.79947916666667,37.2,0.652,24,1
+228,1,197.0,70.0,39.0,744.0,36.7,2.329,31,0
+229,0,117.0,80.0,31.0,53.0,45.2,0.089,24,0
+230,1,142.0,86.0,20.536458333333332,79.79947916666667,44.0,0.645,22,1
+231,1,134.0,80.0,37.0,370.0,46.2,0.238,46,1
+232,1,79.0,80.0,25.0,37.0,25.4,0.583,22,0
+233,1,122.0,68.0,20.536458333333332,79.79947916666667,35.0,0.394,29,0
+234,1,74.0,68.0,28.0,45.0,29.7,0.293,23,0
+235,1,171.0,72.0,20.536458333333332,79.79947916666667,43.6,0.479,26,1
+236,1,181.0,84.0,21.0,192.0,35.9,0.586,51,1
+237,0,179.0,90.0,27.0,79.79947916666667,44.1,0.686,23,1
+238,1,164.0,84.0,21.0,79.79947916666667,30.8,0.831,32,1
+239,0,104.0,76.0,20.536458333333332,79.79947916666667,18.4,0.582,27,0
+240,1,91.0,64.0,24.0,79.79947916666667,29.2,0.192,21,0
+241,1,91.0,70.0,32.0,88.0,33.1,0.446,22,0
+242,1,139.0,54.0,20.536458333333332,79.79947916666667,25.6,0.402,22,1
+243,1,119.0,50.0,22.0,176.0,27.1,1.318,33,1
+244,1,146.0,76.0,35.0,194.0,38.2,0.329,29,0
+245,1,184.0,85.0,15.0,79.79947916666667,30.0,1.213,49,1
+246,1,122.0,68.0,20.536458333333332,79.79947916666667,31.2,0.258,41,0
+247,0,165.0,90.0,33.0,680.0,52.3,0.427,23,0
+248,1,124.0,70.0,33.0,402.0,35.4,0.282,34,0
+249,1,111.0,86.0,19.0,79.79947916666667,30.1,0.143,23,0
+250,1,106.0,52.0,20.536458333333332,79.79947916666667,31.2,0.38,42,0
+251,1,129.0,84.0,20.536458333333332,79.79947916666667,28.0,0.284,27,0
+252,1,90.0,80.0,14.0,55.0,24.4,0.249,24,0
+253,0,86.0,68.0,32.0,79.79947916666667,35.8,0.238,25,0
+254,1,92.0,62.0,7.0,258.0,27.6,0.926,44,1
+255,1,113.0,64.0,35.0,79.79947916666667,33.6,0.543,21,1
+256,1,111.0,56.0,39.0,79.79947916666667,30.1,0.557,30,0
+257,1,114.0,68.0,22.0,79.79947916666667,28.7,0.092,25,0
+258,1,193.0,50.0,16.0,375.0,25.9,0.655,24,0
+259,1,155.0,76.0,28.0,150.0,33.3,1.353,51,1
+260,1,191.0,68.0,15.0,130.0,30.9,0.299,34,0
+261,1,141.0,69.10546875,20.536458333333332,79.79947916666667,30.0,0.761,27,1
+262,1,95.0,70.0,32.0,79.79947916666667,32.1,0.612,24,0
+263,1,142.0,80.0,15.0,79.79947916666667,32.4,0.2,63,0
+264,1,123.0,62.0,20.536458333333332,79.79947916666667,32.0,0.226,35,1
+265,1,96.0,74.0,18.0,67.0,33.6,0.997,43,0
+266,0,138.0,69.10546875,20.536458333333332,79.79947916666667,36.3,0.933,25,1
+267,1,128.0,64.0,42.0,79.79947916666667,40.0,1.101,24,0
+268,0,102.0,52.0,20.536458333333332,79.79947916666667,25.1,0.078,21,0
+269,1,146.0,69.10546875,20.536458333333332,79.79947916666667,27.5,0.24,28,1
+270,1,101.0,86.0,37.0,79.79947916666667,45.6,1.136,38,1
+271,1,108.0,62.0,32.0,56.0,25.2,0.128,21,0
+272,1,122.0,78.0,20.536458333333332,79.79947916666667,23.0,0.254,40,0
+273,1,71.0,78.0,50.0,45.0,33.2,0.422,21,0
+274,1,106.0,70.0,20.536458333333332,79.79947916666667,34.2,0.251,52,0
+275,1,100.0,70.0,52.0,57.0,40.5,0.677,25,0
+276,1,106.0,60.0,24.0,79.79947916666667,26.5,0.296,29,1
+277,0,104.0,64.0,23.0,116.0,27.8,0.454,23,0
+278,1,114.0,74.0,20.536458333333332,79.79947916666667,24.9,0.744,57,0
+279,1,108.0,62.0,10.0,278.0,25.3,0.881,22,0
+280,0,146.0,70.0,20.536458333333332,79.79947916666667,37.9,0.334,28,1
+281,1,129.0,76.0,28.0,122.0,35.9,0.28,39,0
+282,1,133.0,88.0,15.0,155.0,32.4,0.262,37,0
+283,1,161.0,86.0,20.536458333333332,79.79947916666667,30.4,0.165,47,1
+284,1,108.0,80.0,20.536458333333332,79.79947916666667,27.0,0.259,52,1
+285,1,136.0,74.0,26.0,135.0,26.0,0.647,51,0
+286,1,155.0,84.0,44.0,545.0,38.7,0.619,34,0
+287,1,119.0,86.0,39.0,220.0,45.6,0.808,29,1
+288,1,96.0,56.0,17.0,49.0,20.8,0.34,26,0
+289,1,108.0,72.0,43.0,75.0,36.1,0.263,33,0
+290,0,78.0,88.0,29.0,40.0,36.9,0.434,21,0
+291,0,107.0,62.0,30.0,74.0,36.6,0.757,25,1
+292,1,128.0,78.0,37.0,182.0,43.3,1.224,31,1
+293,1,128.0,48.0,45.0,194.0,40.5,0.613,24,1
+294,0,161.0,50.0,20.536458333333332,79.79947916666667,21.9,0.254,65,0
+295,1,151.0,62.0,31.0,120.0,35.5,0.692,28,0
+296,1,146.0,70.0,38.0,360.0,28.0,0.337,29,1
+297,0,126.0,84.0,29.0,215.0,30.7,0.52,24,0
+298,1,100.0,78.0,25.0,184.0,36.6,0.412,46,1
+299,1,112.0,72.0,20.536458333333332,79.79947916666667,23.6,0.84,58,0
+300,0,167.0,69.10546875,20.536458333333332,79.79947916666667,32.3,0.839,30,1
+301,1,144.0,58.0,33.0,135.0,31.6,0.422,25,1
+302,1,77.0,82.0,41.0,42.0,35.8,0.156,35,0
+303,1,115.0,98.0,20.536458333333332,79.79947916666667,52.9,0.209,28,1
+304,1,150.0,76.0,20.536458333333332,79.79947916666667,21.0,0.207,37,0
+305,1,120.0,76.0,37.0,105.0,39.7,0.215,29,0
+306,1,161.0,68.0,23.0,132.0,25.5,0.326,47,1
+307,0,137.0,68.0,14.0,148.0,24.8,0.143,21,0
+308,0,128.0,68.0,19.0,180.0,30.5,1.391,25,1
+309,1,124.0,68.0,28.0,205.0,32.9,0.875,30,1
+310,1,80.0,66.0,30.0,79.79947916666667,26.2,0.313,41,0
+311,0,106.0,70.0,37.0,148.0,39.4,0.605,22,0
+312,1,155.0,74.0,17.0,96.0,26.6,0.433,27,1
+313,1,113.0,50.0,10.0,85.0,29.5,0.626,25,0
+314,1,109.0,80.0,31.0,79.79947916666667,35.9,1.127,43,1
+315,1,112.0,68.0,22.0,94.0,34.1,0.315,26,0
+316,1,99.0,80.0,11.0,64.0,19.3,0.284,30,0
+317,1,182.0,74.0,20.536458333333332,79.79947916666667,30.5,0.345,29,1
+318,1,115.0,66.0,39.0,140.0,38.1,0.15,28,0
+319,1,194.0,78.0,20.536458333333332,79.79947916666667,23.5,0.129,59,1
+320,1,129.0,60.0,12.0,231.0,27.5,0.527,31,0
+321,1,112.0,74.0,30.0,79.79947916666667,31.6,0.197,25,1
+322,0,124.0,70.0,20.0,79.79947916666667,27.4,0.254,36,1
+323,1,152.0,90.0,33.0,29.0,26.8,0.731,43,1
+324,1,112.0,75.0,32.0,79.79947916666667,35.7,0.148,21,0
+325,1,157.0,72.0,21.0,168.0,25.6,0.123,24,0
+326,1,122.0,64.0,32.0,156.0,35.1,0.692,30,1
+327,1,179.0,70.0,20.536458333333332,79.79947916666667,35.1,0.2,37,0
+328,1,102.0,86.0,36.0,120.0,45.5,0.127,23,1
+329,1,105.0,70.0,32.0,68.0,30.8,0.122,37,0
+330,1,118.0,72.0,19.0,79.79947916666667,23.1,1.476,46,0
+331,1,87.0,58.0,16.0,52.0,32.7,0.166,25,0
+332,1,180.0,69.10546875,20.536458333333332,79.79947916666667,43.3,0.282,41,1
+333,1,106.0,80.0,20.536458333333332,79.79947916666667,23.6,0.137,44,0
+334,1,95.0,60.0,18.0,58.0,23.9,0.26,22,0
+335,0,165.0,76.0,43.0,255.0,47.9,0.259,26,0
+336,0,117.0,69.10546875,20.536458333333332,79.79947916666667,33.8,0.932,44,0
+337,1,115.0,76.0,20.536458333333332,79.79947916666667,31.2,0.343,44,1
+338,1,152.0,78.0,34.0,171.0,34.2,0.893,33,1
+339,1,178.0,84.0,20.536458333333332,79.79947916666667,39.9,0.331,41,1
+340,1,130.0,70.0,13.0,105.0,25.9,0.472,22,0
+341,1,95.0,74.0,21.0,73.0,25.9,0.673,36,0
+342,1,120.89453125,68.0,35.0,79.79947916666667,32.0,0.389,22,0
+343,1,122.0,86.0,20.536458333333332,79.79947916666667,34.7,0.29,33,0
+344,1,95.0,72.0,20.536458333333332,79.79947916666667,36.8,0.485,57,0
+345,1,126.0,88.0,36.0,108.0,38.5,0.349,49,0
+346,1,139.0,46.0,19.0,83.0,28.7,0.654,22,0
+347,1,116.0,69.10546875,20.536458333333332,79.79947916666667,23.5,0.187,23,0
+348,1,99.0,62.0,19.0,74.0,21.8,0.279,26,0
+349,1,120.89453125,80.0,32.0,79.79947916666667,41.0,0.346,37,1
+350,1,92.0,80.0,20.536458333333332,79.79947916666667,42.2,0.237,29,0
+351,1,137.0,84.0,20.536458333333332,79.79947916666667,31.2,0.252,30,0
+352,1,61.0,82.0,28.0,79.79947916666667,34.4,0.243,46,0
+353,1,90.0,62.0,12.0,43.0,27.2,0.58,24,0
+354,1,90.0,78.0,20.536458333333332,79.79947916666667,42.7,0.559,21,0
+355,1,165.0,88.0,20.536458333333332,79.79947916666667,30.4,0.302,49,1
+356,1,125.0,50.0,40.0,167.0,33.3,0.962,28,1
+357,1,129.0,69.10546875,30.0,79.79947916666667,39.9,0.569,44,1
+358,1,88.0,74.0,40.0,54.0,35.3,0.378,48,0
+359,1,196.0,76.0,36.0,249.0,36.5,0.875,29,1
+360,1,189.0,64.0,33.0,325.0,31.2,0.583,29,1
+361,1,158.0,70.0,20.536458333333332,79.79947916666667,29.8,0.207,63,0
+362,1,103.0,108.0,37.0,79.79947916666667,39.2,0.305,65,0
+363,1,146.0,78.0,20.536458333333332,79.79947916666667,38.5,0.52,67,1
+364,1,147.0,74.0,25.0,293.0,34.9,0.385,30,0
+365,1,99.0,54.0,28.0,83.0,34.0,0.499,30,0
+366,1,124.0,72.0,20.536458333333332,79.79947916666667,27.6,0.368,29,1
+367,0,101.0,64.0,17.0,79.79947916666667,21.0,0.252,21,0
+368,1,81.0,86.0,16.0,66.0,27.5,0.306,22,0
+369,1,133.0,102.0,28.0,140.0,32.8,0.234,45,1
+370,1,173.0,82.0,48.0,465.0,38.4,2.137,25,1
+371,0,118.0,64.0,23.0,89.0,31.992578124999977,1.731,21,0
+372,0,84.0,64.0,22.0,66.0,35.8,0.545,21,0
+373,1,105.0,58.0,40.0,94.0,34.9,0.225,25,0
+374,1,122.0,52.0,43.0,158.0,36.2,0.816,28,0
+375,1,140.0,82.0,43.0,325.0,39.2,0.528,58,1
+376,0,98.0,82.0,15.0,84.0,25.2,0.299,22,0
+377,1,87.0,60.0,37.0,75.0,37.2,0.509,22,0
+378,1,156.0,75.0,20.536458333333332,79.79947916666667,48.3,0.238,32,1
+379,0,93.0,100.0,39.0,72.0,43.4,1.021,35,0
+380,1,107.0,72.0,30.0,82.0,30.8,0.821,24,0
+381,0,105.0,68.0,22.0,79.79947916666667,20.0,0.236,22,0
+382,1,109.0,60.0,8.0,182.0,25.4,0.947,21,0
+383,1,90.0,62.0,18.0,59.0,25.1,1.268,25,0
+384,1,125.0,70.0,24.0,110.0,24.3,0.221,25,0
+385,1,119.0,54.0,13.0,50.0,22.3,0.205,24,0
+386,1,116.0,74.0,29.0,79.79947916666667,32.3,0.66,35,1
+387,1,105.0,100.0,36.0,79.79947916666667,43.3,0.239,45,1
+388,1,144.0,82.0,26.0,285.0,32.0,0.452,58,1
+389,1,100.0,68.0,23.0,81.0,31.6,0.949,28,0
+390,1,100.0,66.0,29.0,196.0,32.0,0.444,42,0
+391,1,166.0,76.0,20.536458333333332,79.79947916666667,45.7,0.34,27,1
+392,1,131.0,64.0,14.0,415.0,23.7,0.389,21,0
+393,1,116.0,72.0,12.0,87.0,22.1,0.463,37,0
+394,1,158.0,78.0,20.536458333333332,79.79947916666667,32.9,0.803,31,1
+395,1,127.0,58.0,24.0,275.0,27.7,1.6,25,0
+396,1,96.0,56.0,34.0,115.0,24.7,0.944,39,0
+397,0,131.0,66.0,40.0,79.79947916666667,34.3,0.196,22,1
+398,1,82.0,70.0,20.536458333333332,79.79947916666667,21.1,0.389,25,0
+399,1,193.0,70.0,31.0,79.79947916666667,34.9,0.241,25,1
+400,1,95.0,64.0,20.536458333333332,79.79947916666667,32.0,0.161,31,1
+401,1,137.0,61.0,20.536458333333332,79.79947916666667,24.2,0.151,55,0
+402,1,136.0,84.0,41.0,88.0,35.0,0.286,35,1
+403,1,72.0,78.0,25.0,79.79947916666667,31.6,0.28,38,0
+404,1,168.0,64.0,20.536458333333332,79.79947916666667,32.9,0.135,41,1
+405,1,123.0,48.0,32.0,165.0,42.1,0.52,26,0
+406,1,115.0,72.0,20.536458333333332,79.79947916666667,28.9,0.376,46,1
+407,0,101.0,62.0,20.536458333333332,79.79947916666667,21.9,0.336,25,0
+408,1,197.0,74.0,20.536458333333332,79.79947916666667,25.9,1.191,39,1
+409,1,172.0,68.0,49.0,579.0,42.4,0.702,28,1
+410,1,102.0,90.0,39.0,79.79947916666667,35.7,0.674,28,0
+411,1,112.0,72.0,30.0,176.0,34.4,0.528,25,0
+412,1,143.0,84.0,23.0,310.0,42.4,1.076,22,0
+413,1,143.0,74.0,22.0,61.0,26.2,0.256,21,0
+414,0,138.0,60.0,35.0,167.0,34.6,0.534,21,1
+415,1,173.0,84.0,33.0,474.0,35.7,0.258,22,1
+416,1,97.0,68.0,21.0,79.79947916666667,27.2,1.095,22,0
+417,1,144.0,82.0,32.0,79.79947916666667,38.5,0.554,37,1
+418,1,83.0,68.0,20.536458333333332,79.79947916666667,18.2,0.624,27,0
+419,1,129.0,64.0,29.0,115.0,26.4,0.219,28,1
+420,1,119.0,88.0,41.0,170.0,45.3,0.507,26,0
+421,1,94.0,68.0,18.0,76.0,26.0,0.561,21,0
+422,0,102.0,64.0,46.0,78.0,40.6,0.496,21,0
+423,1,115.0,64.0,22.0,79.79947916666667,30.8,0.421,21,0
+424,1,151.0,78.0,32.0,210.0,42.9,0.516,36,1
+425,1,184.0,78.0,39.0,277.0,37.0,0.264,31,1
+426,0,94.0,69.10546875,20.536458333333332,79.79947916666667,31.992578124999977,0.256,25,0
+427,1,181.0,64.0,30.0,180.0,34.1,0.328,38,1
+428,0,135.0,94.0,46.0,145.0,40.6,0.284,26,0
+429,1,95.0,82.0,25.0,180.0,35.0,0.233,43,1
+430,1,99.0,69.10546875,20.536458333333332,79.79947916666667,22.2,0.108,23,0
+431,1,89.0,74.0,16.0,85.0,30.4,0.551,38,0
+432,1,80.0,74.0,11.0,60.0,30.0,0.527,22,0
+433,1,139.0,75.0,20.536458333333332,79.79947916666667,25.6,0.167,29,0
+434,1,90.0,68.0,8.0,79.79947916666667,24.5,1.138,36,0
+435,0,141.0,69.10546875,20.536458333333332,79.79947916666667,42.4,0.205,29,1
+436,1,140.0,85.0,33.0,79.79947916666667,37.4,0.244,41,0
+437,1,147.0,75.0,20.536458333333332,79.79947916666667,29.9,0.434,28,0
+438,1,97.0,70.0,15.0,79.79947916666667,18.2,0.147,21,0
+439,1,107.0,88.0,20.536458333333332,79.79947916666667,36.8,0.727,31,0
+440,0,189.0,104.0,25.0,79.79947916666667,34.3,0.435,41,1
+441,1,83.0,66.0,23.0,50.0,32.2,0.497,22,0
+442,1,117.0,64.0,27.0,120.0,33.2,0.23,24,0
+443,1,108.0,70.0,20.536458333333332,79.79947916666667,30.5,0.955,33,1
+444,1,117.0,62.0,12.0,79.79947916666667,29.7,0.38,30,1
+445,0,180.0,78.0,63.0,14.0,59.4,2.42,25,1
+446,1,100.0,72.0,12.0,70.0,25.3,0.658,28,0
+447,0,95.0,80.0,45.0,92.0,36.5,0.33,26,0
+448,0,104.0,64.0,37.0,64.0,33.6,0.51,22,1
+449,0,120.0,74.0,18.0,63.0,30.5,0.285,26,0
+450,1,82.0,64.0,13.0,95.0,21.2,0.415,23,0
+451,1,134.0,70.0,20.536458333333332,79.79947916666667,28.9,0.542,23,1
+452,0,91.0,68.0,32.0,210.0,39.9,0.381,25,0
+453,1,119.0,69.10546875,20.536458333333332,79.79947916666667,19.6,0.832,72,0
+454,1,100.0,54.0,28.0,105.0,37.8,0.498,24,0
+455,1,175.0,62.0,30.0,79.79947916666667,33.6,0.212,38,1
+456,1,135.0,54.0,20.536458333333332,79.79947916666667,26.7,0.687,62,0
+457,1,86.0,68.0,28.0,71.0,30.2,0.364,24,0
+458,1,148.0,84.0,48.0,237.0,37.6,1.001,51,1
+459,1,134.0,74.0,33.0,60.0,25.9,0.46,81,0
+460,1,120.0,72.0,22.0,56.0,20.8,0.733,48,0
+461,1,71.0,62.0,20.536458333333332,79.79947916666667,21.8,0.416,26,0
+462,1,74.0,70.0,40.0,49.0,35.3,0.705,39,0
+463,1,88.0,78.0,30.0,79.79947916666667,27.6,0.258,37,0
+464,1,115.0,98.0,20.536458333333332,79.79947916666667,24.0,1.022,34,0
+465,0,124.0,56.0,13.0,105.0,21.8,0.452,21,0
+466,0,74.0,52.0,10.0,36.0,27.8,0.269,22,0
+467,0,97.0,64.0,36.0,100.0,36.8,0.6,25,0
+468,1,120.0,69.10546875,20.536458333333332,79.79947916666667,30.0,0.183,38,1
+469,1,154.0,78.0,41.0,140.0,46.1,0.571,27,0
+470,1,144.0,82.0,40.0,79.79947916666667,41.3,0.607,28,0
+471,0,137.0,70.0,38.0,79.79947916666667,33.2,0.17,22,0
+472,0,119.0,66.0,27.0,79.79947916666667,38.8,0.259,22,0
+473,1,136.0,90.0,20.536458333333332,79.79947916666667,29.9,0.21,50,0
+474,1,114.0,64.0,20.536458333333332,79.79947916666667,28.9,0.126,24,0
+475,0,137.0,84.0,27.0,79.79947916666667,27.3,0.231,59,0
+476,1,105.0,80.0,45.0,191.0,33.7,0.711,29,1
+477,1,114.0,76.0,17.0,110.0,23.8,0.466,31,0
+478,1,126.0,74.0,38.0,75.0,25.9,0.162,39,0
+479,1,132.0,86.0,31.0,79.79947916666667,28.0,0.419,63,0
+480,1,158.0,70.0,30.0,328.0,35.5,0.344,35,1
+481,0,123.0,88.0,37.0,79.79947916666667,35.2,0.197,29,0
+482,1,85.0,58.0,22.0,49.0,27.8,0.306,28,0
+483,0,84.0,82.0,31.0,125.0,38.2,0.233,23,0
+484,0,145.0,69.10546875,20.536458333333332,79.79947916666667,44.2,0.63,31,1
+485,0,135.0,68.0,42.0,250.0,42.3,0.365,24,1
+486,1,139.0,62.0,41.0,480.0,40.7,0.536,21,0
+487,0,173.0,78.0,32.0,265.0,46.5,1.159,58,0
+488,1,99.0,72.0,17.0,79.79947916666667,25.6,0.294,28,0
+489,1,194.0,80.0,20.536458333333332,79.79947916666667,26.1,0.551,67,0
+490,1,83.0,65.0,28.0,66.0,36.8,0.629,24,0
+491,1,89.0,90.0,30.0,79.79947916666667,33.5,0.292,42,0
+492,1,99.0,68.0,38.0,79.79947916666667,32.8,0.145,33,0
+493,1,125.0,70.0,18.0,122.0,28.9,1.144,45,1
+494,1,80.0,69.10546875,20.536458333333332,79.79947916666667,31.992578124999977,0.174,22,0
+495,1,166.0,74.0,20.536458333333332,79.79947916666667,26.6,0.304,66,0
+496,1,110.0,68.0,20.536458333333332,79.79947916666667,26.0,0.292,30,0
+497,1,81.0,72.0,15.0,76.0,30.1,0.547,25,0
+498,1,195.0,70.0,33.0,145.0,25.1,0.163,55,1
+499,1,154.0,74.0,32.0,193.0,29.3,0.839,39,0
+500,1,117.0,90.0,19.0,71.0,25.2,0.313,21,0
+501,1,84.0,72.0,32.0,79.79947916666667,37.2,0.267,28,0
+502,1,120.89453125,68.0,41.0,79.79947916666667,39.0,0.727,41,1
+503,1,94.0,64.0,25.0,79.0,33.3,0.738,41,0
+504,1,96.0,78.0,39.0,79.79947916666667,37.3,0.238,40,0
+505,1,75.0,82.0,20.536458333333332,79.79947916666667,33.3,0.263,38,0
+506,0,180.0,90.0,26.0,90.0,36.5,0.314,35,1
+507,1,130.0,60.0,23.0,170.0,28.6,0.692,21,0
+508,1,84.0,50.0,23.0,76.0,30.4,0.968,21,0
+509,1,120.0,78.0,20.536458333333332,79.79947916666667,25.0,0.409,64,0
+510,1,84.0,72.0,31.0,79.79947916666667,29.7,0.297,46,1
+511,0,139.0,62.0,17.0,210.0,22.1,0.207,21,0
+512,1,91.0,68.0,20.536458333333332,79.79947916666667,24.2,0.2,58,0
+513,1,91.0,62.0,20.536458333333332,79.79947916666667,27.3,0.525,22,0
+514,1,99.0,54.0,19.0,86.0,25.6,0.154,24,0
+515,1,163.0,70.0,18.0,105.0,31.6,0.268,28,1
+516,1,145.0,88.0,34.0,165.0,30.3,0.771,53,1
+517,1,125.0,86.0,20.536458333333332,79.79947916666667,37.6,0.304,51,0
+518,1,76.0,60.0,20.536458333333332,79.79947916666667,32.8,0.18,41,0
+519,1,129.0,90.0,7.0,326.0,19.6,0.582,60,0
+520,1,68.0,70.0,32.0,66.0,25.0,0.187,25,0
+521,1,124.0,80.0,33.0,130.0,33.2,0.305,26,0
+522,1,114.0,69.10546875,20.536458333333332,79.79947916666667,31.992578124999977,0.189,26,0
+523,1,130.0,70.0,20.536458333333332,79.79947916666667,34.2,0.652,45,1
+524,1,125.0,58.0,20.536458333333332,79.79947916666667,31.6,0.151,24,0
+525,1,87.0,60.0,18.0,79.79947916666667,21.8,0.444,21,0
+526,1,97.0,64.0,19.0,82.0,18.2,0.299,21,0
+527,1,116.0,74.0,15.0,105.0,26.3,0.107,24,0
+528,0,117.0,66.0,31.0,188.0,30.8,0.493,22,0
+529,0,111.0,65.0,20.536458333333332,79.79947916666667,24.6,0.66,31,0
+530,1,122.0,60.0,18.0,106.0,29.8,0.717,22,0
+531,0,107.0,76.0,20.536458333333332,79.79947916666667,45.3,0.686,24,0
+532,1,86.0,66.0,52.0,65.0,41.3,0.917,29,0
+533,1,91.0,69.10546875,20.536458333333332,79.79947916666667,29.8,0.501,31,0
+534,1,77.0,56.0,30.0,56.0,33.3,1.251,24,0
+535,1,132.0,69.10546875,20.536458333333332,79.79947916666667,32.9,0.302,23,1
+536,0,105.0,90.0,20.536458333333332,79.79947916666667,29.6,0.197,46,0
+537,0,57.0,60.0,20.536458333333332,79.79947916666667,21.7,0.735,67,0
+538,0,127.0,80.0,37.0,210.0,36.3,0.804,23,0
+539,1,129.0,92.0,49.0,155.0,36.4,0.968,32,1
+540,1,100.0,74.0,40.0,215.0,39.4,0.661,43,1
+541,1,128.0,72.0,25.0,190.0,32.4,0.549,27,1
+542,1,90.0,85.0,32.0,79.79947916666667,34.9,0.825,56,1
+543,1,84.0,90.0,23.0,56.0,39.5,0.159,25,0
+544,1,88.0,78.0,29.0,76.0,32.0,0.365,29,0
+545,1,186.0,90.0,35.0,225.0,34.5,0.423,37,1
+546,1,187.0,76.0,27.0,207.0,43.6,1.034,53,1
+547,1,131.0,68.0,21.0,166.0,33.1,0.16,28,0
+548,1,164.0,82.0,43.0,67.0,32.8,0.341,50,0
+549,1,189.0,110.0,31.0,79.79947916666667,28.5,0.68,37,0
+550,1,116.0,70.0,28.0,79.79947916666667,27.4,0.204,21,0
+551,1,84.0,68.0,30.0,106.0,31.9,0.591,25,0
+552,1,114.0,88.0,20.536458333333332,79.79947916666667,27.8,0.247,66,0
+553,1,88.0,62.0,24.0,44.0,29.9,0.422,23,0
+554,1,84.0,64.0,23.0,115.0,36.9,0.471,28,0
+555,1,124.0,70.0,33.0,215.0,25.5,0.161,37,0
+556,1,97.0,70.0,40.0,79.79947916666667,38.1,0.218,30,0
+557,1,110.0,76.0,20.536458333333332,79.79947916666667,27.8,0.237,58,0
+558,1,103.0,68.0,40.0,79.79947916666667,46.2,0.126,42,0
+559,1,85.0,74.0,20.536458333333332,79.79947916666667,30.1,0.3,35,0
+560,1,125.0,76.0,20.536458333333332,79.79947916666667,33.8,0.121,54,1
+561,0,198.0,66.0,32.0,274.0,41.3,0.502,28,1
+562,1,87.0,68.0,34.0,77.0,37.6,0.401,24,0
+563,1,99.0,60.0,19.0,54.0,26.9,0.497,32,0
+564,0,91.0,80.0,20.536458333333332,79.79947916666667,32.4,0.601,27,0
+565,1,95.0,54.0,14.0,88.0,26.1,0.748,22,0
+566,1,99.0,72.0,30.0,18.0,38.6,0.412,21,0
+567,1,92.0,62.0,32.0,126.0,32.0,0.085,46,0
+568,1,154.0,72.0,29.0,126.0,31.3,0.338,37,0
+569,0,121.0,66.0,30.0,165.0,34.3,0.203,33,1
+570,1,78.0,70.0,20.536458333333332,79.79947916666667,32.5,0.27,39,0
+571,1,130.0,96.0,20.536458333333332,79.79947916666667,22.6,0.268,21,0
+572,1,111.0,58.0,31.0,44.0,29.5,0.43,22,0
+573,1,98.0,60.0,17.0,120.0,34.7,0.198,22,0
+574,1,143.0,86.0,30.0,330.0,30.1,0.892,23,0
+575,1,119.0,44.0,47.0,63.0,35.5,0.28,25,0
+576,1,108.0,44.0,20.0,130.0,24.0,0.813,35,0
+577,1,118.0,80.0,20.536458333333332,79.79947916666667,42.9,0.693,21,1
+578,1,133.0,68.0,20.536458333333332,79.79947916666667,27.0,0.245,36,0
+579,1,197.0,70.0,99.0,79.79947916666667,34.7,0.575,62,1
+580,0,151.0,90.0,46.0,79.79947916666667,42.1,0.371,21,1
+581,1,109.0,60.0,27.0,79.79947916666667,25.0,0.206,27,0
+582,1,121.0,78.0,17.0,79.79947916666667,26.5,0.259,62,0
+583,1,100.0,76.0,20.536458333333332,79.79947916666667,38.7,0.19,42,0
+584,1,124.0,76.0,24.0,600.0,28.7,0.687,52,1
+585,1,93.0,56.0,11.0,79.79947916666667,22.5,0.417,22,0
+586,1,143.0,66.0,20.536458333333332,79.79947916666667,34.9,0.129,41,1
+587,1,103.0,66.0,20.536458333333332,79.79947916666667,24.3,0.249,29,0
+588,1,176.0,86.0,27.0,156.0,33.3,1.154,52,1
+589,0,73.0,69.10546875,20.536458333333332,79.79947916666667,21.1,0.342,25,0
+590,1,111.0,84.0,40.0,79.79947916666667,46.8,0.925,45,1
+591,1,112.0,78.0,50.0,140.0,39.4,0.175,24,0
+592,1,132.0,80.0,20.536458333333332,79.79947916666667,34.4,0.402,44,1
+593,1,82.0,52.0,22.0,115.0,28.5,1.699,25,0
+594,1,123.0,72.0,45.0,230.0,33.6,0.733,34,0
+595,0,188.0,82.0,14.0,185.0,32.0,0.682,22,1
+596,0,67.0,76.0,20.536458333333332,79.79947916666667,45.3,0.194,46,0
+597,1,89.0,24.0,19.0,25.0,27.8,0.559,21,0
+598,1,173.0,74.0,20.536458333333332,79.79947916666667,36.8,0.088,38,1
+599,1,109.0,38.0,18.0,120.0,23.1,0.407,26,0
+600,1,108.0,88.0,19.0,79.79947916666667,27.1,0.4,24,0
+601,1,96.0,69.10546875,20.536458333333332,79.79947916666667,23.7,0.19,28,0
+602,1,124.0,74.0,36.0,79.79947916666667,27.8,0.1,30,0
+603,1,150.0,78.0,29.0,126.0,35.2,0.692,54,1
+604,1,183.0,69.10546875,20.536458333333332,79.79947916666667,28.4,0.212,36,1
+605,1,124.0,60.0,32.0,79.79947916666667,35.8,0.514,21,0
+606,1,181.0,78.0,42.0,293.0,40.0,1.258,22,1
+607,1,92.0,62.0,25.0,41.0,19.5,0.482,25,0
+608,0,152.0,82.0,39.0,272.0,41.5,0.27,27,0
+609,1,111.0,62.0,13.0,182.0,24.0,0.138,23,0
+610,1,106.0,54.0,21.0,158.0,30.9,0.292,24,0
+611,1,174.0,58.0,22.0,194.0,32.9,0.593,36,1
+612,1,168.0,88.0,42.0,321.0,38.2,0.787,40,1
+613,1,105.0,80.0,28.0,79.79947916666667,32.5,0.878,26,0
+614,1,138.0,74.0,26.0,144.0,36.1,0.557,50,1
+615,1,106.0,72.0,20.536458333333332,79.79947916666667,25.8,0.207,27,0
+616,1,117.0,96.0,20.536458333333332,79.79947916666667,28.7,0.157,30,0
+617,1,68.0,62.0,13.0,15.0,20.1,0.257,23,0
+618,1,112.0,82.0,24.0,79.79947916666667,28.2,1.282,50,1
+619,0,119.0,69.10546875,20.536458333333332,79.79947916666667,32.4,0.141,24,1
+620,1,112.0,86.0,42.0,160.0,38.4,0.246,28,0
+621,1,92.0,76.0,20.0,79.79947916666667,24.2,1.698,28,0
+622,1,183.0,94.0,20.536458333333332,79.79947916666667,40.8,1.461,45,0
+623,0,94.0,70.0,27.0,115.0,43.5,0.347,21,0
+624,1,108.0,64.0,20.536458333333332,79.79947916666667,30.8,0.158,21,0
+625,1,90.0,88.0,47.0,54.0,37.7,0.362,29,0
+626,0,125.0,68.0,20.536458333333332,79.79947916666667,24.7,0.206,21,0
+627,0,132.0,78.0,20.536458333333332,79.79947916666667,32.4,0.393,21,0
+628,1,128.0,80.0,20.536458333333332,79.79947916666667,34.6,0.144,45,0
+629,1,94.0,65.0,22.0,79.79947916666667,24.7,0.148,21,0
+630,1,114.0,64.0,20.536458333333332,79.79947916666667,27.4,0.732,34,1
+631,0,102.0,78.0,40.0,90.0,34.5,0.238,24,0
+632,1,111.0,60.0,20.536458333333332,79.79947916666667,26.2,0.343,23,0
+633,1,128.0,82.0,17.0,183.0,27.5,0.115,22,0
+634,1,92.0,62.0,20.536458333333332,79.79947916666667,25.9,0.167,31,0
+635,1,104.0,72.0,20.536458333333332,79.79947916666667,31.2,0.465,38,1
+636,1,104.0,74.0,20.536458333333332,79.79947916666667,28.8,0.153,48,0
+637,1,94.0,76.0,18.0,66.0,31.6,0.649,23,0
+638,1,97.0,76.0,32.0,91.0,40.9,0.871,32,1
+639,1,100.0,74.0,12.0,46.0,19.5,0.149,28,0
+640,0,102.0,86.0,17.0,105.0,29.3,0.695,27,0
+641,1,128.0,70.0,20.536458333333332,79.79947916666667,34.3,0.303,24,0
+642,1,147.0,80.0,20.536458333333332,79.79947916666667,29.5,0.178,50,1
+643,1,90.0,69.10546875,20.536458333333332,79.79947916666667,28.0,0.61,31,0
+644,1,103.0,72.0,30.0,152.0,27.6,0.73,27,0
+645,1,157.0,74.0,35.0,440.0,39.4,0.134,30,0
+646,1,167.0,74.0,17.0,144.0,23.4,0.447,33,1
+647,0,179.0,50.0,36.0,159.0,37.8,0.455,22,1
+648,1,136.0,84.0,35.0,130.0,28.3,0.26,42,1
+649,0,107.0,60.0,25.0,79.79947916666667,26.4,0.133,23,0
+650,1,91.0,54.0,25.0,100.0,25.2,0.234,23,0
+651,1,117.0,60.0,23.0,106.0,33.8,0.466,27,0
+652,1,123.0,74.0,40.0,77.0,34.1,0.269,28,0
+653,1,120.0,54.0,20.536458333333332,79.79947916666667,26.8,0.455,27,0
+654,1,106.0,70.0,28.0,135.0,34.2,0.142,22,0
+655,1,155.0,52.0,27.0,540.0,38.7,0.24,25,1
+656,1,101.0,58.0,35.0,90.0,21.8,0.155,22,0
+657,1,120.0,80.0,48.0,200.0,38.9,1.162,41,0
+658,1,127.0,106.0,20.536458333333332,79.79947916666667,39.0,0.19,51,0
+659,1,80.0,82.0,31.0,70.0,34.2,1.292,27,1
+660,1,162.0,84.0,20.536458333333332,79.79947916666667,27.7,0.182,54,0
+661,1,199.0,76.0,43.0,79.79947916666667,42.9,1.394,22,1
+662,1,167.0,106.0,46.0,231.0,37.6,0.165,43,1
+663,1,145.0,80.0,46.0,130.0,37.9,0.637,40,1
+664,1,115.0,60.0,39.0,79.79947916666667,33.7,0.245,40,1
+665,1,112.0,80.0,45.0,132.0,34.8,0.217,24,0
+666,1,145.0,82.0,18.0,79.79947916666667,32.5,0.235,70,1
+667,1,111.0,70.0,27.0,79.79947916666667,27.5,0.141,40,1
+668,1,98.0,58.0,33.0,190.0,34.0,0.43,43,0
+669,1,154.0,78.0,30.0,100.0,30.9,0.164,45,0
+670,1,165.0,68.0,26.0,168.0,33.6,0.631,49,0
+671,1,99.0,58.0,10.0,79.79947916666667,25.4,0.551,21,0
+672,1,68.0,106.0,23.0,49.0,35.5,0.285,47,0
+673,1,123.0,100.0,35.0,240.0,57.3,0.88,22,0
+674,1,91.0,82.0,20.536458333333332,79.79947916666667,35.6,0.587,68,0
+675,1,195.0,70.0,20.536458333333332,79.79947916666667,30.9,0.328,31,1
+676,1,156.0,86.0,20.536458333333332,79.79947916666667,24.8,0.23,53,1
+677,0,93.0,60.0,20.536458333333332,79.79947916666667,35.3,0.263,25,0
+678,1,121.0,52.0,20.536458333333332,79.79947916666667,36.0,0.127,25,1
+679,1,101.0,58.0,17.0,265.0,24.2,0.614,23,0
+680,1,56.0,56.0,28.0,45.0,24.2,0.332,22,0
+681,0,162.0,76.0,36.0,79.79947916666667,49.6,0.364,26,1
+682,0,95.0,64.0,39.0,105.0,44.6,0.366,22,0
+683,1,125.0,80.0,20.536458333333332,79.79947916666667,32.3,0.536,27,1
+684,1,136.0,82.0,20.536458333333332,79.79947916666667,31.992578124999977,0.64,69,0
+685,1,129.0,74.0,26.0,205.0,33.2,0.591,25,0
+686,1,130.0,64.0,20.536458333333332,79.79947916666667,23.1,0.314,22,0
+687,1,107.0,50.0,19.0,79.79947916666667,28.3,0.181,29,0
+688,1,140.0,74.0,26.0,180.0,24.1,0.828,23,0
+689,1,144.0,82.0,46.0,180.0,46.1,0.335,46,1
+690,1,107.0,80.0,20.536458333333332,79.79947916666667,24.6,0.856,34,0
+691,1,158.0,114.0,20.536458333333332,79.79947916666667,42.3,0.257,44,1
+692,1,121.0,70.0,32.0,95.0,39.1,0.886,23,0
+693,1,129.0,68.0,49.0,125.0,38.5,0.439,43,1
+694,1,90.0,60.0,20.536458333333332,79.79947916666667,23.5,0.191,25,0
+695,1,142.0,90.0,24.0,480.0,30.4,0.128,43,1
+696,1,169.0,74.0,19.0,125.0,29.9,0.268,31,1
+697,0,99.0,69.10546875,20.536458333333332,79.79947916666667,25.0,0.253,22,0
+698,1,127.0,88.0,11.0,155.0,34.5,0.598,28,0
+699,1,118.0,70.0,20.536458333333332,79.79947916666667,44.5,0.904,26,0
+700,1,122.0,76.0,27.0,200.0,35.9,0.483,26,0
+701,1,125.0,78.0,31.0,79.79947916666667,27.6,0.565,49,1
+702,1,168.0,88.0,29.0,79.79947916666667,35.0,0.905,52,1
+703,1,129.0,69.10546875,20.536458333333332,79.79947916666667,38.5,0.304,41,0
+704,1,110.0,76.0,20.0,100.0,28.4,0.118,27,0
+705,1,80.0,80.0,36.0,79.79947916666667,39.8,0.177,28,0
+706,1,115.0,69.10546875,20.536458333333332,79.79947916666667,31.992578124999977,0.261,30,1
+707,1,127.0,46.0,21.0,335.0,34.4,0.176,22,0
+708,1,164.0,78.0,20.536458333333332,79.79947916666667,32.8,0.148,45,1
+709,1,93.0,64.0,32.0,160.0,38.0,0.674,23,1
+710,1,158.0,64.0,13.0,387.0,31.2,0.295,24,0
+711,1,126.0,78.0,27.0,22.0,29.6,0.439,40,0
+712,1,129.0,62.0,36.0,79.79947916666667,41.2,0.441,38,1
+713,0,134.0,58.0,20.0,291.0,26.4,0.352,21,0
+714,1,102.0,74.0,20.536458333333332,79.79947916666667,29.5,0.121,32,0
+715,1,187.0,50.0,33.0,392.0,33.9,0.826,34,1
+716,1,173.0,78.0,39.0,185.0,33.8,0.97,31,1
+717,1,94.0,72.0,18.0,79.79947916666667,23.1,0.595,56,0
+718,1,108.0,60.0,46.0,178.0,35.5,0.415,24,0
+719,1,97.0,76.0,27.0,79.79947916666667,35.6,0.378,52,1
+720,1,83.0,86.0,19.0,79.79947916666667,29.3,0.317,34,0
+721,1,114.0,66.0,36.0,200.0,38.1,0.289,21,0
+722,1,149.0,68.0,29.0,127.0,29.3,0.349,42,1
+723,1,117.0,86.0,30.0,105.0,39.1,0.251,42,0
+724,1,111.0,94.0,20.536458333333332,79.79947916666667,32.8,0.265,45,0
+725,1,112.0,78.0,40.0,79.79947916666667,39.4,0.236,38,0
+726,1,116.0,78.0,29.0,180.0,36.1,0.496,25,0
+727,0,141.0,84.0,26.0,79.79947916666667,32.4,0.433,22,0
+728,1,175.0,88.0,20.536458333333332,79.79947916666667,22.9,0.326,22,0
+729,1,92.0,52.0,20.536458333333332,79.79947916666667,30.1,0.141,22,0
+730,1,130.0,78.0,23.0,79.0,28.4,0.323,34,1
+731,1,120.0,86.0,20.536458333333332,79.79947916666667,28.4,0.259,22,1
+732,1,174.0,88.0,37.0,120.0,44.5,0.646,24,1
+733,1,106.0,56.0,27.0,165.0,29.0,0.426,22,0
+734,1,105.0,75.0,20.536458333333332,79.79947916666667,23.3,0.56,53,0
+735,1,95.0,60.0,32.0,79.79947916666667,35.4,0.284,28,0
+736,0,126.0,86.0,27.0,120.0,27.4,0.515,21,0
+737,1,65.0,72.0,23.0,79.79947916666667,32.0,0.6,42,0
+738,1,99.0,60.0,17.0,160.0,36.6,0.453,21,0
+739,1,102.0,74.0,20.536458333333332,79.79947916666667,39.5,0.293,42,1
+740,1,120.0,80.0,37.0,150.0,42.3,0.785,48,1
+741,1,102.0,44.0,20.0,94.0,30.8,0.4,26,0
+742,1,109.0,58.0,18.0,116.0,28.5,0.219,22,0
+743,1,140.0,94.0,20.536458333333332,79.79947916666667,32.7,0.734,45,1
+744,1,153.0,88.0,37.0,140.0,40.6,1.174,39,0
+745,1,100.0,84.0,33.0,105.0,30.0,0.488,46,0
+746,1,147.0,94.0,41.0,79.79947916666667,49.3,0.358,27,1
+747,1,81.0,74.0,41.0,57.0,46.3,1.096,32,0
+748,1,187.0,70.0,22.0,200.0,36.4,0.408,36,1
+749,1,162.0,62.0,20.536458333333332,79.79947916666667,24.3,0.178,50,1
+750,1,136.0,70.0,20.536458333333332,79.79947916666667,31.2,1.182,22,1
+751,1,121.0,78.0,39.0,74.0,39.0,0.261,28,0
+752,1,108.0,62.0,24.0,79.79947916666667,26.0,0.223,25,0
+753,0,181.0,88.0,44.0,510.0,43.3,0.222,26,1
+754,1,154.0,78.0,32.0,79.79947916666667,32.4,0.443,45,1
+755,1,128.0,88.0,39.0,110.0,36.5,1.057,37,1
+756,1,137.0,90.0,41.0,79.79947916666667,32.0,0.391,39,0
+757,0,123.0,72.0,20.536458333333332,79.79947916666667,36.3,0.258,52,1
+758,1,106.0,76.0,20.536458333333332,79.79947916666667,37.5,0.197,26,0
+759,1,190.0,92.0,20.536458333333332,79.79947916666667,35.5,0.278,66,1
+760,1,88.0,58.0,26.0,16.0,28.4,0.766,22,0
+761,1,170.0,74.0,31.0,79.79947916666667,44.0,0.403,43,1
+762,1,89.0,62.0,20.536458333333332,79.79947916666667,22.5,0.142,33,0
+763,1,101.0,76.0,48.0,180.0,32.9,0.171,63,0
+764,1,122.0,70.0,27.0,79.79947916666667,36.8,0.34,27,0
+765,1,121.0,72.0,23.0,112.0,26.2,0.245,30,0
+766,1,126.0,60.0,20.536458333333332,79.79947916666667,30.1,0.349,47,1
+767,1,93.0,70.0,31.0,79.79947916666667,30.4,0.315,23,0
\ No newline at end of file
diff --git a/health.png b/health.png
new file mode 100644
index 0000000000000000000000000000000000000000..5eef03248e50ff5ce2228b5340925aeaae233df0
Binary files /dev/null and b/health.png differ
diff --git a/image.jpg b/image.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b286e764d17e8cf09196e8e53da01ea51d4e1e81
Binary files /dev/null and b/image.jpg differ
diff --git a/main_diabetics.py b/main_diabetics.py
new file mode 100644
index 0000000000000000000000000000000000000000..a3dd32ea464c3bbe6854a8599c8e24f49e571c81
--- /dev/null
+++ b/main_diabetics.py
@@ -0,0 +1,451 @@
+import sys
+from PyQt6 import QtWidgets,QtGui
+from pyqtgraph import PlotWidget, plot
+import pyqtgraph as pg
+
+from PyQt6.QtWidgets import QWidget,QHBoxLayout, QApplication,QSlider, QMainWindow,QLabel, QPushButton,QHBoxLayout, QVBoxLayout, QGridLayout, QCheckBox
+from PyQt6.QtCore import Qt
+from PyQt6.QtGui import QAction, QIcon,QPalette, QColor
+
+import numpy as np
+import pandas as pd
+import matplotlib.pyplot as plt
+
+
+import matplotlib
+import matplotlib.pyplot as plt
+from matplotlib.backends.backend_qtagg import FigureCanvasQTAgg as FigureCanvas
+from matplotlib.figure import Figure
+matplotlib.use('Qt5Agg')
+
+from sklearn.preprocessing import StandardScaler
+from sklearn.model_selection import train_test_split
+from sklearn import svm
+from sklearn.metrics import accuracy_score
+
+from PyQt6 import QtGui
+
+
+diabetes = pd.read_csv('diabetes_clean_03042021.csv')
+
+
+# highest correlation ----   x=age y=blood pressure
+
+
+class MplCanvas(FigureCanvas):
+
+    def __init__(self, parent=None, width=5, height=2, dpi=100):
+        self.figure = Figure(figsize=(width, height), dpi=dpi)
+        self.axes = self.figure.add_subplot(111)
+        super(MplCanvas, self).__init__(self.figure)
+
+class secondWindow(QMainWindow):
+    def __init__(self):
+        super().__init__()
+        # use global data
+
+        global diabetes
+        
+        widget_histogram = QWidget()
+
+        # Vertical Layout
+        histogram_layout = QVBoxLayout()
+        
+        # Create a new Canvas
+        self.histogram_screen = MplCanvas(self, width=5, height=2, dpi=100)
+
+        diabetes.hist(ax=self.histogram_screen.axes)
+ 
+        histogram_layout.addWidget(self.histogram_screen)
+        self.setCentralWidget(widget_histogram)
+        widget_histogram.setLayout(histogram_layout)
+        self.setMinimumSize(1500, 1000)
+
+
+class thirdWindow(QMainWindow):
+
+    def __init__(self):
+        super().__init__()
+
+        global diabetes
+
+        self.graphWidget = pg.PlotWidget()
+        self.setCentralWidget(self.graphWidget)
+
+        self.x = diabetes["BMI"]
+        self.y = diabetes["Outcome"]
+
+
+        self.graphWidget.setBackground('w')
+        self.graphWidget.setLabel("left", "Diabetic Or Not Diabetic")
+        self.graphWidget.setLabel("bottom", "BMI")
+
+        pen = pg.mkPen(color=(255, 0, 0))
+        self.data_line =  self.graphWidget.plot(self.x, self.y, pen=pen)
+        self.setMinimumSize(800, 400)
+
+
+class MainWindow(QMainWindow):
+
+    def design(self):
+
+        layout3 = QHBoxLayout()
+        MainLayout = QHBoxLayout()
+        leftVerticalLayout = QVBoxLayout()
+        RightVerticalLayout = QVBoxLayout()
+        
+         
+        # setting window icon
+        self.setWindowIcon(QtGui.QIcon('health.png'))
+        #setting screen min size
+        self.setMinimumSize(1200, 800)
+
+        mainLabel = QLabel(" Women Diabetics Prediction System")
+        leftVerticalLayout.addWidget(mainLabel)
+
+        
+        
+        # checkbox button pregnancies
+        pregnanciesLabel = QLabel("Pregnancies", alignment=Qt.AlignmentFlag.AlignCenter)
+        pregnant_instruction = QLabel("Please click the box if Pregnant.", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(pregnanciesLabel)
+        leftVerticalLayout.addWidget(pregnant_instruction)
+        self.pregnancies_checkbox = QCheckBox(text="Not Pregnant")
+        leftVerticalLayout.addWidget(self.pregnancies_checkbox)
+        self.pregnancies_checkbox.stateChanged.connect(self.Pregnancies_onStateChanged)
+
+        # Silder button  glucose 
+        self.Glucose = QSlider(Qt.Orientation.Horizontal)
+        self.Glucose.setMinimum(30)
+        self.Glucose.setMaximum(200)
+        self.Glucose.valueChanged.connect(self.updateSlider_Glucose)
+        self.Glucose.setGeometry(5, 3, 20, 20)
+        self.selectedValue_glucose = QLabel(self)
+        self.selectedValue_glucose.setText(str(30))
+        glocoseLabel = QLabel("Glucose [30 - 200]", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(glocoseLabel)
+        leftVerticalLayout.addWidget(self.Glucose)
+        leftVerticalLayout.addWidget(self.selectedValue_glucose)
+
+
+        # Silder button  blood pressure 
+        self.BloodPressure = QSlider(Qt.Orientation.Horizontal)
+        self.BloodPressure.setMinimum(30)
+        self.BloodPressure.setMaximum(120)
+        self.BloodPressure.valueChanged.connect(self.updateSlider_BloodPressure)
+        self.BloodPressure.setGeometry(5, 3, 20, 20)
+        self.selectedValue_blood = QLabel(self)
+        self.selectedValue_blood.setText(str(30))
+        bloodpressureLabel = QLabel("Blood Pressure [30 - 120]", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(bloodpressureLabel)
+        leftVerticalLayout.addWidget(self.BloodPressure)
+        leftVerticalLayout.addWidget(self.selectedValue_blood)
+
+
+        # Silder button  skin thickness 
+        self.SkinThickness = QSlider(Qt.Orientation.Horizontal)
+        self.SkinThickness.setMinimum(0)
+        self.SkinThickness.setMaximum(100)
+        self.SkinThickness.valueChanged.connect(self.updateSlider_skinThickness)
+        self.SkinThickness.setGeometry(5, 3, 20, 20)
+        self.selectedValue_skin = QLabel(self)
+        self.selectedValue_skin.setText(str(0))
+        skinThicknessLabel = QLabel("Skin Thickness[0 - 100]", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(skinThicknessLabel)
+        leftVerticalLayout.addWidget(self.SkinThickness)
+        leftVerticalLayout.addWidget(self.selectedValue_skin)
+
+
+        # Silder button  Insulin 
+        self.Insulin = QSlider(Qt.Orientation.Horizontal)
+        self.Insulin.setMinimum(5)
+        self.Insulin.setMaximum(700)
+        self.Insulin.valueChanged.connect(self.updateSlider_insulin)
+        self.Insulin.setGeometry(5, 3, 20, 20)
+        self.selectedValue_insulin = QLabel(self)
+        self.selectedValue_insulin.setText(str(5))
+        insulinLabel = QLabel("Insulin [5 - 700]", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(insulinLabel)
+        leftVerticalLayout.addWidget(self.Insulin)
+        leftVerticalLayout.addWidget(self.selectedValue_insulin)
+
+
+
+
+        # Silder button  BMI
+        self.BMI = QSlider(Qt.Orientation.Horizontal)
+        self.BMI.setMinimum(10)
+        self.BMI.setMaximum(80)
+        self.BMI.valueChanged.connect(self.updateSlider_BMI)
+        self.BMI.setGeometry(5, 3, 20, 20)
+        self.selectedValue_BMI = QLabel(self)
+        self.selectedValue_BMI.setText(str(10))
+        bmiLabel = QLabel("BMI [10 - 80]", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(bmiLabel)
+        leftVerticalLayout.addWidget(self.BMI)
+        leftVerticalLayout.addWidget(self.selectedValue_BMI)
+
+
+        # Silder button  DiabetesPredegreeFunction
+        self.DiabetesPredegreeFunction = QSlider(Qt.Orientation.Horizontal)
+        self.DiabetesPredegreeFunction.setMinimum(0)
+        self.DiabetesPredegreeFunction.setMaximum(4)
+        self.DiabetesPredegreeFunction.setTickInterval(4)
+        self.DiabetesPredegreeFunction.valueChanged.connect(self.updateSlider_dibeticsPredegree)
+        self.DiabetesPredegreeFunction.setGeometry(5, 3, 20, 20)
+        self.selectedValue_predegree = QLabel(self)
+        self.selectedValue_predegree.setText(str(0))
+        label7 = QLabel("Diabetes Predegree Func [0 - 4]", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(label7)
+        leftVerticalLayout.addWidget(self.DiabetesPredegreeFunction)
+        leftVerticalLayout.addWidget(self.selectedValue_predegree)
+
+
+
+        # Silder button  Age
+        self.age = QSlider(Qt.Orientation.Horizontal)
+        self.age.setMinimum(18)
+        self.age.setMaximum(150)
+        self.age.valueChanged.connect(self.updateSlider_Age)
+        self.age.setGeometry(5, 3, 20, 20)
+        self.selectedValue_age = QLabel(self)
+        self.selectedValue_age.setText(str(18))
+        label8 = QLabel("Age [18 - 150]", alignment=Qt.AlignmentFlag.AlignCenter)
+        leftVerticalLayout.addWidget(label8)
+        leftVerticalLayout.addWidget(self.age)
+        leftVerticalLayout.addWidget(self.selectedValue_age)
+
+
+        # Push button  Predict
+        self.predict = QPushButton("Predict")
+        leftVerticalLayout.addWidget(self.predict)
+        self.predict.clicked.connect(self.predictiveSystem)
+        self.predictedValue = QLabel(" Prediction: None", self)
+        leftVerticalLayout.addWidget(self.predictedValue)
+
+
+        ####----------------Main Window Graph ------------
+    
+        self.setWindowTitle('Women Diabetics Prediction')
+
+        x = diabetes["Age"]
+        y = diabetes["Glucose"]
+        
+
+        fig = Figure()
+        ax =fig.add_subplot(111)
+     
+        ax.set_title('Glucose Levels Across Age:Predicting Diabetes Risk.')
+        x_label= ax.set_xlabel('Age')
+        y_label = ax.set_ylabel('Glucose')
+        
+        #ax.bar(x,y)
+        ax.bar(x,y)
+        graph =FigureCanvas(fig)
+
+
+        ###--------Connecting (all the buttons to left vertical layout) & (graph to the right vertical layout)
+        RightVerticalLayout.addWidget(graph)
+        MainLayout.addLayout(leftVerticalLayout) 
+        MainLayout.addLayout(RightVerticalLayout)
+        
+       
+        mainWidget = QWidget()
+        mainWidget.setLayout(MainLayout)
+        self.setCentralWidget(mainWidget)
+
+
+
+
+       
+
+        # menu
+
+        # action 1 from menu
+        self.window2 = None 
+        histogram_action = QAction(QIcon("chart-medium.png"), "Histogram", self)
+        histogram_action.setStatusTip("View Histogram.")
+        histogram_action.triggered.connect(self.show_hist_window)
+
+        # action 2 from menu
+        self.window3 = None 
+        plot_action = QAction(QIcon("plot.png"), "Plot Graph", self)
+        plot_action.setStatusTip("Real Time Graph")
+        plot_action.triggered.connect(self.show_realTime_window)
+
+        menu = self.menuBar()
+        file_menu = menu.addMenu("&Menu")
+        file_menu.addAction(histogram_action)
+        file_menu.addAction(plot_action)
+
+
+
+
+    def Pregnancies_onStateChanged(self):
+        if self.pregnancies_checkbox.isChecked():
+            self.pregnancies_checkbox.setText("Pregnant")
+        else:
+            self.pregnancies_checkbox.setText("Not Pregnant") 
+
+    def updateSlider_pregnancies(self):
+        val = self.pregnancies.value()
+        self.selectedValue_preg.setText(str(val))
+    def updateSlider_Glucose(self):
+        val = self.Glucose.value()
+        self.selectedValue_glucose.setText(str(val))
+    def updateSlider_BloodPressure(self):
+        val = self.BloodPressure.value()
+        self.selectedValue_blood.setText(str(val))
+    def updateSlider_skinThickness(self):
+        val = self.SkinThickness.value()
+        self.selectedValue_skin.setText(str(val))
+    def updateSlider_insulin(self):
+        val = self.Insulin.value()
+        self.selectedValue_insulin.setText(str(val))
+    def updateSlider_BMI(self):
+        val = self.BMI.value()
+        self.selectedValue_BMI.setText(str(val))
+    def updateSlider_dibeticsPredegree(self):
+        val = self.DiabetesPredegreeFunction.value()
+        self.selectedValue_predegree.setText(str(val))
+    def updateSlider_Age(self):
+        val = self.age.value()
+        self.selectedValue_age.setText(str(val))
+
+    def show_hist_window(self):
+        if self.window2 is None:
+            self.window2 = secondWindow()
+        self.window2.show()
+
+    def show_realTime_window(self):
+        if self.window3 is None:
+            self.window3 = thirdWindow()
+        self.window3.show()
+
+    def generateData(self):
+        global diabetes
+        self.diabetes = pd.read_csv('diabetes_clean_03042021.csv')
+        print("self.diabetes.head(8):")
+        print(self.diabetes.head(10))
+        print("self.diabetes.tail(5): ")
+        print(self.diabetes.tail(5))
+        print("self.diabetes.info():")
+        print(self.diabetes.info())
+
+        # number of rows and columns
+        print("Rows: ", self.diabetes.shape[0])
+        print("Columns: ", self.diabetes.shape[1])
+        print("self.diabetes.describe(): ")
+        print(self.diabetes.describe())
+        print("Total Diabetic(1) and Non-diabetic(0) patient:", self.diabetes['Outcome'].value_counts())
+        print("[Mean] grouped by diabetic(1) and Non-diabetic(0) patient: ")
+        print(self.diabetes.groupby('Outcome').mean())
+
+        # ----------- Machine learning ------
+        print("-----Training data-----")
+        x = self.diabetes.drop(columns='Outcome', axis=1)  # data
+        y = self.diabetes['Outcome']  # model
+
+        # Data Standardization
+        self.scaler = StandardScaler()
+        self.scaler.fit(x)
+        standardized_data = self.scaler.transform(x)
+        # print(standardized_data)
+
+        x = standardized_data  # data
+        y = self.diabetes['Outcome']  # model
+
+        # Train Test Split
+        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)
+        # test_size = 0.20 means 20% test data  and 80% train data
+
+        # print(x.shape, x_train.shape, x_test.shape)
+
+        # Training The Model with SVM Algorithm
+        self. svm_classifier = svm.SVC(kernel='linear')
+        # training the support vector machine classifier
+        self.svm_classifier.fit(x_train, y_train)
+
+        # Accuracy Check
+        # Train Data
+        x_train_prediction = self.svm_classifier.predict(x_train)
+        training_data_accuracy = accuracy_score(x_train_prediction, y_train)
+        print("Accuracy Score of the training data: ", training_data_accuracy)
+
+        # Test data
+        x_test_prediction = self.svm_classifier.predict(x_test)
+        test_data_accuracy = accuracy_score(x_test_prediction, y_test)
+        print("Accuracy Score of the testing data: ", test_data_accuracy)
+
+
+        # correlation ---- highest  x=age y=blood pressure
+        corr_matrix = self.diabetes.corr()
+        print("self.diabetes.corr(): ", corr_matrix)
+        
+        if (x_test_prediction[0] == 0):
+            result = print("The person is not diabetic. ")
+        else:
+            result = print("The person is diabetic. ")
+
+    # calculating the values for the predictive System
+    def predictiveSystem(self):
+        global result
+        from random import randint
+        count = randint(0, 767)
+        
+        # converting checkbox value into  0 or 1
+        if self.pregnancies_checkbox.isChecked() == True:
+            pregnancies_checkbox = 1
+        else:
+            pregnancies_checkbox = 0
+
+        Glucose = self.Glucose.value()
+        BloodPressure =self.BloodPressure.value()
+        SkinThickness = self.SkinThickness.value()
+        Insulin = self.Insulin.value()
+        bmi = self.BMI.value()
+        DiabetesPedigreeFunction = self.DiabetesPredegreeFunction.value()
+        Age = self.age.value()
+
+        # inputData = [value,1, 110, 92, 0, 0, 37.6,0.191, 30]
+        sampleData = [count, pregnancies_checkbox, Glucose, BloodPressure, SkinThickness, Insulin, bmi, DiabetesPedigreeFunction,
+                      Age]
+
+        # change the input data to numpy array
+        sampleData_numpy = np.asarray(sampleData)
+
+        # reshaping array as we are predicting for one instance
+        reshaping = sampleData_numpy.reshape(1, -1)
+
+        # standardize the input data
+        standardize_sampleData = self.scaler.transform(reshaping)
+        # print(std_data)
+
+        prediction = self.svm_classifier.predict(standardize_sampleData)
+        print(prediction)
+        if (prediction[0] == 0):
+            
+            self.predictedValue.setText("Prediction: The person is not diabetic. ")
+        else:
+            
+            self.predictedValue.setText("Prediction: The person is  diabetic. ")
+
+
+
+
+if __name__ == '__main__':
+        app = QApplication(sys.argv)
+        
+        with open("style.css", "r") as file:
+            app.setStyleSheet(file.read())
+            
+        window = MainWindow()
+        #window.setFixedSize(1200,800)
+        
+   
+        window.design()
+        window.generateData()
+
+        window.show()
+
+        sys.exit(app.exec())
diff --git a/plot.png b/plot.png
new file mode 100644
index 0000000000000000000000000000000000000000..24827761ba223993fa33b01bfbc26077d77e1cd0
Binary files /dev/null and b/plot.png differ
diff --git a/style.css b/style.css
new file mode 100644
index 0000000000000000000000000000000000000000..617ad35488e5fc2be677f2408c4f73fd252f25dd
--- /dev/null
+++ b/style.css
@@ -0,0 +1,42 @@
+QMainWindow {
+    background-color: #1e1f22;
+    border-radius: 5px;
+    background-image: url('image.jpg'); /* set the path to your image */
+    background-repeat: no-repeat; /* prevent the image from repeating */
+    background-position: center; /* position the image in the center */
+    
+}
+
+QSlider::handle:horizontal {
+    background: #13fcec;
+    width: 10px;
+    margin: -5px -1px;
+    border-radius: 5px;
+    border: 1px solid #2a2a2a;
+}
+QSlider::groove:horizontal {
+    background: #ffffff6a;
+    height:2px;
+    border: 1px solid #2a2a2a;
+}
+
+QPushButton {
+    background-color: #1ffcd3; /* set the background color */
+    color: #0f3f33; /* set the text color */
+    border: 1px solid #0fe6b490; /* add a border */
+    padding: 5px 10px; /* add padding */
+    border-radius: 5px;
+}
+QLabel {
+    color: #ffffff; /* set the text color for labels */
+    font-size: 14px; /* set the font size for labels */
+    font-family: 'Courier New', Monospace; /* set the font family for labels */
+    font-weight: bold;
+}
+
+QCheckBox {
+    color: #ffffff; /* set the text color for labels */
+    font-size: 18px; /* set the font size for labels */
+    font-family: 'Courier New', Monospace; /* set the font family for labels */
+    font-weight: bold;
+}