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Abstract

Comparing different image processing libraries is an important job that has to be done to find
a solution which is on the one hand cost-effective and on the other hand high-performing that
would be appropriate for the industrial and software applications. Automation, quality control,
medical imaging, and real-time data analysis are the use cases involving digital image process-
ing, and it requires the libraries that can give both efficiency and elasticity. Whether they are
open-source or proprietary, the libraries such as OpenCV, SkiaSharp, Magick.NET, Emgu CV,
and OpenCvSharp give a wide spectrum of functionalities, from simple image manipulations
to complex computer vision problems.
The choice of a graphics programming library that is applicable to a given task is primarily

influenced by several factors (the first of which is) the computational efficiency used in the
algorithms, as well as licensing, and integration concepts as well. Some libraries take into
account the speed and flexibility and thus cater to performance-critical applications whereas
others are more centered on the ease of use and support for different platforms. To test the
performance of libraries, you will be needed to measure their run-time, memory usage, and
requirements for different environments, including embedded systems, desktop applications,
and cloud-based platforms.
A key consideration in the industrial context is the trade-off between the processing power

and the stability in the setting of the operation. On the one hand, with the help of the high-
performance computers, the image transformation can be done in a flash and the real-time
analysis can be done but, on the other hand, embedded systems and industrial controllers al-
ways set limits that make the execution slow. It is crucial to make the necessary trade-offs
between these three in the case of such companies, which approach the issue of image pro-
cessing optimization by factoring in reliability and cost efficiency.
The research report is a comprehensive analysis of the image processing libraries. During the

course of the project, themain strengths, weaknesses, as well as the best-use scenarios are seen.
The results compile efficiency measurements, integration difficulties, and cost-related issues,
offering a practical guide not only for software developers but also for hardware engineers
and decision-makers who would like to principally survive the expanding market of image
processing solutions in any type of industry across the world.
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1 Introduction

1.1 The Significance of Image Processing in Modern Industry

Digital image processing has emerged as a cornerstone of modern industrial applications, revo-
lutionizing the way industries operate and innovate. From quality control in manufacturing to
advanced simulations in aerospace, the ability to process and analyze images digitally has un-
locked unprecedented efficiencies and capabilities. This field, which involves the manipulation
and analysis of images using algorithms, has evolved significantly over the past few decades,
driven by advancements in computing power, algorithm development, and the proliferation of
digital imaging devices [1, 2].
The significance of digital image processing in industrial applications cannot be overstated.

In manufacturing, for instance, image processing is integral to quality assurance processes,
where it is used to detect defects, measure product dimensions, and ensure compliance with
stringent standards . This capability not only enhances product quality but also reduces waste
and operational costs. In the automotive industry, image processing is pivotal in the develop-
ment of autonomous vehicles, where it aids in object detection, lane departure warnings, and
pedestrian recognition. Similarly, in the healthcare sector, digital image processing is used in
medical imaging technologies such as MRI and CT scans, enabling more accurate diagnoses
and treatment planning [3, 4].
The evolution of digital image processing has been marked by several key developments.

Initially, the field was limited by the computational resources available, with early applications
focusing on basic image enhancement and restoration. However, the advent of powerful pro-
cessors and the development of sophisticated algorithms have expanded the scope of image
processing to include complex tasks such as pattern recognition, 3D reconstruction, and real-
time image analysis. The integration of artificial intelligence and machine learning has further
propelled the field, allowing for the development of intelligent systems capable of learning
from data and improving over time [1, 4, 5].
For industries like Dassault Systems, which operates at the forefront of aerospace, defense,

and industrial engineering, a comparative study of image processing libraries is crucial. These
libraries, which provide pre-built functions and tools for image analysis, vary significantly in
terms of performance, ease of use, and functionality. Selecting the right library can have a
profound impact on the efficiency and effectiveness of image processing tasks. For instance,
libraries such as OpenCV, Imagemagick and ImageSharp offer different strengths and weak-
nesses, and understanding these differences is essential for optimizing industrial applications
[6].
A comparative study of these libraries not only aids in selecting the most suitable tools for

specific tasks but also highlights areas for potential improvement and innovation. By analyz-
ing the performance of different libraries in various scenarios, industries can identify gaps in
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1 Introduction

current technologies and drive the development of new solutions that better meet their needs.
Moreover, such studies contribute to the broader field of digital image processing by providing
insights into best practices and emerging trends.

1.1.1 Evolution and Impact of Digital Image Processing

Digital image processing has evolved significantly since its inception, transforming from a
niche scientific endeavor into a cornerstone of modern technology with applications spanning
numerous industries. This essay outlines the historical development of digital image process-
ing, highlighting key advancements and their impact on industrial innovation.

Early Beginnings

The origins of digital image processing can be traced back to the 1920s and 1930s with the
development of television technology, which laid the groundwork for electronic image capture
and transmission. However, it wasn’t until the 1960s that digital image processing began to
take shape as a distinct field. The launch of the first digital computers provided the necessary
computational power to process images digitally. During this period, NASA played a pivotal
role by using digital image processing to enhance images of the moon’s surface captured by
the Ranger 7 spacecraft in 1964. This marked one of the first significant applications of digital
image processing, demonstrating its potential for scientific and exploratory purposes [7].

The 1970s and 1980s: Theoretical Foundations and Practical Applications

The 1970s saw the establishment of theoretical foundations for digital image processing. Re-
searchers developed algorithms for image enhancement, restoration, and compression. The
Fast Fourier Transform (FFT), introduced by Cooley and Tukey in 1965, became a fundamen-
tal tool for image processing, enabling efficient computation of image transformations. This
period also witnessed the development of the first commercial applications, such as medical
imaging systems. The introduction of Computed Tomography (CT) in 1972 revolutionizedmed-
ical diagnostics by providing detailed cross-sectional images of the human body, showcasing
the life-saving potential of digital image processing [7, 8].

The 1990s: The Rise of Computer Vision

The 1990s marked a significant shift towards computer vision, a subfield of digital image pro-
cessing focused on enabling machines to interpret visual data. This era saw the development of
algorithms for object recognition, motion detection, and 3D reconstruction. The introduction
of the JPEG standard in 1992 facilitated the widespread adoption of digital images by providing
an efficient method for image compression, crucial for the burgeoning internet era. The decade
also saw advancements in facial recognition technology, which laid the groundwork for future
applications in security and personal identification [9].
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1.1 The Significance of Image Processing in Modern Industry

The 2000s: Machine Learning and Image Processing

The 2000s witnessed the integration of machine learning techniques with digital image pro-
cessing, leading to significant improvements in image analysis and interpretation. The devel-
opment of Support Vector Machines (SVM) and neural networks enabled more accurate image
classification and pattern recognition. This period also saw the emergence of digital cameras
and smartphones, which democratized image capture and sharing, further driving the demand
for advanced image processing techniques[9].

The 2010s to Present: Deep Learning and Industrial Innovation

The advent of deep learning in the 2010s revolutionized digital image processing. Convolu-
tional Neural Networks (CNNs), popularized by the success of AlexNet in the ImageNet com-
petition in 2012, dramatically improved the accuracy of image recognition tasks. This break-
through spurred innovation across various industries. In healthcare, deep learning algorithms
are now used for early detection of diseases through medical imaging, improving patient out-
comes. In the automotive industry, image processing is a critical component of autonomous
vehicle systems, enabling real-time object detection and navigation [10, 9].
In recent years, digital image processing has expanded into areas such as augmented reality

(AR) and virtual reality (VR), enhancing user experiences in gaming, education, and training.
The integration of image processing with artificial intelligence continues to drive innovation,
with applications in fields such as agriculture, where drones equipped with image processing
capabilities monitor crop health and optimize yields.

1.1.2 Current Applications of Image Processing in Industry

Image processing, a critical component of computer vision, has become an indispensable tool
across various industries, driving advancements in productivity, quality control, and automa-
tion. This essay explores the utilization of image processing in several key sectors, emphasizing
applications that demand high precision and efficiency.

Manufacturing andQuality Control

In the manufacturing industry, image processing is pivotal for quality control and defect detec-
tion. Automated visual inspection systems utilize high-resolution cameras and sophisticated
algorithms to detect defects in products at a speed and accuracy unattainable by human in-
spectors. For instance, in semiconductor manufacturing, image processing is used to inspect
wafers for defects, ensuring that only flawless products proceed to the next production stage.
This not only enhances product quality but also reduces waste and operational costs. A study
by Zhang et al. (2023) [11] highlights the use of convolutional neural networks (CNNs) in
detecting surface defects in steel manufacturing, demonstrating significant improvements in
detection accuracy and processing speed compared to traditional methods.
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1 Introduction

Healthcare and Medical Imaging

In healthcare, image processing is revolutionizing diagnostics and treatment planning. Tech-
niques such as MRI, CT scans, and X-rays rely heavily on image processing to enhance image
quality and extract meaningful information. For example, in radiology, image processing algo-
rithms help in the early detection of diseases like cancer by improving the clarity and contrast of
medical images, allowing for more accurate diagnoses. A research paper by Litjens et al. (2017)
[12] reviews the application of deep learning in medical imaging, showcasing its potential in
improving diagnostic accuracy and efficiency, thus influencing patient outcomes positively.

Agriculture

Precision agriculture benefits significantly from image processing, where it is used for crop
monitoring, disease detection, and yield estimation. Drones equipped with multispectral cam-
eras capture images of fields, which are then processed to assess plant health and detect stress
factors such as pests or nutrient deficiencies. This enables farmers to make informed decisions,
optimizing resource use and improving crop yields. A case study by Maimaitijiang et al. (2020)
[13] demonstrates the use of UAV-based hyperspectral imaging for monitoring crop growth,
highlighting its effectiveness in enhancing agricultural productivity.

Automotive Industry

In the automotive sector, image processing is integral to the development of autonomous ve-
hicles. Advanced driver-assistance systems (ADAS) rely on image processing to interpret data
from cameras and sensors, enabling features such as lane departure warnings, adaptive cruise
control, and automatic parking. These systems enhance vehicle safety and pave the way for
fully autonomous driving. A study by Janai et al. (2021) [14] discusses the role of computer
vision in autonomous vehicles, emphasizing the importance of real-time image processing in
ensuring safe and efficient vehicle operation.

Retail and E-commerce

Retail and e-commerce industries leverage image processing for inventory management, cus-
tomer analytics, and personalized marketing. In inventory management, image processing
systems track stock levels and identify misplaced items, streamlining operations and reducing
labor costs. In customer analytics, facial recognition and sentiment analysis provide insights
into customer behavior and preferences, enabling personalized marketing strategies. A paper
by Ren et al. (2016) [15] explores the application of image processing in retail, highlighting its
impact on enhancing customer experience and operational efficiency.

1.1.3 The Strategic Importance of Image Processing Libraries

In the rapidly evolving landscape of industrial applications, the demand for efficient, adaptable,
and scalable image processing libraries has become increasingly critical. These libraries serve
as the backbone for a myriad of applications ranging from quality control in manufacturing
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to advanced robotics and autonomous systems. The benefits of employing such libraries are
manifold, including reduced time-to-market, enhanced product quality, and cost efficiency, all
of which are pivotal for maintaining competitive advantage in the industrial sector.

Firstly, efficient image processing libraries significantly reduce the time-to-market for new
products and technologies. In industries where innovation cycles are short and competition
is fierce, the ability to quickly develop and deploy new solutions is crucial. Efficient libraries
streamline the development process by providing pre-built, optimized functions that develop-
ers can readily integrate into their systems. This reduces the need for writing complex algo-
rithms from scratch, thereby accelerating the development timeline. For instance, libraries like
OpenCV and TensorFlow offer a wide array of tools and functions that can be easily adapted to
specific industrial needs, allowing companies to focus on innovation rather than the intricacies
of image processing [6].

Adaptability is another critical factor that underscores the importance of these libraries.
Industrial environments are often dynamic, with varying requirements and conditions that
necessitate flexible solutions. Scalable image processing libraries can be tailored to meet spe-
cific needs, whether it involves adjusting to different hardware configurations or integrating
with other software systems. This adaptability ensures that companies can respond swiftly to
changes in market demands or technological advancements without overhauling their entire
system architecture. For example, the modular nature of libraries like Halide allows for easy
customization and optimization for different hardware platforms, enhancing their applicability
across diverse industrial scenarios [16].

Moreover, the use of scalable image processing libraries contributes to enhanced product
quality. In industries such as automotive manufacturing or pharmaceuticals, precision and
accuracy are paramount. Advanced image processing capabilities enable more rigorous quality
control processes, ensuring that defects are detected and rectified early in the production cycle.
This not only improves the quality of the final product but also minimizes waste and reduces
the likelihood of costly recalls. Studies have shown that implementing robust image processing
solutions can lead to significant improvements in defect detection rates and overall product
reliability [17].

Cost efficiency is another significant advantage offered by these libraries. By leveraging
open-source or commercially available image processing tools, companies can reduce the costs
associated with software development and maintenance. These libraries often come with ex-
tensive documentation and community support, which can further reduce the need for spe-
cialized training and technical support. Additionally, the ability to scale solutions according
to demand means that companies can optimize their resource allocation, investing only in the
capabilities they need at any given time. This scalability is particularly beneficial for small and
medium-sized enterprises that may not have the resources to develop custom solutions from
the ground up [18].
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1 Introduction

1.2 Aim of the Study and Its Implications for Selecting an
Image Processing Tool

The purpose of this study was to compare the performance, functionality, and ease of inte-
gration of a wide range of image processing libraries. The primary objective is to establish
a general framework for evaluating different tools in the field. As part of this research, key
metrics such as conversion speed, pixel iteration efficiency, memory consumption, and devel-
opment effort will be evaluated in order to provide developers, engineers, and decision-makers
with a balanced viewpoint.

1.2.1 Research Goals and Objectives

At its core, the study sought to answer the question: “Which image processing library best
meets the diverse needs of modern applications?” To do so, several key objectives were identi-
fied:

1. Provide a Framework for Educated Choices: The research aimed to create a frame-
work that helps users evaluate image processing tools based on defined metrics. By com-
paring factors such as processing speed, memory consumption, development effort, and
integration ease, the study aimed to demystify the trade-offs that come with adopting
any given tool. This approach allows users to align their choices with their performance
needs and project constraints, rather than making decisions solely based on cost consid-
erations. As highlighted in the investigation, while saving on licensing fees is beneficial,
the broader picture includes aspects like processing efficiency and long-term maintain-
ability.

2. Compare a Wide Range of Alternatives: ImageSharp is one of many tools avail-
able for image processing. The study examined alternatives including OpenImageIO,
SkiaSharp, Magick.NET, Emgu CV, MagicScaler, and several others. Each library was
assessed against a set of criteria, such as its ability to handle tasks like image loading,
pixel manipulation, resizing, and image composition. By comparing these libraries side-
by-side, the study provides a nuanced view that helps practitioners understand not only
what each tool can do but also the potential gaps that might exist depending on the
application’s requirements.

3. Define Clear Performance and Functional Metrics: A significant goal of the study
was to establish quantifiable metrics that could be used to assess the performance of
each image processing library. Metrics such as image conversion time, pixel iteration ef-
ficiency, and memory usage were used as benchmarks. For instance, the study measured
how long it takes for a tool to load an image, perform a conversion (e.g., from JPEG
to PNG), and iterate through pixels for operations like converting to grayscale. Such
detailed benchmarking is instrumental in understanding the real-world performance of
each library and is critical for users who need to balance speed with resource consump-
tion.
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4. Assist in Tool Selection for Varied Requirements: Beyond performance metrics,
the study was designed to consider the broader context of software integration. Factors
such as ease of implementation, the learning curve for developers, compatibility with
existing systems, and community support were all taken into account. This holistic view
means that the research is not just about raw performance numbers but also about the
practicalities of deploying and maintaining these tools in production environments.

1.2.2 Practical Implications for Tool Selection

The comprehensive evaluation detailed in this study has several practical implications for any-
one looking to select an image processing tool:

Balancing Performance with Practicality

Themetrics established in the study—ranging fromprocessing times tomemory usage—provide
a clear picture of the strengths and weaknesses of each library. This information is invaluable
when balancing the need for high-performance image processing against practical considera-
tions such as ease of integration and long-term maintenance. For instance, a company that pri-
oritizes rapid image conversion and low memory consumption might lean towards SkiaSharp,
while an organization needing advanced image manipulation capabilities and robust commu-
nity support might find Emgu CV more appealing.

Making Informed Trade-Offs

One of the standout contributions of the study is its ability to help users make informed trade-
offs. Rather than making decisions based on a single metric, the evaluation presents a multi-
dimensional view that incorporates performance, development effort, and functional capabili-
ties. This approach ensures that users can select a tool that best fits their unique requirements,
whether that means prioritizing speed, minimizing development overhead, or ensuring com-
patibility with existing workflows.

Extending Beyond Cost Savings

While cost savings are certainly a factor, the study underscores that financial considerations
should not be the sole driver of decision-making. The true value of an image processing tool lies
in its ability to meet specific technical and operational requirements. By providing a detailed
comparison of several alternatives, the research emphasizes that factors like ease of integration,
scalability, and overall performance are equally, if not more, important. This holistic approach
helps organizations avoid the pitfall of selecting a tool based solely on its cost.

Guiding Future Developments and Integrations

The insights gained from the study are not only applicable to current technology choices but
also serve as a guide for future developments in image processing. The detailed benchmarks
and performance analyses can inform future projects, helping developers understand where
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1 Introduction

improvements can be made or which features are most critical. Additionally, the study’s ap-
proach to evaluating development effort and integration challenges provides a roadmap for
how future research can build on these findings to further refine the selection process.

1.3 Related Work

The evaluation of image processing libraries, particularly for industrial applications, has at-
tracted significant research interest over the past decades. Broadly, the field encompasses au-
tomated image analysis and computer vision systems designed to handle tasks such as quality
control, defect detection, and high-resolution image enhancement. The foundational research
in Automated Image Processing has evolved from early, often ad hoc, implementations to so-
phisticated frameworks that leverage hardware acceleration and advanced algorithms. Early
surveys, such as Kulpa’s (1981) [19] seminal review of digital image processing systems in
Europe, laid the groundwork for understanding the challenges of standardization and perfor-
mance evaluation in these systems.
In recent years, the convergence of hardware acceleration and image analysis has been a

recurring theme. Sahebi et al. (2023) [20] demonstrate how distributed processing on FPGAs
can dramatically enhance computational efficiency—a principle equally applicable to industrial
image processing where real-time performance is critical. Similarly, Ma et al. (2024) [21] con-
tribute to the field by presenting an image quality database specifically tailored for industrial
processes. Their work emphasizes the importance of aligning objective metrics with human
perception in quality assessments, a concern that resonates throughout subsequent research
in the area.
Chisholm et al. (2020) [22] and Ferreira et al. (2024) [23] extend these discussions by focusing

on the implementation of real-time image processing systems using FPGAs. Chisholm illus-
trate a real-time crack detection system employing particle filters, highlighting the challenges
of meeting stringent timing constraints in industrial settings. Ferreira, on the other hand, pro-
pose a generic FPGA-based pre-processing library, emphasizing strategies tominimizememory
overhead and improve processing speed. These studies underscore the significant role of hard-
ware acceleration in modern image processing pipelines, setting the stage for more nuanced
comparative evaluations.
A critical aspect of the research is the comparative analysis of different image processing

libraries. Lai et al. (2001) [24] provide an in-depth review of several libraries, contrasting
hardware-specific optimizations with generic, portable solutions. Their work not only iden-
tifies the strengths and weaknesses inherent in different design philosophies but also serves
as a benchmark against which later approaches can be compared. Kulpa’s early survey (1981)
[19] remains an important historical reference, offering insights into the evolution of image
processing systems and highlighting persistent issues such as limited standardization and doc-
umentation.
Pérez et al. (2014) [25] contribute by investigating super-resolution techniques for plenop-

tic cameras via FPGA-based implementations, demonstrating that hardware acceleration can
significantly improve both processing speed and image quality. Meanwhile, Rao’s (2023) [26]
comparative analysis of deep learning frameworks extends the conversation by incorporat-
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1.3 Related Work

ing performance metrics, documentation quality, and community support. This approach is
particularly valuable as it parallels the metrics used to evaluate traditional image processing li-
braries, thereby bridging the gap between classical image processing andmodern deep learning
paradigms.
Several studies have explored niche industrial applications where image processing plays

a critical role. Ciora and Simion (2014) [27] provide a broad overview of the applications of
image processing in industrial engineering, covering areas from automated visual inspection
to process control. Their comprehensive review underscores the necessity of robust, efficient
image processing systems that integrate seamlessly with industrial control mechanisms.
In a more focused domain, Sandvik et al. (2024) [28] review machine learning and image

processing techniques for wood log scaling and grading. Their systematic categorization of
methodologies offers a template for benchmarking approaches that combine computer vision
with domain-specific performance metrics. Sardar (2012) [29] examines the use of image pro-
cessing for quality analysis in agriculture, further highlighting the versatility of these tech-
nologies across different industrial sectors.
Vieira et al. (2024) [30] address the challenges of deploying image processing algorithms

on Programmable Logic Controllers (PLCs), which are prevalent in industrial control systems.
Their work illustrates the trade-offs between processing speed, implementation complexity,
and system robustness when operating in resource-constrained environments. Wu et al. (2022)
[31] and Zhu et al. (2022) [32] then delve into specific industrial applications—precision control
in filament drafting and product appearance quality inspection, respectively—demonstrating
the critical impact of real-time processing and integration on system performance.
At the forefront of current research are studies that provide robust benchmarking frame-

works. Reis (2023) [33] offers an overview of recent developments in computer vision and
image processing methodologies, pointing out the increasing integration of artificial intelli-
gence with classical approaches. This evolution is complemented by Ziaja et al. (2021) [34],
whose work on benchmarking deep learning for on-board space applications provides a rig-
orous framework for evaluating execution time, resource utilization, and overall performance
under constrained hardware conditions.
These contemporary evaluations are essential for highlighting the limitations of existing

approaches. While many studies focus on performance metrics such as processing speed and
memory efficiency, few have systematically integrated these factors with ease of integration
and system robustness in industrial settings. This gap in the literature motivates the present
study, which aims to establish a comprehensive benchmarking approach that encompasses
both hardware acceleration and software flexibility.
In summary, the reviewed literature presents a rich tapestry of methodologies and evalua-

tions that span a broad spectrum of industrial image processing applications. Early founda-
tional works provided historical context and identified critical challenges, while subsequent
studies advanced the field by integrating hardware acceleration, deep learning, and niche in-
dustrial applications into comprehensive performance evaluations. Despite these advances, a
clear gap remains in the standardization of benchmarking protocols that address performance,
resource efficiency, and integration challenges in real-world industrial settings. This thesis
proposes a novel benchmarking approach that differentiates itself by not only comparing the
computational performance of various image processing libraries but also by evaluating their
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ease of integration into complex industrial workflows. By doing so, the study seeks to pro-
vide actionable insights for practitioners and pave the way for the next generation of robust,
efficient, and versatile image processing solutions.
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2 Methodology

This chapter outlines the journey and rationale behind the methodology for comparing various
image processing libraries. It explains the choice of performance metrics, describes how the
metrics were obtained and processed and details the criteria used to select the libraries under
investigation. The aim is to provide an approach that not only yields quantitative insights but
also connects with real-world applications.

2.1 Selection of Libraries for Comparison

The choice of libraries for this study was driven by several factors, including functionality,
licensing, ease of integration, and performance potential. Most of image processing libraries
provided wrappers or bindings for .NET, the language of choice for this experiments. The
search of libraries revealed a wide range of options—from the commercial ImageSharp to var-
ious open-source alternatives such as OpenCvSharp, Emgu CV, SkiaSharp, Magick.NET, and
others.
With consideration of real-world image processing applications needs, certain technical fea-

tures were considered essential for the evaluation, such as support for common image for-
mats (JPEG, PNG, BMP, WebP, etc.), mutative operations (e.g., pixel manipulation, color space
conversion), and high-level operations (e.g., image composition, filtering). All libraries were
evaluated based on their ability to handle these tasks efficiently by inspecting their APIs and
documentation. Also the licensingmodel, integration effort, and community support were con-
sidered to ensure that the selected libraries were not only technically capable but also practical
for real-world applications. The data gathered from this is available including the table of fea-
ture comparison that was created for each library, and available in the appendix (see Chapter
6).

Figure 2.1: This figure shows the selected libraries for comparison and their main features for
each or combination of libraries.

13



2 Methodology

As a result of this research, a clear picture of each library’s capabilities was developed, and
the most suitable candidates for the performance tests were identified. Consequently, 5 sug-
gested libraries or combinations of libraries were selected for the comparative evaluation: Im-
ageSharp and Magick.NET as single library solutions, given their capabilities to cover both
lightweight and complex image processing tasks, and the combinations of OpenCvSharp with
SkiaSharp, and Emgu CV with SkiaSharp, as they complement each other in terms of perfor-
mance and functionality.

2.2 Performance Metrics and Criteria for Comparison

Image processing is an integral part of many modern applications, from web services to real-
time computer vision systems. To compare libraries by comparing their performance and prac-
ticality using a controlled benchmarking environment. The study focused on two key perfor-
mance metrics: Image Conversion and Pixel Iteration. These metrics were selected because
they represent foundational operations in image processing workflows, forming the building
blocks for more complex tasks.
The decision to focus on image conversion and pixel iteration was based on the need for

metrics that could objectively and quantitatively measure core operations while remaining in-
dependent of higher-level library-specific features. Image conversion was chosen as it involves
loading an image from disk, converting its format, and saving it back. This process mirrors
common operations in web applications and desktop software where rapid image display is
critical.
Pixel iteration, on the other hand, was selected to capture the efficiency of low-level im-

age manipulation. Many image processing tasks, such as filtering, transformation, and color
adjustment, require access to each pixel individually. By measuring the time taken to iterate
over all pixels and apply a basic grayscale conversion, a clear indicator of the library’s capa-
bility in handling computationally intensive tasks was obtained. These metrics were chosen
over alternatives like image saving speed or memory usage because they directly reflect two
complementary dimensions: high-level operational overhead and low-level data processing
efficiency.

Figure 2.2: Metrics for performance comparison of image processing libraries, including image
conversion and pixel iteration and what these metrics represent.

Measurement techniques evolved from initial prototypes and iterative refinements. The im-
portance of warm-up iterations was learned from experiments, as the system needed time to
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stabilize before meaningful measurements could be taken. This warm-up phase mitigated the
effects of just-in-time compilation and caching, ensuring that subsequent iterations reflected
steady-state performance rather than the anomalies of system initialization.

2.2.1 Defining the Image Conversion Metric

The image conversion test was designed as a JPEG image file loaded from disk, converted to
PNG format, and then saved. The JPEG and PNG formatswere chosen as examples of a common
conversion scenario since JPEG is widely used for image storage and PNG is a lossless format
suitable for web applications. The entire process is timed from start to finish. This approach
involves several steps that are repeated over many iterations. Initially, 5 iterations as warm-ups
are executed to allow the system to stabilize. The warm-up durations are recorded separately
and then excluded from the main performance analysis. Once the system is in a steady state, a
fixed number of 100 iterations is performed, and the time taken for each one is recorded.

Figure 2.3: Diagram of the Image Conversion Measurement Process, including the phases of
warm-up and main iterations and data collection.

The .NET Stopwatch class is used to record the elapsed time for each stage of the process.
By repeating this process for a series of iterations—first running several warm-up cycles and
then main iterations—a dataset was generated, that could be averaged to produce normalized
performance figures.

2.2.2 Defining the Pixel Iteration Metric

The pixel iteration metric targets the efficiency of low-level pixel operations, which are foun-
dational for many advanced image processing techniques. The focus here was on isolating the
per-pixel operation, independent of any higher-level image processing abstractions. The mea-
sured time provided insights into how efficiently each library handles large amounts of pixel
data, a critical factor when scaling to high-resolution images or real-time processing tasks.
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Figure 2.4: Diagram of the Pixel Iteration Measurement Process, including the phases of warm-
up and main iterations and data collection.

In this test, the image is loaded into memory, and a nested loop iterates over each pixel. For
each pixel, a basic grayscale conversion is applied by computing the average of the red, green,
and blue channels, and then rewriting the pixel with the computed grayscale value. Similar
to the image conversion test, a series of warm-up iterations is run to ensure the system has
reached a stable state. After this phase, the main iterations are executed, and the time for each
cycle is recorded. The key metric is the average time per iteration, which serves as an indicator
of the library’s efficiency in handling per-pixel operations. The rationale behind this metric is
that many advanced image processing tasks, such as filtering or feature extraction, require
efficient pixel-level manipulation.

2.2.3 Criteria for Library Comparison

This comparative evaluation was based on a set of well-defined criteria that reflect both tech-
nical performance and practical implementation considerations. The primary criteria were
performance (as measured by the two key metrics), functionality (including support for a wide
range of image processing tasks), ease of integration (the simplicity of adopting the library
within a .NET environment), and licensing. In addition to performance, the integration of
BenchmarkDotNet for memory profiling adds another layer to the analysis, allowing the eval-
uation of trade-offs between speed and memory consumption.
Functionality was assessed by mapping each library’s capabilities against a comprehensive

feature set that included image loading, pixel manipulation, format conversion, and high-level
operations such as image composition. Ease of integration was evaluated by considering the
availability of wrappers or bindings, the clarity of documentation, and the level of community
support. Licensing was scrutinized not only in terms of costs but also in terms of the freedoms
and restrictions imposed by each license (e.g., Apache 2.0 and MIT licenses versus commercial
licensing models).Tables of feature comparison that was created for each library, and available
in the appendix (see Chapter 6).
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Figure 2.5: Graphical representation of the criteria used for library comparison, including per-
formance, functionality, ease of integration, Community support, and licensing.

Finally, selection of criteria for libraries are grounded in both technical and practical con-
siderations, ensuring that findings are relevant to a wide range of use cases—from small-scale
applications to enterprise-level deployments.

2.3 Experimental Setup and Environment

The tests were conducted in a controlled environment to ensure reproducibility and accuracy.
Insuring that the hardware setup and software environment were consistent across all exper-
iments by using same machine to eliminate variability due to hardware differences. The soft-
ware environment was configured with a timer, namely the Stopwatch class, which pro-
vided millisecond-level precision. And memory profiling was done using BenchmarkDotNet
in separate tests to capture not only execution times but also memory allocations and garbage
collection metrics, even though the primary focus remained on processing speed.

2.4 Data Collection and Processing

The collected data includes the total time taken for the warm-up phase, the average time per
iteration during the main phase, and the cumulative time including warm-up. These metrics
together provide a comprehensive view for both the image conversion and pixel iteration tests.
The simplicity of this test allows for easy replication and clear comparisons among different
libraries, which is essential when making performance-based decisions. Each iteration’s tim-
ing data was recorded using the high-resolution Stopwatch class and stored in memory.
Following the completion of each test, the raw data was exported to an Excel file using the
EPPlus library. This allowes for statistical analysis later, such as calculating the mean, median,
and standard deviation of the performance times. The Excel files also served as a repository
for comparative charts and graphs, which will be used to visually represent the findings.
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Figure 2.6: Graphical representation of the data collection and processing steps, including the
use of the Stopwatch class, EPPlus library, and Excel files.

Additionally formemory profiling, the BenchmarkDotNet librarywas used tomeasuremem-
ory consumption during the tests. BenchmarkDotNet provides detailed memory allocation and
garbage collection reports in console output, which were captured and stored. Then after ana-
lyzing the data, the results were aggregated and visualized to provide another layer of insight
into the libraries’ performance characteristics. These visuals were then used to form the con-
clusions regarding speed, memory efficiency, and overall suitability for various tasks.

2.5 Conclusion

The methodology adopted in this study is not only a tool for performance measurement but
also a exploration and discovery. Each step—from defining the metrics to processing the data
and selecting the libraries—was a choice aimed at isolating the factors that matter most in
image processing.
In conclusion, the methodology provides a robust framework for comparing image process-

ing libraries. It highlights the critical trade-offs between speed, memory usage, ease of inte-
gration, and licensing costs. The insights derived from this study offer valuable guidance for
developers and researchers alike, paving the way for more efficient and cost-effective image
processing solutions in both academic and commercial settings.
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This chapter details the implementation of a comprehensive benchmarking framework to eval-
uate several image processing libraries, including ImageSharp, OpenCvSharp paired with Ski-
aSharp, Emgu CV coupled with Structure.Sketching, and Magick.NET integrated with Magic-
Scaler. The objective was to create an end-to-end system that not only measures execution
times for common image operations but also provides insights into memory usage.
This has been sought to answer key questions regarding the efficiency of image conversion

and pixel iteration operations—two fundamental tasks in image processing. The following
sections describe the review process, architectural decisions, and technical implementations
in the study. The full implementation, including source code and benchmarking results, is
available at Gitlab repository1.

3.1 System Architecture and Design Rationale

The design of the benchmarking framework was guided by the need for consistency, repeata-
bility, and scientific severity. The system was architected to support multiple libraries through
a common interface, ensuring that each library’s performance could be measured under iden-
tical conditions. At the core of the design was a two-phase benchmarking process: an initial
warm-up phase to account for any initialization overhead, followed by a main test phase where
the actual performance metrics were recorded.
In constructing the system, several important decisions were made. First, a modular ap-

proach was employed, separating the benchmarking routines into distinct components. This
allowed the logic for image conversion and pixel iteration to be encapsulated into separate
classes, each responsible for executing a series of timed iterations and logging the results.

Code 3.1: Design of the benchmarking framework

1 public class ImageConversionBenchmark{
2

3 // Benchmarking logic for image conversion
4 }
5 public class PixelIterationBenchmark{
6

7 // Benchmarking logic for pixel iteration
8 }

The architecture also included a dedicated component for result aggregation, which exported
data into an Excel file using EPPlus, thereby facilitating further analysis and visualization.
1https://mygit.th-deg.de/sf07627/fazeli_shahroudi-sepehr-master-sthesis
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Code 3.2: Design of the benchmarking framework

1 using OfficeOpenXml;
2

3 public class ExcelExporter{
4

5 // Logic for exporting benchmark results to an Excel sheet in a
structured format

6 }

An essential aspect of the design was the uniformity of testing. Despite the differences in
methods of implementation among the libraries, the benchmarking framework was designed
to abstract away these differences. Each library was integrated by implementing the same
sequence of operations: reading an image from disk, processing the image (either converting
its format or iterating over its pixels to apply a grayscale filter), and finally saving the processed
image back to disk. This uniform methodology ensured that the performance comparisons
were both fair and reproducible.
The architecture also accounted for system-level factors such as memory management and

garbage collection. For instance, in languages like C#, where unmanaged resources must be
explicitly disposed of, the design included rigorous cleanup routines to ensure that each it-
eration began with a clean slate. This attention to detail was crucial in obtaining accurate
measurements, as any residual state from previous iterations could skew the results.

Code 3.3: Design of the benchmarking framework

1 using BenchmarkDotNet.Attributes;
2 using BenchmarkDotNet.Running;
3

4 class Program
5 {
6 static void Main(string[] args)
7 {
8 BenchmarkRunner.Run<Benchmarks>();
9 }
10 }
11

12 [MemoryDiagnoser]
13 public class Benchmarks{
14

15 [Benchmark]
16 public void ImageConversionBenchmark(){
17 // Image conversion logic
18 }
19

20 [Benchmark]
21 public void PixelIterationBenchmark(){
22 // Pixel iteration logic
23 }
24 }
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3.2 Benchmarking Implementation

The implementation of the benchmarking framework is divided into two main tests: the image
conversion benchmark and the pixel iteration benchmark. Both tests follow a similar structure,
startingwith awarm-up phase tomitigate initialization effects, followed by a series of iterations
where performance metrics are recorded.

3.2.1 Image Conversion Benchmark Implementation

The image conversion benchmark is designed tomeasure the time it takes to load an image from
disk, convert its format, and save the result. This process is critical in many image process-
ing pipelines, where quick and efficient conversion between formats can significantly impact
overall throughput.
The code snippet below illustrates the core routine for this benchmark. The process begins

with a series of warm-up iterations, during which the system’s just-in-time (JIT) compilation
and caching mechanisms are activated. After the warm-up phase, the main iterations are exe-
cuted, with each iteration logging the time taken for the conversion.

Code 3.4: Image conversion benchmark implementation (ImageSharp-Testing.cs)

1 public class ImageConversionBenchmark
2 {
3 public static (double warmupTime, double averageTime, double totalTime

) RunBenchmark(string inputPath, string outputPath, int iterations
)

4 {
5 long totalElapsedMilliseconds = 0;
6 long warmupTime = 0;
7 int warmupIterations = 5;
8 Stopwatch stopwatch = new Stopwatch();
9

10 // Warm-up iterations to allow the system to reach steady state.
11 for (int i = 0; i < warmupIterations; i++)
12 {
13 stopwatch.Reset();
14 stopwatch.Start();
15 using (Image image = Image.Load(inputPath))
16 {
17 using (FileStream fs = new FileStream(outputPath, FileMode

.Create))
18 {
19 image.Save(fs, new PngEncoder());
20 }
21 }
22 stopwatch.Stop();
23 warmupTime += stopwatch.ElapsedMilliseconds;
24 }
25

26 // Main iterations where actual performance data is collected.
27 for (int i = 0; i < iterations; i++)
28 {
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29 stopwatch.Reset();
30 stopwatch.Start();
31 using (Image image = Image.Load(inputPath))
32 {
33 using (FileStream fs = new FileStream(outputPath, FileMode

.Create))
34 {
35 image.Save(fs, new PngEncoder());
36 }
37 }
38 stopwatch.Stop();
39 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
40 Console.WriteLine($"Iteration {i + 1}: Image conversion took {

stopwatch.ElapsedMilliseconds} ms");
41 }
42

43 double averageTime = totalElapsedMilliseconds / (double)iterations
;

44 double totalTime = warmupTime + totalElapsedMilliseconds;
45 Console.WriteLine($"Warm-up: {warmupTime} ms, Average: {

averageTime} ms, Total: {totalTime} ms");
46

47 return (warmupTime, averageTime, totalTime);
48 }
49 }

In the implementation, the warm-up phase executes for five iterations, during which the
image is loaded, converted to PNG format, and the elapsed time is accumulated. Subsequently,
the main benchmark conducts 100 iterations of the identical operation, enabling the calculation
of a statistically significant average execution time. This methodological approach ensures
the isolation of steady-state performance from initialization overhead, providing metrics that
accurately reflect the operational cost of image conversion.
This benchmark design evolved through iterative refinement. Initial experimental observa-

tions revealed significantly higher latency during the first iterations, necessitating the intro-
duction of a dedicated warm-up phase. The benchmark methodology has been progressively
optimized to ensure maximum isolation between iterations, thereby minimizing the influence
of transient system states on measurement accuracy.
While this benchmarking approach is primarily analytical in nature, it’s implicit in practi-

cal applications as well. For persistent server applications or batch processing systems, the
steady-state performance metrics post-warm-up represent the most relevant operational char-
acteristics. Conversely, for interactive applications, command-line utilities, or serverless com-
puting environments, the initial performance represented by the warm-up phase may be more
indicative of user-perceived responsiveness, as these contexts typically experience the full ini-
tialization cost with each invocation.

3.2.2 Pixel Iteration Benchmark Implementation

The pixel iteration benchmark measures the time taken to perform a basic image processing
operation—converting an image to grayscale by iterating over each pixel. While modern image
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processing often employs vectorized operations on entire matrices for efficiency, pixel-by-pixel
iteration remains relevant in several scenarios: when implementing custom filters with com-
plex logic, when working with specialized pixel formats, or when memory constraints limit
bulk operations. Additionally, this benchmark provides insight into the underlying perfor-
mance characteristics of image libraries even if vectorized alternatives would be preferred in
production environments. By examining the performance of this fundamental operation, a bet-
ter understanding of the efficiency trade-offs in various image processing contexts is achieved.
For ImageSharp, the implementation involves loading the image as an array of pixels, pro-

cessing each pixel to compute its grayscale value, and then updating the image accordingly.
The following snippet provides a glimpse into this process:

Code 3.5: Image conversion benchmark implementation (ImageSharp-Testing.cs)

1 using SixLabors.ImageSharp;
2 using SixLabors.ImageSharp.Formats.Png;
3 using SixLabors.ImageSharp.PixelFormats;
4 public class PixelIterationBenchmark
5 {
6 public static (double warmupTime, double averageTime, double totalTime

) RunBenchmark(string imagePath, int iterations)
7 {
8 long totalElapsedMilliseconds = 0;
9 long warmupTime = 0;
10 int warmupIterations = 5;
11 Stopwatch stopwatch = new Stopwatch();
12

13 // Warm-up phase for pixel iteration
14 for (int i = 0; i < warmupIterations; i++)
15 {
16 stopwatch.Reset();
17 stopwatch.Start();
18 using (Image<Rgba32> image = Image.Load<Rgba32>(imagePath))
19 {
20 int width = image.Width;
21 int height = image.Height;
22 for (int y = 0; y < height; y++)
23 {
24 for (int x = 0; x < width; x++)
25 {
26 Rgba32 pixel = image[x, y];
27 byte gray = (byte)((pixel.R + pixel.G + pixel.B) /

3);
28 image[x, y] = new Rgba32(gray, gray, gray, pixel.A

);
29 }
30 }
31 }
32 stopwatch.Stop();
33 warmupTime += stopwatch.ElapsedMilliseconds;
34 }
35

36 // Main iterations to measure pixel iteration performance
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37 for (int i = 0; i < iterations; i++)
38 {
39 stopwatch.Reset();
40 stopwatch.Start();
41 using (Image<Rgba32> image = Image.Load<Rgba32>(imagePath))
42 {
43 int width = image.Width;
44 int height = image.Height;
45 for (int y = 0; y < height; y++)
46 {
47 for (int x = 0; x < width; x++)
48 {
49 Rgba32 pixel = image[x, y];
50 byte gray = (byte)((pixel.R + pixel.G + pixel.B) /

3);
51 image[x, y] = new Rgba32(gray, gray, gray, pixel.A

);
52 }
53 }
54 }
55 stopwatch.Stop();
56 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
57 Console.WriteLine($"Iteration {i + 1}: Pixel iteration took {

stopwatch.ElapsedMilliseconds} ms");
58 }
59

60 double averageTime = totalElapsedMilliseconds / (double)iterations
;

61 double totalTime = warmupTime + totalElapsedMilliseconds;
62 Console.WriteLine($"Warm-up: {warmupTime} ms, Average: {

averageTime} ms, Total: {totalTime} ms");
63

64 return (warmupTime, averageTime, totalTime);
65 }
66 }

The code measures the performance of a grayscale conversion operation by iterating over
each pixel of an image. As in the image conversion, it uses a timer (Stopwatch) and divides the
process into two phases: a warm-up phase and a measurement phase. During the warm-up
phase, the image is loaded and processed five times. This phase helps stabilize performance
by mitigating any startup overheads. Each iteration involves loading the image, iterating over
its width and height, reading each pixel, computing the grayscale value by averaging the red,
green, and blue channels, and assigning the new grayscale value back while preserving the
alpha channel. The use of the using statement ensures that the image is properly disposed
after processing.
In the measurement phase, the same processing occurs over a user-specified number of it-

erations (100 iterations). After running all iterations, the code calculates the average time per
iteration and the total time including warm-up. This approach isolates the steady-state perfor-
mance from any one-time overhead, resulting in more accurate measurements that reflect the
true cost of pixel-by-pixel manipulations.
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The design emphasizes clear resource management, detailed timing, and separation of ini-
tialization costs from the main measurement, which are crucial when every microsecond of
processing time matters in image manipulation scenarios.
The main focus of the implementation was to capture the interplay between algorithmic ef-

ficiency and system-level resource management. Every pixel operation is executed in a closed
loop, and evenminor inefficiencies can accumulate over hundreds of iterations. The loop struc-
ture is designed and a stopwatch is used to measure elapsed time to matter of attention that
should be paid to details during development. Because even in high-level libraries such as
ImageSharp, every microsecond counts when processing large images.

3.3 Libraries Implementation

As discussed in the Methodology chapter, a comprehensive evaluation was undertaken to as-
sess the strengths and limitations of various image processing libraries. This analysis informed
the decision to implement integrations for frameworks: OpenCvSharp with SkiaSharp, and
Emgu CV with Structure.Sketching, and Magick.NET with MagicScaler. The following excerpt
presents representative code segments that illustrate the implementation strategies developed
for these libraries. These segments not only capture the theoretical rationale behind each im-
plementation approach but also reflect the practical constraints and performance considera-
tions addressed throughout the thesis.

3.3.1 OpenCvSharp and SkiaSharp Implementation

The following implementation shows how the OpenCvSharp and SkiaSharp libraries are in-
tegrated to perform image conversion and pixel iteration tasks. Image conversion was imple-
mented using OpenCvSharp, while pixel iteration was implemented using SkiaSharp.

Code 3.6: SkiaSharp Implementation (RunBenchmark Method)

1 using OpenCvSharp;
2 using SkiaSharp;
3

4 // Image Conversion logic using SkiaSharp
5 public class ImageConversionBenchmark
6 {
7 public static (double warmupTime, double averageTimeExcludingWarmup,

double totalTimeIncludingWarmup) RunBenchmark(string inputPath,
string outputPath, int iterations)

The ImageConversionBenchmark class contains a static method RunBenchmark that takes
the input image path, output image path, and number of iterations as input parameters. The
method returns a tuple containing the warm-up time, average time excluding warm-up, and
total time including warm-up, which will be used to form the results Excel file.

Code 3.7: SkiaSharp Implementation (Initialization)

1 {
2 long totalElapsedMilliseconds = 0;
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3 long warmupTime = 0;
4 int warmupIterations = 5;
5 Stopwatch stopwatch = new Stopwatch();

First, the totalElapsedMilliseconds and warmupTime variables are initialized and as dis-
cussed in the methodology chapter, the warmupIterations are set to 5. A stopwatch object
is created to measure the elapsed time for each iteration.

Code 3.8: SkiaSharp Implementation (Warm-up Iterations)

1 // Warm-up iterations
2 for (int i = 0; i < warmupIterations; i++)
3 {
4 stopwatch.Reset();
5 stopwatch.Start();
6

7 using (var image = Cv2.ImRead(inputPath, ImreadModes.Color))
8 {
9 Cv2.ImWrite(outputPath, image);
10 }
11

12 stopwatch.Stop();
13 warmupTime += stopwatch.ElapsedMilliseconds;
14 }

The warm-up phase is executed five times to ensure that the libraries are fully initialized be-
fore the main iterations begin. In each iteration, the code reads an image usingCv2.ImRead,
and writes the image using Cv2.ImWrite. The elapsed time for each iteration is recorded
using the stopwatch object.

Code 3.9: SkiaSharp Implementation (Main Iterations)

1 // Main iterations
2 for (int i = 0; i < iterations; i++)
3 {
4 stopwatch.Reset();
5 stopwatch.Start();
6

7 using (var image = Cv2.ImRead(inputPath, ImreadModes.Color))
8 {
9 Cv2.ImWrite(outputPath, image);
10 }
11

12 stopwatch.Stop();
13 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
14 Console.WriteLine($"Iteration {i + 1}: Image conversion took {stopwatch.

ElapsedMilliseconds} ms");
15 }

After the warm-up phase, the main iterations are executed, and the elapsed time for each
iteration is recorded. The results are then aggregated and returned as a tuple containing the
warm-up time, average time excluding warm-up, and total time including warm-up.
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Code 3.10: SkiaSharp Implementation (Results Calculation)

1 double averageTimeExcludingWarmup = totalElapsedMilliseconds / (double)
iterations;

2 double totalTimeIncludingWarmup = warmupTime + totalElapsedMilliseconds;
3

4 Console.WriteLine($"Warm-up time for image conversion: {warmupTime} ms");
5 Console.WriteLine($"Average time excluding warm-up for image conversion:

{averageTimeExcludingWarmup} ms");
6 Console.WriteLine($"Total time including warm-up for image conversion: {

totalTimeIncludingWarmup} ms");
7

8 return (warmupTime, averageTimeExcludingWarmup, totalTimeIncludingWarmup)
;

9 }
10 }

Finally, the average time excluding warm-up, total time including warm-up, and warm-up
time are calculated. These values are then printed to the console and returned as a tuple con-
taining the warm-up time, average time excluding warm-up, and total time including warm-up.
The pixel iteration benchmark, on the other hand, uses SkiaSharp to perform pixel-wise

operations on the image.
Same as the image conversion benchmark, the pixel iteration benchmark is implemented as

a static method RunBenchmark that takes the image path and the number of iterations as input
parameters. The method returns a tuple containing the warm-up time, average time excluding
warm-up, and total time including warm-up. And in the same way variables are initialized.

Code 3.11: OpenCvSharp Implementation (Warm-up Iterations)

1 // Warm-up iterations
2 for (int i = 0; i < warmupIterations; i++)
3 {
4 stopwatch.Reset();
5 stopwatch.Start();
6

7 using (var image = Cv2.ImRead(imagePath, ImreadModes.Color))
8 {
9 for (int y = 0; y < image.Rows; y++)
10 {
11 for (int x = 0; x < image.Cols; x++)
12 {
13 var pixel = image.At<Vec3b>(y, x);
14 byte gray = (byte)((pixel.Item0 + pixel.Item1 + pixel.Item2) / 3);
15 image.Set(y, x, new Vec3b(gray, gray, gray));
16 }
17 }
18 }
19

20 stopwatch.Stop();
21 warmupTime += stopwatch.ElapsedMilliseconds;
22 }
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The warm-up phase is executed five times to ensure that the libraries are fully initialized be-
fore the main iterations begin. In each iteration, the code reads an image usingCv2.ImRead,
iterates over each pixel, calculates the grayscale value, and then sets the pixel value using
image.At<Vec3b> and image.Set. The elapsed time for each iteration is recorded
using the stopwatch object.

Code 3.12: OpenCvSharp Implementation (Main Iterations)

1 // Main iterations
2 for (int i = 0; i < iterations; i++)
3 {
4 stopwatch.Reset();
5 stopwatch.Start();
6

7 using (var image = Cv2.ImRead(imagePath, ImreadModes.Color))
8 {
9 for (int y = 0; y < image.Rows; y++)
10 {
11 for (int x = 0; x < image.Cols; x++)
12 {
13 var pixel = image.At<Vec3b>(y, x);
14 byte gray = (byte)((pixel.Item0 + pixel.Item1 + pixel.Item2) / 3);
15 image.Set(y, x, new Vec3b(gray, gray, gray));
16 }
17 }
18 }
19

20 stopwatch.Stop();
21 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
22 Console.WriteLine($"Iteration {i + 1}: Pixel iteration took {stopwatch.

ElapsedMilliseconds} ms");
23 }

After thewarm-up phase, themain iterations are executed, using the same logic as thewarm-
up phase. The elapsed time for each iteration is recorded, and the results are then aggregated
and returned as a tuple containing the warm-up time, average time excluding warm-up, and
total time including warm-up.

Code 3.13: OpenCvSharp Implementation (Results Calculation)

1 double averageTimeExcludingWarmup = totalElapsedMilliseconds / (double)
iterations;

2 double totalTimeIncludingWarmup = warmupTime + totalElapsedMilliseconds;
3

4 Console.WriteLine($"Warm-up time for pixel iteration: {warmupTime} ms");
5 Console.WriteLine($"Average time excluding warm-up for pixel iteration: {

averageTimeExcludingWarmup} ms");
6 Console.WriteLine($"Total time including warm-up for pixel iteration: {

totalTimeIncludingWarmup} ms");
7

8 return (warmupTime, averageTimeExcludingWarmup, totalTimeIncludingWarmup)
;

9 }
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10 }

Finally, the average time excluding warm-up, total time including warm-up, and warm-up
time are calculated. These values are then printed to the console and returned as a tuple con-
taining the warm-up time, average time excluding warm-up, and total time including warm-up.
The returned values are then used to generate the results in an Excel file.

3.3.2 Magick.NET Implementation

In the implementation of both image conversion and pixel iteration benchmarks, Magick.NET
library was used. This decision was based on Magick.NET’s comprehensive functionality,
which includes support for high-quality image conversion and efficient pixel-wise operations.

Similar to the previous section onOpenCvSharp and SkiaSharp, the ImageConversionBench-
mark class for Magick.NET features a static RunBenchmark method. In this method, the nec-
essary variables are initialized to measure and record the performance of image conversion
operations. This consistent approach across libraries facilitates a clear comparison of their
performance under similar conditions.

In logic for the warm-up phase and main iterations, change was only the library-specific
functions used for image conversion and pixel iteration. Implementing image conversion us-
ing Magick.NET involved reading an image using new MagickImage(inputPath) to
read an image andimage.Write(outputPath, MagickFormat.Png) to write an
image, and the image conversion benchmark was implemented.

Code 3.14: Magick.NET Implementation (Image Conversion)

1 // Warm-up iterations
2 for (int i = 0; i < warmupIterations; i++)
3 {
4 stopwatch.Reset();
5 stopwatch.Start();
6

7 using (var image = new MagickImage(inputPath))
8 {
9 image.Write(outputPath, MagickFormat.Png);
10 }
11

12 stopwatch.Stop();
13 warmupTime += stopwatch.ElapsedMilliseconds;
14 }
15

16 // Main iterations
17 for (int i = 0; i < iterations; i++)
18 {
19 stopwatch.Reset();
20 stopwatch.Start();
21
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22 using (var image = new MagickImage(inputPath))
23 {
24 image.Write(outputPath, MagickFormat.Png);
25 }
26

27 stopwatch.Stop();
28 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
29 Console.WriteLine($"Iteration {i + 1}: Image conversion took {

stopwatch.ElapsedMilliseconds} ms");
30 }

The pixel iteration benchmark was implemented by first retrieving the pixel data using the
image.GetPixels() method. Then, for each pixel, the color channels were set to the
same gray value using the pixels.SetPixel(x, y, new ushort[] { gray,
gray, gray }) function. This process was repeated for each pixel in the image for both
the warm-up phase and the main iterations.

Code 3.15: Magick.NET Implementation (Pixel Iteration)

1 // Warm-up iterations
2 for (int i = 0; i < warmupIterations; i++)
3 {
4 stopwatch.Reset();
5 stopwatch.Start();
6

7 using (var image = new MagickImage(imagePath))
8 {
9 var pixels = image.GetPixels();
10 for (int y = 0; y < image.Height; y++)
11 {
12 for (int x = 0; x < image.Width; x++)
13 {
14 var pixel = pixels.GetPixel(x, y); // Get pixel data
15 ushort gray = (ushort)((pixel[0] + pixel[1] + pixel[2]) /

3); // Convert to grayscale
16 pixels.SetPixel(x, y, new ushort[] { gray, gray, gray });

// Set pixel data with ushort[]
17 }
18 }
19 }
20

21 stopwatch.Stop();
22 warmupTime += stopwatch.ElapsedMilliseconds;
23 }
24

25 // Main iterations
26 for (int i = 0; i < iterations; i++)
27 {
28 stopwatch.Reset();
29 stopwatch.Start();
30

31 using (var image = new MagickImage(imagePath))
32 {
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33 var pixels = image.GetPixels();
34 for (int y = 0; y < image.Height; y++)
35 {
36 for (int x = 0; x < image.Width; x++)
37 {
38 var pixel = pixels.GetPixel(x, y); // Get pixel data
39 ushort gray = (ushort)((pixel[0] + pixel[1] + pixel[2]) /

3); // Convert to grayscale
40 pixels.SetPixel(x, y, new ushort[] { gray, gray, gray });

// Set pixel data with ushort[]
41 }
42 }
43 }
44

45 stopwatch.Stop();
46 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
47 Console.WriteLine($"Iteration {i + 1}: Pixel iteration took {stopwatch

.ElapsedMilliseconds} ms");
48 }

The results of the image conversion and pixel iteration benchmarks were then like the pre-
vious libraries, aggregated and returned as a tuple containing the warm-up time, average time
excluding warm-up, and total time including warm-up. These values were then used to gener-
ate the results in an Excel file.

3.3.3 Emgu CV and Structure.Sketching Implementation

The implementation of Emgu CV and Structure.Sketching libraries in the benchmarking frame-
work are shown in the following code snippet. The code demonstrates how the Emgu CV
library is used for image conversion, while Structure.Sketching is used for pixel iteration.
For image conversion, the code reads an image using CvInvoke.Imread and writes the

image using CvInvoke.Imwrite. The warm-up phase and main iterations are executed
in a similar manner to the previous libraries, with the elapsed time for each iteration recorded
using a stopwatch object.

Code 3.16: Emgu CV Implementation (Image Conversion)

1 using Emgu.CV;
2 using Emgu.CV.CvEnum;
3 using Emgu.CV.Structure;
4 using Structure.Sketching;
5 using Structure.Sketching.Formats;
6 using Structure.Sketching.Colors;
7

8 // Warm-up iterations
9 for (int i = 0; i < warmupIterations; i++)
10 {
11 stopwatch.Reset();
12 stopwatch.Start();
13

14 using (Mat image = CvInvoke.Imread(inputPath, ImreadModes.Color))
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15 {
16 CvInvoke.Imwrite(outputPath, image);
17 }
18

19 stopwatch.Stop();
20 warmupTime += stopwatch.ElapsedMilliseconds;
21 }
22

23 // Main iterations
24 for (int i = 0; i < iterations; i++)
25 {
26 stopwatch.Reset();
27 stopwatch.Start();
28

29 using (Mat image = CvInvoke.Imread(inputPath, ImreadModes.Color))
30 {
31 CvInvoke.Imwrite(outputPath, image);
32 }
33

34 stopwatch.Stop();
35 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
36 Console.WriteLine($"Iteration {i + 1}: Image conversion took {

stopwatch.ElapsedMilliseconds} ms");
37 }

For pixel iteration, it uses the Structure.Sketching and the code reads an image using new
Structure.Sketching.Image(imagePath) and iterates over each pixel, calculat-
ing the grayscale value and setting the pixel value using image.Pixels[(y * width)
+ x]. The warm-up phase and main iterations are executed in a similar manner to the previ-
ous libraries, with the elapsed time for each iteration recorded using a stopwatch object.

Code 3.17: Structure.Sketching Implementation (Pixel Iteration)

1 // Warm-up iterations
2 for (int i = 0; i < warmupIterations; i++)
3 {
4 stopwatch.Reset();
5 stopwatch.Start();
6

7 var image = new Structure.Sketching.Image(imagePath);
8 int width = image.Width;
9 int height = image.Height;
10

11 for (int y = 0; y < height; y++)
12 {
13 for (int x = 0; x < width; x++)
14 {
15 var pixel = image.Pixels[(y * width) + x];
16 byte gray = (byte)((pixel.Red + pixel.Green + pixel.Blue) / 3)

;
17 image.Pixels[(y * width) + x] = new Color(gray, gray, gray,

pixel.Alpha);
18 }
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19 }
20

21 stopwatch.Stop();
22 warmupTime += stopwatch.ElapsedMilliseconds;
23 }
24

25 // Main iterations
26 for (int i = 0; i < iterations; i++)
27 {
28 stopwatch.Reset();
29 stopwatch.Start();
30

31 var image = new Structure.Sketching.Image(imagePath);
32 int width = image.Width;
33 int height = image.Height;
34

35 for (int y = 0; y < height; y++)
36 {
37 for (int x = 0; x < width; x++)
38 {
39 var pixel = image.Pixels[(y * width) + x];
40 byte gray = (byte)((pixel.Red + pixel.Green + pixel.Blue) / 3)

;
41 image.Pixels[(y * width) + x] = new Color(gray, gray, gray,

pixel.Alpha);
42 }
43 }
44

45 stopwatch.Stop();
46 totalElapsedMilliseconds += stopwatch.ElapsedMilliseconds;
47 Console.WriteLine($"Iteration {i + 1}: Pixel iteration took {stopwatch

.ElapsedMilliseconds} ms");
48 }

Grayscale conversion is performed on each pixel by computing the average of the red, green,
and blue components using the formula (byte)((pixel.Red + pixel.Green +
pixel.Blue) / 3). The grayscale value is then assigned to each color channel to create
a grayscale image. The benchmarking process collects the results from both image conversion
and pixel iteration. These results are aggregated into a tuple containing the warm-up time, the
average time (excluding the warm-up phase), and the total time (including the warm-up phase).
Finally, this data is used to generate an Excel file that summarizes the performance metrics.

3.4 Memory Profiling and Performance Analysis

In any high-performance image processing application, it is not enough to measure raw exe-
cution time; memory consumption is equally critical. This section describes the integration of
memory profiling into the benchmarking framework to provide a comprehensive view of the
performance characteristics of each library and complement the time-based measurements.
Using BenchmarkDotNet—a powerful tool for .NET performance analysis—detailed metrics
on memory allocation and garbage collection behavior were captured. This implementation
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allowed the trade-offs between processing speed and resource utilization to be better under-
stood.
The memory profiling is designed to evaluate not only the mean execution times but also the

memory allocated during both image conversion and pixel iteration tasks. Using Benchmark-
DotNet’s[MemoryDiagnoser], [Orderer], and[RankColumn] attributes, data on
memory consumption, garbage collection events, and total allocated memory were collected
for each benchmarked operation. The BenchmarkDotNet analyzer for each method by default
is configured to automatically determine how many warmup and measurement iterations to
run based on the workload, environment, and statistical requirements for accurate measure-
ments. So there is no need to implement a fixed iteration count for each method manually.
The following framework demonstrates the implementation of memory profiling and an

example of how the memory diagnostics were implemented for the image conversion and pixel
iteration using ImageSharp:

Code 3.18: Memory Profiling and Performance Analysis (ImageSharp)

1 using BenchmarkDotNet.Attributes;
2 using BenchmarkDotNet.Order;
3 using BenchmarkDotNet.Running;
4 using SixLabors.ImageSharp;
5 using SixLabors.ImageSharp.Formats.Png;
6 using SixLabors.ImageSharp.PixelFormats;
7

8 [MemoryDiagnoser]
9 [Orderer(SummaryOrderPolicy.FastestToSlowest)]
10 [RankColumn]
11 public class Benchmarks
12 {
13 private const string InputImagePath = "./../../../../../xl1.jpg";
14 private const string OutputImagePath = "./../../../../o.png";
15

16 [Benchmark]
17 public void ImageConversionBenchmark()
18 {
19 using (Image image = Image.Load(InputImagePath))
20 {
21 using (FileStream fs = new FileStream(OutputImagePath,

FileMode.Create))
22 {
23 image.Save(fs, new PngEncoder());
24 Console.WriteLine("ImageConversionBenchmark completed");
25 }
26 }
27 }

Same logic is used for image conversion, but there were no need for iterations and warm-
up phase to be implemented manually. For configuring the MemoryDiagnoser results,
Orderer(SummaryOrderPolicy.FastestToSlowest) and RankColumn at-
tributes were used to order the results based on the fastest to slowest execution times and to
rank the results in the summary table, respectively to provide a better and clearer view of the
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results.

Code 3.19: Memory Profiling and Performance Analysis (ImageSharp)

1 [Benchmark]
2 public void PixelIterationBenchmark()
3 {
4 using (Image<Rgba32> image = Image.Load<Rgba32>(InputImagePath))
5 {
6 int width = image.Width;
7 int height = image.Height;
8

9 for (int y = 0; y < height; y++)
10 {
11 for (int x = 0; x < width; x++)
12 {
13 Rgba32 pixel = image[x, y];
14 byte gray = (byte)((pixel.R + pixel.G + pixel.B) / 3);
15 image[x, y] = new Rgba32(gray, gray, gray, pixel.A);
16 }
17 }
18 Console.WriteLine("PixelIterationBenchmark completed");
19 }
20 }

The pixel iteration benchmark was implemented in a similar manner with the same memory
diagnostics attributes. The code snippet above demonstrates the pixel iteration benchmark for
ImageSharp, where each pixel in the image is converted to grayscale. The memory diagnostics
provided by BenchmarkDotNet enabled tracking of the memory consumption and garbage col-
lection events during the pixel iteration operation, providing valuable insights into the resource
utilization of each library.
This code exemplifies the approach to memory diagnostics. By annotating the benchmark

class with [MemoryDiagnoser], BenchmarkDotNet automatically collects data on mem-
ory usage—including the number of garbage collection (GC) events and the total allocated
memory during each benchmarked operation. Similar implementations were done for other
libraries as well.
This level of granularity provided insights that went beyond raw timing metrics, revealing,

for example, that while Emgu CV might be faster in certain operations, its higher memory
consumption could be a concern for applications running on memory-constrained systems.

3.5 Result Export and Data Aggregation

Once the performance and memory metrics were collected, the next challenge was to present
the results in a coherent and accessible manner. For this purpose, Excel was chosen as the out-
put format due to itswidespread adoption and ease of use for further analysis. OfficeOpenXml
namespace, which is part of the EPPlus library, allows for the creation and manipulation of
Excel files in .NET applications. The ExcelExporter class was implemented to aggregate the
benchmark results and export them to an Excel file.
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The code snippet below illustrates how the benchmark results are aggregated and exported
to an Excel file:

Code 3.20: Result Export and Data Aggregation

1 using OfficeOpenXml;
2

3 public class ExcelExporter
4 {
5 public static void ExportResults(string excelOutputPath,
6 (double warmupTime, double averageTime, double totalTime)

imageConversionResults,
7 (double warmupTime, double averageTime, double totalTime)

pixelIterationResults)
8 {
9 using (var package = new ExcelPackage())
10 {
11 var worksheet = package.Workbook.Worksheets.Add("Benchmark

Results");
12 worksheet.Cells[1, 1].Value = "Benchmark";
13 worksheet.Cells[1, 2].Value = "Warm-Up Time (ms)";
14 worksheet.Cells[1, 3].Value = "Average Time (ms)";
15 worksheet.Cells[1, 4].Value = "Total Time (ms)";
16

17 worksheet.Cells[2, 1].Value = "Image Conversion";
18 worksheet.Cells[2, 2].Value = imageConversionResults.

warmupTime;
19 worksheet.Cells[2, 3].Value = imageConversionResults.

averageTime;
20 worksheet.Cells[2, 4].Value = imageConversionResults.totalTime

;
21

22 worksheet.Cells[3, 1].Value = "Pixel Iteration";
23 worksheet.Cells[3, 2].Value = pixelIterationResults.warmupTime

;
24 worksheet.Cells[3, 3].Value = pixelIterationResults.

averageTime;
25 worksheet.Cells[3, 4].Value = pixelIterationResults.totalTime;
26

27 package.SaveAs(new FileInfo(excelOutputPath));
28 }
29 }
30 }

The ExcelExporter class creates a structured Excel file with separate sheets for each bench-
mark operation. The results are organized into columns for the warm-up time, average time,
and total time for each operation. The resulting Excel file provides a clear and concise summary
of the benchmark results, making it easy to compare the performance and memory character-
istics of each library.
By automating the process of result aggregation, the framework not only saves time but also

minimizes the risk of manual errors. Each cell in the generated Excel file is carefully populated
with benchmark data, and the resulting spreadsheet can be easily imported into analytical
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tools for further exploration. This process of exporting results serves as a bridge between
the raw performance data and the actionable insights that drive decision-making in software
optimization.
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This chapter presents findings from the benchmarking experiments conducted to evaluate the
performance of alternative image processing libraries. The results include quantitative data on
image conversion and pixel iteration times, as well as memory consumption for each library
or combination tested. The data generated will be used to answer the research question and
support the hypotheses formulated in the previous chapters. The benchmarking approach con-
sisted of running two primary tests on each library: an image conversion test that measured
the time taken to load, process, and save images, and a pixel iteration test that recorded the
time required to process every pixel in an image for a grayscale conversion. These experiments
were performed in a controlled environment, with warm-up iterations included to reduce the
impact of initial overhead. Memory consumptionwas tracked alongside processing times using
BenchmarkDotNet, thereby offering a complete picture of both speed and resource utilization.

Before discussing the results in detail, it is important to review the benchmarking design.
In this study, each library was tested under the same conditions: the same input image was
used, a fixed number of warm-up iterations were performed to reduce the effects of just-in-
time compilation and caching, and finally, 100 main iterations were executed to ensure reliable
statistics. For the image conversion test, the time measured was the duration needed to load
a JPEG image, convert it to PNG, and save it back to disk. In the pixel iteration test, the focus
was on recording the time required to access and change each pixel for producing a grayscale
version of the image.
Memory diagnostics were captured concurrently, with particular attention to allocatedmem-

ory and garbage collection events. This dual approach ensured that the results were not solely
focused on speed but also took into account the resource efficiency of each solution.

4.1 Image Conversion Benchmark Results

The image conversion benchmark was performed using ImageSharp and Magick.NET as well
as SkiaSharp and Structure.Sketching which were the chosen libraries in their combinations
with OpenCvSharp and Emgu CV, respectively, for the conversion task. Using the same 4k
resolution image, the benchmark measured the time taken to convert the image from JPEG to
PNG format. Comparing the results of these libraries provides insights into their performance
and efficiency in application scenarios where rapid image conversion is required—such as real-
time image processing pipelines or high-volume batch processing environments. The data thus
answer one of the central questions regarding which library can provide significantly faster
image conversion, thereby supporting the hypothesis discussed in earlier chapters.
ImageSharp recorded an average conversion time of approximately 2,754 milliseconds. In

contrast, the combination of OpenCvSharp with SkiaSharp delivered an average conversion
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time of only 539milliseconds. Similarly, EmguCV integratedwith Structure.Sketching achieved
an average time of 490 milliseconds, while Magick.NET registered an average conversion time
of 4,333 milliseconds.

Library Warm-Up Time
(ms)

Avg. Time Excl.
Warm-Up (ms)

Total Time Incl.
Warm-Up (ms)

ImageSharp 2754 480.86 50840

OpenCvSharp +
SkiaSharp

539 100.31 10570

Magick.NET 4333 845.46 88879

Emgu CV +
Structure.Sketching

490 59.43 6433

Table 4.1: The Image Conversion Benchmark Results in milliseconds, showing the warm-up
time, average time excluding warm-up, and total time including warm-up for each
library or combination.

The table 4.1, is the final dataset that been constructed by merging multiple Excel files
produced by the framework described in the Implementation chapter. These results shows
lightweight libraries such as SkiaSharp and Structure.Sketching outperforming ImageSharp
and Magick.NET in terms of image conversion time. The data also reveals that Emgu CV with
Structure.Sketching is the most efficient combination for image conversion, with the lowest
average time of 490 milliseconds. On the other hand, ImageSharp and Magick.NET are signifi-
cantly slower, with average times of 2,754 and 4,333 milliseconds, respectively.

To visually summarize these findings, Figure 4.1 presents a bar chart that depicts the con-
version times across the evaluated libraries. The graph clearly demonstrates that the conver-
sion times for the OpenCvSharp+SkiaSharp and Emgu CV+Structure.Sketching combinations
are positioned at the lower end of the performance spectrum, while ImageSharp exhibits con-
siderably higher times. A logarithmic scale has been employed to effectively represent the
significant differences in total times—comprising both the warm-up periods and the average
conversion times. This three-color graphical representation enables a thorough comparison of
library performance in various contexts, such as real-time image processing and batch conver-
sion tasks, thereby reinforcing the quantitative analysis presented earlier.
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Figure 4.1: Bar chart showing the Image Conversion Benchmark Results in milliseconds, with
a logarithmic scale to highlight the differences in total times. X-axis represents the
libraries or combinations, while Y-axis shows the time in milliseconds.

4.2 Pixel Iteration Benchmark Results

On the other hand, the pixel iteration benchmark aimed to assess the libraries’ abilities to
process each pixel of an image. For ImageSharp, the warm-up phase for pixel iteration took an
average of 755 milliseconds, with the main iteration averaging 117.06 milliseconds per cycle
and a cumulative total of 12,461 milliseconds over 100 iterations.

Library Warm-Up Time
(ms)

Avg. Time Excl.
Warm-Up (ms)

Total Time Incl.
Warm-Up (ms)

ImageSharp 755 117.06 12461

OpenCvSharp +
SkiaSharp

813 159.44 16757

Magick.NET 12149 2054.18 217567

Emgu CV +
Structure.Sketching

1118 118.87 13005

Table 4.2: Pixel Iteration Benchmark Results in milliseconds, showing the warm-up time, aver-
age time excluding warm-up, and total time including warm-up for each library or
combination.

The performance landscape changed upon examining the results for Magick.NET. This con-
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figuration recorded a warm-up time of approximately 12,149 milliseconds, and the main itera-
tions averaged 2,054.18 milliseconds, resulting in an astronomical total of 217,567 milliseconds.
As discussed earlier, OpenCvSharp and Emgu CVwere chosen in combinations with SkiaSharp
and Structure.Sketching, respectively, for the pixel iteration task. The results of these tests pro-
vide insights into the performance of these libraries in scenarios where pixel-level operations
are required, such as image processing algorithms or computer vision applications. The perfor-
mance landscape also shifted upon examining the results for OpenCvSharp. This configuration
recorded a warm-up time of approximately 813 milliseconds, and the main iterations averaged
159.44 milliseconds, resulting in a total of 16,757 milliseconds. In contrast, Emgu CV delivered
impressive results with a warm-up time of 1,118 milliseconds and an average main iteration
time of 118.87 milliseconds, culminating in a total of 13,005 milliseconds.
The table 4.2 summarizes the pixel iteration benchmark results, highlighting the warm-up

and average times for each library combination. The data clearly show that Emgu CV is the
most efficient library for pixel iteration, with the lowest average time of 118.87 milliseconds.
ImageSharp and OpenCvSharp follow closely behind, with average times of 117.06 and 159.44
milliseconds, respectively. In contrast, Magick.NET is significantly slower, with an average
time of 2,054.18 milliseconds.Graphical 4.2 depictions further highlight these performance dif-
ferences.

Figure 4.2: Bar chart showing the Pixel Iteration Benchmark Results in milliseconds, with a
logarithmic scale to highlight the differences in total times. X-axis represents the
libraries or combinations, while Y-axis shows the time in milliseconds.

The disparity between these figures 4.2 is telling. While Magick.NET excels in some aspects of
image conversion, it appears less suited for tasks involving pixel-by-pixel iteration, given the
significantly higher processing times. On the other hand, Emgu CV and ImageSharp produce
comparable main iteration times; however, when considering the overall picture, the lower
cumulative times of Emgu CV make it a more appealing choice for pixel-level operations.
The visual comparisons elucidate that while ImageSharp and Emgu CV+Structure.Sketching
are closely matched in main iteration performance, the excessive warm-up and overall times
associated with Magick.NET underscore its limitations for this specific task.
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4.3 Memory Benchmarking Results

In parallel with the time benchmarks, memory consumption was a critical parameter in the
evaluation. For the image conversion tasks, SkiaSharp, as part of the OpenCvSharp+SkiaSharp
configuration, exhibited the lowest memory allocation, with values approximating 58 KB. Im-
ageSharp, in comparison, required about 5.67 MB, which is substantially higher. In the context
of pixel iteration, the memory profiles were similarly divergent. ImageSharp was extremely
efficient in this regard, consuming roughly 20 KB on average, whereas Emgu CV + Struc-
ture.Sketching, that performed exceptionally well in terms of speed for pixel iteration, in mem-
ory terms, was less efficient. It consumed around 170 MB of memory, which is significantly
higher than the other libraries tested. SkiaSharp,

Library Allocated Memory Gen0/Gen1/Gen2
Collections

EmguCV 0.00068 MB (712
bytes)

- / - / -

ImageSharp 5.67 MB (5,805.41
KB)

1,000 / 1,000 / 1,000

SkiaSharp 0.05612 MB (58,864
bytes)

- / - / -

Table 4.3: Memory benchmarking results for the image conversion task, detailing the allocated
memory (in MB) along with the associated Gen0, Gen1, and Gen2 garbage collection
counts.

The table 4.3 summarizes the memory benchmarking results for image conversion. It is evi-
dent that ImageSharp has the highest memory allocation, with approximately 5.67 MB, while
SkiaSharp has the lowest. Emgu CV falls in between, with a memory allocation of 0.00068 MB.
These figures provide a clear indication of the memory efficiency of each library for image
conversion tasks. Garbage collection counts are also included to provide additional context on
the memory management behavior of each library. Gen0, Gen1, and Gen2 collections means
the number of times each generation was collected during the benchmarking process. These
metrics are essential for understanding how each library manages memory and how it impacts
performance.
The largememory footprint of Emgu CV during pixel iteration is a noteworthy trade-off. While
its performance in terms of speed is excellent, the high memory consumption must be consid-
ered when deploying the solution in memory-constrained environments. The benchmarking
data collected here is critical because it provides a balanced view—speed alone does not define
an optimal library, but rather the ratio of processing time to memory usage does. For a clear
summary of these findings, table 4.4 provides a concise overview of the memory metrics for
each library configuration.
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Library Allocated Memory Gen0/Gen1/Gen2
Collections

EmguCV 170.00 MB
(177,976,185 bytes)

33,142 / 1,571 / 1,571

ImageSharp 0.01932 MB (20.26
KB)

- / - / -

SkiaSharp 384.00 MB
(403,300,552 bytes)

85 / - / -

Table 4.4: Memory Benchmarking Results for Pixel Iteration Task, detailing the allocated mem-
ory (in MB) along with the associated Gen0, Gen1, and Gen2 garbage collection
counts.

The table 4.4 indicates that while SkiaSharp has the highest memory allocation for pixel it-
eration of approximately 384 MB, ImageSharp is the most memory-efficient, with a memory
allocation of 0.01932 MB. Emgu CV falls in between, with a memory allocation of 170 MB.
These figures provide a clear indication of the memory efficiency of each library for pixel it-
eration tasks. Garbage collection counts are also included to provide additional context on the
memory management behavior of each library. Gen0, Gen1, and Gen2 collections means the
number of times each generation was collected during the benchmarking process. This means
that the garbage collector had to run 33,142 times for Gen0, 1,571 times for Gen1, and 1,571
times for Gen2.

4.4 Analysis and Interpretation of Results

As the final benchmarking results were collected and plotted, the emerging trends provided
critical insights into the efficiency of various image processing libraries. The raw numerical
data from the benchmarking suite provided an answer to the research question, but a deeper
interpretation of these results allowed refinement of the understanding of the trade-offs and
strengths of each alternative. This section explores the relationship between speed and mem-
ory usage, compares the empirical findings with theoretical expectations, and discusses the
implications for real-world applications.

4.4.1 Comparison of Performance Trends

The performance hierarchy observed in the benchmarking results closely aligns with expecta-
tions based on each library’s internal architecture. Libraries such as OpenCvSharp and Emgu
CV, both built upon OpenCV’s optimized C++ backend, showcased superior execution times
for pixel iteration tasks. This efficiency is largely attributed to OpenCV’s reliance on low-level
SIMD (Single Instruction, Multiple Data) optimizations and hardware-accelerated processing
paths.
Conversely, ImageSharp—despite its clean API and pure C# implementation—demonstrated
significantly higher processing times, reinforcing the general principle that managed code in-
troduces overhead compared to native libraries. In memory-constrained environments, the
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4.4 Analysis and Interpretation of Results

trade-off between speed and memory usage should be carefully considered as ImageSharp’s
memory efficiency may outweigh its slower execution times. ImageSharp remains a viable
option for applications prioritizing ease of use and portability over raw performance or in sce-
narios where memory conservation is critical.
Magick.NET, though powerful and highly flexible in terms of format support, performed notice-
ably worse in pixel iteration tasks. This result was somewhat anticipated due to the internal
structure of ImageMagick, which prioritizes format conversions and high-quality rendering
over raw pixel access speed. The excessive processing times observed in the Magick.NET pixel
iteration benchmark further support the hypothesis that it is not optimized for this type of
operation. However, its range of features and extensive format support make it a compelling
choice for applications requiring advanced image processing capabilities.
The trends in memory consumption were particularly revealing. In the image conversion
test, SkiaSharp exhibited the lowest memory usage, also demonstrating competitive process-
ing times. This result is consistent with SkiaSharp’s reputation for being lightweight and effi-
cient, making it an excellent choice for applications need high performance and low memory
overhead. In the pixel iteration test, Emgu CV memory usage was significantly higher than
ImageSharp, highlighting the trade-off between speed and memory efficiency. This finding
underscores the importance of selecting the right library based on the specific requirements
of the application. This observation is consistent with Emgu CV’s underlying OpenCV core,
which relies on large temporary buffers and matrix structures for intermediate computations.
In contrast, ImageSharp demonstrated exceptional memory efficiency during pixel iteration
but was significantly slower, suggesting that its architecture prioritizes memory conservation
over execution speed.

4.4.2 Trade-Offs Between Speed and Memory Usage

The relationship between speed andmemory consumption is a recurring theme in performance
optimization. Results underscore that achieving optimal speed often comes at the cost of in-
creased memory usage. Emgu CV+Structure.Sketching exemplifies this trade-off: while its
pixel iteration speed was among the best recorded, it consumed significantly more RAM than
ImageSharp.
The implications of these trade-offs depend heavily on the intended application. For envi-
ronments where processing speed is paramount—such as real-time video processing or AI-
powered image enhancement—Emgu CV’s increased memory footprint may be an acceptable
compromise. However, in resource-constrained applications (e.g., embedded systems, mobile
devices, or cloud-based deployments with strict memory limits), a lower-memory alternative
like ImageSharp may be more suitable despite its lower speed.

Library Task Speed Memory
Usage

ImageSharp
Image Conversion Slow Low

Pixel Iteration Fast Low
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4 Results

Library Task Speed Memory
Usage

Emgu CV Pixel Iteration Fast High

SkiaSharp Image Conversion Fast Low

Table 4.5: Table of Speed and Memory Trade-Offs for Image Processing Libraries, the fast/slow
and high/low are relative to the other libraries.

One particularly interesting finding was that OpenCvSharp+SkiaSharp consistently delivered
both high speed and low memory usage for image conversion. This anomaly suggests that
this combination strikes an optimal balance, leveraging OpenCV’s native optimizations while
maintaining a lightweight footprint in memory. The fact that this hybrid approach outper-
formed even standalone OpenCV libraries further supports the notion that combining high-
performance native libraries with efficient rendering engines can yield superior results.

4.5 Summary

The benchmarking results provide a comprehensive overview of the performance and effi-
ciency of the image processing libraries tested. The data clearly show that Emgu CV + Struc-
ture.Sketching is the most efficient combination for image conversion, with the lowest average
time of 490 milliseconds. In contrast, ImageSharp and Magick.NET are significantly slower,
with average times of 2,754 and 4,333 milliseconds, respectively. For pixel iteration, Emgu
CV+Structure.Sketching is again the most efficient, with the lowest average time of 118.87
milliseconds. ImageSharp and OpenCvSharp+SkiaSharp follow closely behind, with average
times of 117.06 and 159.44 milliseconds, respectively. In contrast, Magick.NET is significantly
slower, with an average time of 2,054.18 milliseconds. The memory benchmarking results fur-
ther highlight the efficiency of ImageSharp and SkiaSharp in terms of memory consumption,
with Emgu CV exhibiting higher memory usage. Developers can use these findings to select
the most suitable library for their particular needs based on their specific requirements and
constraints regarding speed and resource utilization.
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5 Discussion

This chapter interprets the results obtained in the benchmarking experiments, placing them
in a broader theoretical and practical context. It examines the implications of the performance
metrics in terms of computational efficiency, implementation complexity, licensing consider-
ations, and the overall usability of the evaluated image processing libraries. Moreover, this
discussion extends to address the broader impact these results have on advancements in soft-
ware engineering and the evolving field of image processing.

5.1 Interpreting the Results: Performance vs. Practicality

The results obtained from the benchmarking study reveal a clear hierarchy of performance
among the tested libraries. However, performance alone does not determine the best library for
a given use case. The ideal choice depends on a variety of factors, including memory efficiency,
ease of integration, licensing constraints, and the specific needs of the application.

5.1.1 Performance Trade-offs and Suitability for Real-World Applications

From performance standpoint, OpenCvSharp + SkiaSharp and Emgu CV + Structure.Sketching
outperform ImageSharp in both image conversion and pixel iteration tasks. However, Im-
ageSharp showed better memory efficiency during pixel iteration, making it a viable option
for applications with limited memory resources. SkiaSharp, with its lightweight architecture
and cross-platform compatibility, demonstrated remarkable performance in image conversion
tasks. It consistently outperformed ImageSharp while consuming significantly less memory.
This makes SkiaSharp an ideal choice for applications requiring efficient format conversion
without extensive manipulation of individual pixels. Emgu CV, despite its high memory usage,
proved to be the fastest option for pixel iteration. This is unsurprising, given its reliance on
OpenCV’s highly optimized C++ backend. However, its higher memory footprint may be a
drawback for applications running on constrained systems. Magick.NET, on the other hand,
didn’t performwell in both image conversion and pixel iteration tasks. This suggests that while
Magick.NET is a robust tool for high-quality image manipulation and format conversion, it
may not be suitable for performance-critical applications requiring low-latency processing. In
graph 4.1 and 4.2 the performance comparison of the libraries in image conversion and pixel
iteration tasks respectively can be seen.

5.1.2 The Impact of Licensing on Library Selection

Licensing can be a key consideration in selecting an image processing library. The cost of pro-
prietary solutions can be prohibitive, particularly for small businesses or open-source projects.
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ImageSharp, while powerful, requires a yearly cost of a couple of thousand dollars for com-
mercial use. This cost must be weighed against its performance limitations. Open-source al-
ternatives like OpenCvSharp and SkiaSharp, which are licensed under MIT and Apache 2.0
respectively, offer a compelling alternative by providing high performance at no cost. Emgu
CV, although based on the open-source OpenCV framework, requires a one-time fee (version
specific) of less than thousand dollars, with additional costs for future upgrades. While this is
significantly more affordable than ImageSharp, it still represents an investment that must be
justified by superior performance. On the other hand, Magick.NET was licensed under Apache
2.0, and provides extensive functionality for free, making it an attractive option for projects
that require advanced image processing features but cannot afford proprietary licenses.

Library Combination Licensing Model Cost Usage
Restrictions /
Remarks

ImageSharp Proprietary
(Commercial)

$5,000/year Requires a
subscription;
higher conversion
times

OpenCvSharp +
SkiaSharp

Open-source
(Apache-2.0 &
MIT)

Free No recurring fees;
excellent
conversion
performance

Magick.NET Open-source
(Apache-2.0)

Free Good for
advanced
processing; slower
pixel iteration

Emgu CV +
Structure.Sketching

Open-source with
paid tier

$799 (Emgu CV
only)

Cost-effective;
strong for pixel
manipulation and
processing

Table 5.1: Library Licensing, Costs, and Usage Restrictions Comparison Table

5.2 Strengths and Weaknesses of the Different Libraries

ImageSharp’s biggest advantage is its simple API and pure .NET implementation. It is easy to
integrate and requires minimal setup. However, benchmarks show that it lags behind other
libraries in performance. Its relatively high memory efficiency during pixel iteration is a plus,
but for tasks requiring fast image conversion or pixel-level modifications, other options are
preferable. The combination of OpenCvSharp and SkiaSharp offers a mix of high performance
and moderate complexity. This combination provides the best balance between speed and
memory efficiency. OpenCvSharp offers the power of OpenCV’s optimized image processing,
while SkiaSharp enhances its rendering and format conversion capabilities. However, using
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these libraries effectively requires familiarity with both OpenCV and SkiaSharp APIs, mak-
ing them less beginner-friendly than ImageSharp. Emgu CV’s performance in pixel iteration
tasks is unmatched, making it ideal for applications involving real-time image analysis, such
as AI-driven image recognition. However, its high memory consumption may pose a problem
for resource-limited environments. Structure.Sketching complements Emgu CV by providing
efficient image creation and drawing capabilities, making this combination well-suited for ap-
plications requiring both processing speed and graphical rendering. In contrast, Magick.NET
excels in high-quality image manipulation and resampling but falls short in raw speed. The
high processing times recorded for pixel iteration indicate that Magick.NET is best suited for
batch processing or scenarios where quality takes precedence over execution time. And Mag-
ickScaler provides advanced image scaling capabilities, making it a valuable tool for applica-
tions requiring precise image resizing and enhancement.
Overally There is no single library that is best for all use cases. The optimal choice de-
pends on the application’s specific requirements. If ease of implementation and maintainabil-
ity are priorities, ImageSharp remains a solid choice despite its performance drawbacks. For
performance-intensive applications where raw speed is essential, OpenCvSharp+SkiaSharp or
Emgu CV+Structure.Sketching are superior choices.

Figure 5.1: Diagram showing the ideal use cases for each library or library combination based
on this study’s findings.

5.3 Considerations for Future Research

Image processing is a fundamental component of many industries, including medical imag-
ing, computer vision, digital content creation, and web applications. The performance gains
demonstrated by OpenCvSharp and Emgu CV suggest that these libraries can benefit a wide
range of applications, from autonomous vehicle navigation to medical diagnostics.
Moreover, the balance between speed and memory efficiency is a recurring challenge in com-
putational imaging. This study highlights the need for hybrid approaches—such as combining
OpenCvSharp with SkiaSharp to achieve optimal performance while minimizing resource con-
sumption.
Future research could explore the following areas to further enhance the capabilities of image
processing libraries:
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Expanding the Scope of Benchmarking: While the study focused on image conversion
and pixel iteration, real-world applications often require additional operations such as filter-
ing, blending, and object detection. Future research could expand the benchmarking scope to
include these tasks, providing a more comprehensive evaluation of each library’s capabilities.
Cross-Language Compatibility: Many image processing libraries are available in multiple
programming languages, such as Python, Java, and C++. Investigating the performance of
these libraries across different languages could provide valuable insights into the impact of
language-specific optimizations on computational efficiency.
Format-Specific Performance: Different image formats have unique compression algo-
rithms and color spaces, which can impact the performance of image processing libraries. Fu-
ture research could investigate how each library performs with specific formats, such as TIFF,
BMP, or PNG, to identify any format-specific optimizations or bottlenecks.
GPU Acceleration and Parallel Processing: One limitation of this study is that all bench-
marks were conducted on a CPU. Many modern image processing tasks benefit from GPU
acceleration, which libraries like OpenCV support. Investigating the performance of these li-
braries on GPU-accelerated hardware could yield valuable insights into their scalability and
efficiency.
Cloud-Based Processing: With the growing adoption of cloud computing, it would be benefi-
cial to evaluate how these libraries perform in cloud-based environments such as AWS Lambda
or Azure Functions. Factors such as cold start times, scalability, and integration with cloud-
based storage solutions would be critical considerations for enterprise applications.
Further Optimizations inMemoryUsage: Although Emgu CVwas the fastest in pixel itera-
tion, its high memory consumption remains a concern. Future research could explore memory
optimization techniques, such as reducing redundant data structures or leveraging memory-
efficient algorithms, to improve its efficiency without compromising speed.

5.4 Closing Thoughts

The findings of this study offer clear guidance for developers seeking to optimize their image
processing workflows. While ImageSharp remains a user-friendly option, open-source alter-
natives such as OpenCvSharp and SkiaSharp provide superior performance at no cost. Emgu
CV excels in computationally intensive tasks but requires careful memory management, while
Magick.NET remains a powerful tool for applications prioritizing high-quality output.
Ultimately, the choice of an image processing library should be guided by the specific needs of
the application. Whether prioritizing speed, memory efficiency, ease of integration, or licensing
freedom, developers now have a well-defined framework for making informed decisions.
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6 Appendix

Evaluation of Image Processing Libraries

This appendix provides a detailed analysis of various image processing libraries considered
for the implementation phase of this thesis. Each library is evaluated based on key technical
criteria, licensing considerations, and integration requirements.

1. OpenImageIO (OIIO)

• Type: Open-source

• Key Features: Supports numerous image formats, extensive image processing function-
alities

• Licensing: Free (BSD license)

• Performance: Known for high performance in professional pipelines

• Integration Effort: Moderate, requires familiarity with C++ or Python bindings

• Community and Support: Active community, well-documented

There might be a need to use P/Invoke or shell out to OIIO command-line utilities if
there’s no direct C# wrapper.

Feature
Category

Supported by OIIO Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- ImageInput:open: Opens an
image file for reading.
- ImageInput:read_image: Reads
image data.
- ImageOutput:create: Creates a
new image file for writing.
- ImageOutput:write_image:
Writes the image data.
- ImageBuf: Can create an empty
image buffer.

- Asynchronous image loading (no
equivalent to Image.LoadAsync).
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Feature
Category

Supported by OIIO Not Natively Supported /
Requires Custom
Implementation

Image
Processing and
Manipulation

- Basic pixel manipulation through
scanlines/tiles.
- ImageBufAlgo provides some
algorithms for manipulation.

- No built-in functions for Clone,
Mutate, Resize, Grayscale.
- Requires external libraries (e.g.,
OpenCV) or custom code for
advanced processing.

Pixel Formats - Supports various pixel formats
including RGBA, RGB, L (grayscale),
YUV, etc.
- ImageBufAlgo:colorconvert
allows conversion between formats.

- Specific formats like Byte4, YCbCr
may require manual handling.

Pixel Access and
Manipulation

- Provides pixel access through
ImageInput:read_scanline and
ImageInput:read_tile.
- Can manipulate pixels by reading
and writing scanlines/tiles.

- No direct method like
ProcessPixelRows; manual
processing required.

Image Metadata
and Conversion

- ImageSpec: Handles image
metadata.
- ImageBuf: Manages pixel data and
metadata.
- ImageBufAlgo: Offers conversion
algorithms.

- Handling complex metadata and
conversions might require custom
implementation depending on needs.

Creating and
Disposing
Instances

- ImageBuf: Creates and manages
image instances.
- Resources automatically managed
in C++ (via destructors).

- Explicit disposal may be needed for
resource-intensive operations,
especially in languages without
automatic garbage collection.

Cropping and
Resizing

- ImageBufAlgo:crop: Crops
images.
- ImageBufAlgo:resize: Resizes
images with various techniques.

- No direct equivalent toMutate for
fluent transformations.

Encoding
Images in
Various Formats

- Supports encoding in multiple
formats (BMP, JPEG, PNG, TIFF,
WebP, etc.) via ImageOutput.

- none.

Composing
Image Layers

- ImageBufAlgo:paste: Combines
image layers or tiles.

- No built-in methods equivalent to
ImageSharp’s Stitch method.
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Feature
Category

Supported by OIIO Not Natively Supported /
Requires Custom
Implementation

Resampling
Methods

- ImageBufAlgo:resample:
Provides resampling techniques.

- Lacks a direct equivalent to the
IResampler interface; resampling
management is manual.

Saving the
Image

- ImageOutput:write_image: Saves
images to a file.

- No asynchronous saving; requires
standard async techniques for
implementation.

2. SkiaSharp

• Type: Open-source

• Key Features: High-performance 2D graphics library, various image processing tasks

• Licensing: Free (MIT License)

• Performance: High performance, optimized for cross-platform use

• Integration Effort: Easy, seamless integration with .NET Core

• Community and Support: Active community, extensive documentation and examples

• Restricted Countries contributors: Need a check!

Feature
Category

Supported by SkiaSharp Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- SKBitmap.Decode: Loads images
from byte arrays or streams.
- SKBitmap: Creates new bitmaps
with specified dimensions and color
types.
- SKImage.FromBitmap: Creates
an image from a bitmap.
- SKImage.FromEncodedData:
Loads images from encoded data.

- No built-in asynchronous image
loading (no equivalent to
Image.LoadAsync).
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Feature
Category

Supported by SkiaSharp Not Natively Supported /
Requires Custom
Implementation

Image
Processing and
Manipulation

- SKBitmap.Copy: Clones the
bitmap.
- SKBitmap.Resize: Resizes bitmaps
with various filtering modes.
- SKBitmap.ExtractSubset: Crops
bitmaps.
- SKImage.FilterImage: Applies
filters like grayscale or other color
transformations.
-
SKColorFilter.CreateColorMatrix:
Provides additional color
transformations.

- No high-level fluent API like
ImageSharp’sMutate for chaining
multiple operations.

Pixel Formats - Supports various pixel formats like
SKColorType.Rgba8888,
SKColorType.Bgra8888,
SKColorType.Gray8, etc.
- SKColorSpace: Manages color
space conversions.

- Specific formats like Byte4, YCbCr
may require custom conversion.

Pixel Access and
Manipulation

- SKBitmap.GetPixel / SetPixel:
Accesses and sets individual pixels.
- SKBitmap.Pixels: Provides access
to the pixel data for bulk
manipulation.

- No direct method like
ProcessPixelRows; manual
processing of pixel rows is required.

Image Metadata
and Conversion

- SKImageInfo: Manages basic
image properties such as dimensions
and color type.
- SKImage.Encode: Converts
images into various formats like
PNG, JPEG,WebP, etc.

- Limited support for complex
metadata handling compared to
ImageSharp and OIIO.

Creating and
Disposing
Instances

- SKBitmap and SKImage: Create
and manage image instances.
- Proper resource management using
the Dispose method is necessary to
free resources.

- No direct equivalent to
Image<Rgba32>; pixel format and
dimensions must be managed
manually.
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Feature
Category

Supported by SkiaSharp Not Natively Supported /
Requires Custom
Implementation

Cropping and
Resizing

- SKBitmap.ExtractSubset: Crops
images.
- SKBitmap.Resize: Resizes images
with different resampling techniques.

- No built-in equivalent to
ImageSharp’sMutate method for
complex transformations.

Encoding
Images in
Various Formats

- SKImage.Encode: Encodes images
in multiple formats (e.g., PNG, JPEG,
BMP,WebP).

- Custom handling might be needed
for less common formats.

Composing
Image Layers

- SKCanvas.DrawBitmap:
Composes images by drawing one
bitmap onto another.
- SKPicture: Records a sequence of
drawing commands for later
playback and compositing.

- No built-in method equivalent to
ImageSharp’s Stitch for seamless
image stitching.

Resampling
Methods

- SKBitmap.Resize: Provides
resampling techniques during
resizing operations.

- No direct equivalent to
IResampler interface; resampling
techniques are more basic.

Saving the
Image

- SKImage.Encode: Saves images to
a stream or byte array in the desired
format.

- No built-in asynchronous saving
method; async saving requires
custom implementation.

3. Magick.NET

• Type: Open-source

• Key Features: .NET wrapper for ImageMagick, extensive image manipulation capabili-
ties

• Licensing: Free (Apache 2.0 License)

• Performance: Excellent for complex image processing

• Integration Effort: Moderate, straightforward API

• Community and Support: Large user base, comprehensive documentation

• Restricted Countries contributors: No
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Feature
Category

Supported by Magick.NET Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

-MagickImage: Loads images from
byte arrays, files, or streams.
-MagickImageCollection: Handles
multiple images, useful for formats
like GIFs.
-MagickImage: Creates new images
with specified dimensions and colors.

- No built-in asynchronous image
loading (no equivalent to
Image.LoadAsync).

Image
Processing and
Manipulation

-MagickImage.Clone: Clones the
image.
-MagickImage.Resize: Resizes
images with various filtering and
resampling options.
-MagickImage.Crop: Crops
images.
-MagickImage.Resize: Resizes
images with customizable
resampling options.
-MagickImage.Grayscale:
Converts images to grayscale.
-MagickImage.ColorSpace:
Converts between different color
spaces.
-MagickImage.Rotate,
MagickImage.Flip,
MagickImage.Flop: Performs
various image transformations.

- Magick.NET supports extensive
image processing, similar to
ImageSharp’sMutate method.
Custom implementation is rarely
needed.

Pixel Formats - Supports a wide range of pixel
formats, including RGBA, RGB, Gray,
CMYK, and more.
-MagickColor: Handles color
conversions and supports various
color profiles.

- Fully supports advanced pixel
formats and color management, so
custom implementation is minimal.
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Feature
Category

Supported by Magick.NET Not Natively Supported /
Requires Custom
Implementation

Pixel Access and
Manipulation

-MagickImage.GetPixels: Provides
access to individual pixels or pixel
regions.
-MagickImage.SetPixels: Sets
individual pixels.
-MagickImage.ToByteArray:
Converts pixel data to a byte array.

- No direct method like
ProcessPixelRows; however, pixel
manipulation is flexible and
powerful.

Image Metadata
and Conversion

-MagickImage.Attribute: Accesses
and manipulates image metadata
such as EXIF, IPTC, and XMP.
-MagickImage.Format: Converts
images to various formats.

- Magick.NET offers comprehensive
metadata handling and format
conversion.

Creating and
Disposing
Instances

-MagickImage: Creates and
manages image instances.
- Proper resource management using
the Dispose method is necessary to
free resources.
-MagickImageCollection:
Manages multiple image instances,
useful for animations or multi-layer
images.

- Fully supports instance creation
and disposal, with comprehensive
memory management.

Cropping and
Resizing

-MagickImage.Crop: Crops
images.
-MagickImage.Resize: Resizes
images with customizable
resampling options.
-MagickImage.AdaptiveResize:
Provides advanced resizing
techniques.

- Fully supports cropping and
resizing with advanced options, no
need for custom implementation.

Encoding
Images in
Various Formats

-MagickImage.Write: Encodes
images in a wide array of formats
including PNG, JPEG, TIFF, BMP,
GIF,WebP, and more.
-MagickImage.Format: Specifies
the output format.

- Supports a wider range of formats
than ImageSharp, with built-in
encoding capabilities.
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Feature
Category

Supported by Magick.NET Not Natively Supported /
Requires Custom
Implementation

Composing
Image Layers

-MagickImage.Composite:
Composes one image over another.
-MagickImage.Mosaic: Combines
multiple images into a mosaic.
-MagickImageCollection: Handles
layering for complex compositions.

- Fully supports complex image
compositions, with built-in methods
for layering and merging.

Resampling
Methods

-MagickImage.Resample:
Provides advanced resampling
methods and filtering options.
-MagickImage.AdaptiveResize:
Offers specialized resampling
techniques.

- Extensive support for resampling,
surpassing basic needs and requiring
no custom implementation.

Saving the
Image

-MagickImage.Write: Saves
images to files, streams, or byte
arrays in the desired format.
-MagickImage.Save: Provides
simple saving options.

- No built-in asynchronous saving
method; async saving requires
custom implementation.

4. Emgu CV

• Type: Open-source

• Key Features: .NETwrapper for OpenCV, robust image processing and computer vision

• Licensing: 799$ (for version 4, with additional costs for upgrades).

• Performance: High performance, suitable for advanced computer vision tasks

• Integration Effort: Moderate to high, depending on complexity of use

• Community and Support: Active community, extensive tutorials

• Restricted Countries contributors: Need a check
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Feature
Category

Supported by Emgu CV Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- CvInvoke.Imread: Loads an
image from a file.
- CvInvoke.Imdecode: Loads an
image from a byte array.
-Mat: Creates a new image with
specified dimensions and type.
- Image<TColor, TDepth>: Generic
class for creating images with
specific color and depth.

- No built-in asynchronous image
loading (no equivalent to
Image.LoadAsync).

Image
Processing and
Manipulation

-Mat.Clone: Clones the image
matrix.
- CvInvoke.Resize: Resizes the
image with various interpolation
methods.
- CvInvoke.CvtColor: Converts the
image to grayscale or other color
spaces.
- CvInvoke.Rotate: Rotates the
image.
- CvInvoke.Flip: Flips the image
vertically or horizontally.
- CvInvoke.WarpAffine: Applies
affine transformations.

- Emgu CV provides extensive
support for image processing
operations, similar to ImageSharp’s
Mutate method.

Pixel Formats - Supports various pixel formats
including BGR, RGBA, RGB, and
Gray.
-Mat.Depth and
Mat.NumberOfChannels: Specify
pixel depth and channels.
- Image<TColor, TDepth>: Allows
pixel data manipulation in a
type-safe manner.

- Default BGR format might differ
from ImageSharp’s RGBA, requiring
format conversion in some cases.

Pixel Access and
Manipulation

-Mat.GetData: Accesses individual
pixels or pixel regions.
-Mat.SetTo: Sets individual pixels
or regions with specific values.
- Image<TColor, TDepth>.Data:
Provides access to pixel data.

- Pixel manipulation is supported,
but the approach differs from
ImageSharp’s more abstracted
methods.
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Feature
Category

Supported by Emgu CV Not Natively Supported /
Requires Custom
Implementation

Image Metadata
and Conversion

- CvInvoke.Imencode: Converts
the image to various formats (PNG,
JPEG, etc.).
- CvInvoke.Imwrite: Saves images
to files.

- Does not extensively handle
metadata like EXIF or IPTC, focusing
more on basic properties and format
conversion.

Creating and
Disposing
Instances

-Mat: Can be used to create empty
images, with proper disposal via
Dispose to free resources.
- Image<TColor, TDepth>:
Manages images with type safety.

- Fully supports instance creation
and disposal, requiring careful
memory management due to
OpenCV’s low-level handling.

Cropping and
Resizing

- CvInvoke.GetRectSubPix: Crops
the image.
- CvInvoke.Resize: Resizes the
image with advanced interpolation
options.

- Emgu CV supports cropping and
resizing extensively, similar to
ImageSharp’sMutate method.

Encoding
Images in
Various Formats

- CvInvoke.Imwrite: Saves images
in formats like PNG, JPEG, BMP,
WebP, etc.
- CvInvoke.Imencode: Encodes
images for various formats and uses.

- none.

Composing
Image Layers

- CvInvoke.AddWeighted: Blends
two images together, allowing for
composition.
- CvInvoke.CopyMakeBorder:
Combines images into a larger
canvas.

- Supports basic layer composition,
though complex operations may
require additional code or OpenCV
functions.

Resampling
Methods

- CvInvoke.Resize: Provides
multiple resampling methods (linear,
cubic, nearest-neighbor).

- Resampling techniques are fully
supported, similar to ImageSharp’s
capabilities.

Saving the
Image

- CvInvoke.Imwrite: Saves images
to files in the desired format.

- No built-in asynchronous saving
method; async operations require
custom implementation.

5. MagicScaler

• Type: Open-source
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• Key Features: High-performance image processing, optimized for resizing

• Licensing: Free

• Performance: Excellent for image resizing with high quality

• Integration Effort: Easy, designed for high-performance scenarios

• Community and Support: Active, good documentation

• Restricted Countries contributors: No

Feature
Category

Supported by MagicScaler Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

-MagicImageProces-
sor.ProcessImage: Loads and
processes an image from a file,
stream, or byte array.
- ImageFileInfo: Provides basic
details about the image without fully
loading it into memory.

- No direct method for creating new
images from scratch.
- Lacks asynchronous methods like
Image.LoadAsync in ImageSharp.

Image
Processing and
Manipulation

-MagicImageProces-
sor.ProcessImage: Supports
resizing, cropping, and color
adjustments.
- ProcessImageSettings: Allows
specifying transformations such as
resizing, cropping, and color
adjustments.

- Lacks complex manipulation like
cloning, rotating, flipping, or direct
pixel manipulation.
- Does not support advanced image
editing features found in
ImageSharp.

Pixel Formats - Supports various pixel formats
including RGBA, RGB, Gray, etc.
- Automatically handles color space
conversions.

- Handling of pixel formats is
abstracted, with no direct pixel
manipulation like in ImageSharp.

Pixel Access and
Manipulation

- Provides high-level processing but
no direct pixel access.

- No direct access or manipulation of
individual pixels, unlike
ImageSharp’s ProcessPixelRows.

Image Metadata
and Conversion

- Handles basic image properties and
metadata.
- Supports conversion between
different image formats.

- Limited metadata handling
compared to libraries like
ImageSharp, focusing more on image
processing efficiency.
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Feature
Category

Supported by MagicScaler Not Natively Supported /
Requires Custom
Implementation

Creating and
Disposing
Instances

- Focuses on processing existing
images rather than creating new
ones.
- Managed disposal of resources.

- Does not support creating images
from scratch.
- No manual instance creation like in
ImageSharp.

Cropping and
Resizing

- ProcessImageSettings.Crop:
Specifies cropping options.
- ProcessImageSettings.Width
and Height: Specifies resizing
dimensions.
- Uses high-quality resampling
algorithms for resizing.

- Cropping and resizing are part of
the processing pipeline, not
standalone operations.

Encoding
Images in
Various Formats

- Supports encoding images into
formats like PNG, JPEG, BMP,WebP,
etc.
- Can control compression, quality,
and other encoding parameters.

- Lacks format-specific customization
that ImageSharp provides through
various encoders.

Composing
Image Layers

- Not supported; focuses on
single-image processing.

- Lacks capabilities for composing or
layering multiple images, unlike
ImageSharp’s Stitch or DrawImage.

Resampling
Methods

- Provides high-quality resampling
techniques for resizing.
- ProcessImageSet-
tings.Interpolation: Allows
specifying the interpolation method.

- Resampling is integrated into the
processing pipeline, without a direct
interface like IResampler in
ImageSharp.

Saving the
Image

-MagicImageProces-
sor.ProcessImage: Saves the
processed image to a file, stream, or
byte array.

- No asynchronous saving method,
with all operations handled
synchronously.

6. SimpleITK

• Type: Open-source

• Key Features: Interface to the Insight Toolkit (ITK), simplifies complex image analysis

• Licensing: Free

• Performance: Suitable for medical and scientific image processing
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• Integration Effort: Moderate, specialized usage

• Community and Support: Good community support, extensive resources

• Restricted Countries contributors: Need a check!

Feature
Category

Supported by SimpleITK Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- sitk.ReadImage: Loads an image
from a file.
- sitk.Image: Creates new images
with specified dimensions and pixel
types.
- sitk.ImportImageFilter: Loads
image data from NumPy arrays.

- No asynchronous loading methods
like Image.LoadAsync.
- More focused on scientific image
formats and lacks direct support for
common web image formats.

Image
Processing and
Manipulation

- sitk.Clone, sitk.Resample,
sitk.Cast: For cloning, resizing, and
pixel type conversion.
- sitk.Transform, sitk.Crop:
Supports geometric transformations
and cropping.
- sitk.Grayscale: Converts the
image to grayscale.

- Lacks the high-level abstraction of
ImageSharp’sMutate for chaining
operations.
- More tailored to medical image
processing than artistic or graphical
manipulations.

Pixel Formats - Supports a variety of formats,
including scalar, vector, and label
images.
- Automatic pixel type conversions.

- Limited in handling non-medical
specific color spaces and formats
compared to ImageSharp.

Pixel Access and
Manipulation

- sitk.GetPixel/SetPixel: Access
and manipulate individual pixels.
- Full image data accessible via
NumPy arrays for batch processing.

- Less intuitive pixel manipulation
compared to ImageSharp’s
ProcessPixelRows.
- Focus on scientific data rather than
general-purpose image formats.

Image Metadata
and Conversion

- sitk.Image: Handles metadata
such as image origin, spacing, and
direction.
- sitk.Cast: Converts images to
various pixel types.

- Limited advanced metadata
handling, focusing on medical image
properties.
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Feature
Category

Supported by SimpleITK Not Natively Supported /
Requires Custom
Implementation

Creating and
Disposing
Instances

- sitk.Image: Creates empty images.
- Automatic resource management
with Python’s garbage collector.

- Does not offer the fine-grained
control over image creation seen in
ImageSharp.

Cropping and
Resizing

- sitk.Crop: Crops the image.
- sitk.Resample: Provides resizing
with multiple interpolation methods.

- Requires more manual setup
compared to the intuitive API of
ImageSharp’sMutate.

Encoding
Images in
Various Formats

- sitk.WriteImage: Supports
encoding and saving images in
formats like PNG, JPEG, and TIFF.

- Focuses more on medical image
formats, and does not natively
supportWebP.

Composing
Image Layers

- Can handle multi-channel images,
simulating layer composition.
- sitk.LabelOverlay: Can overlay
labels on grayscale images.

- Lacks direct support for layer-based
compositions found in ImageSharp.
- Limited artistic composition tools.

Resampling
Methods

- sitk.Resample: Offers various
resampling methods with advanced
interpolation options.

- Resampling is powerful but less
user-friendly than ImageSharp’s
high-level options.

Saving the
Image

- sitk.WriteImage: Saves images to
files in various formats.
- Supports scientific formats like
NIfTI, DICOM.

- Limited optimization for modern
web formats compared to
ImageSharp.

7. Structure.Sketching

• Type: Open-source

• Key Features: Image transformations, filters, and format support

• Licensing: Free (Apache 2.0 License)

• Performance: Competitive, with various resampling filters and transformations

• Integration Effort: Easy to moderate, supports .NET Core and .NET Framework

• Community and Support: Growing community, good initial documentation

• Restricted Countries contributors: No
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Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- png.loadPNG: Typically read an
image file and decode it using the
appropriate decoder from a
format-specific sub-package.
- image.NewRGBA: Can create new
images using the image package,
which provides several types like
image.RGBA, image.NRGBA,
image.Gray, etc.
- png.Encode: Can save it using an
encoder from the appropriate
format-specific package.

- Limited support for creating images
from scratch in more diverse formats.
- Requires third-party libraries for
formats likeWebP.
- No inherent support for
asynchronous operations, can
achieve asynchronous behavior by
running image-related operations in
separate goroutines.

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Extensive transformations and
annotation capabilities.
- Image Enhancement: High-level
enhancement tools for noise
reduction, contrast adjustment, etc.

- Requires custom code
implementation.

Pixel Formats - image.RGB: Represents a color
image with 8-bit RGBA values per
pixel.
- image.Gray: Represents a
grayscale image with 8-bit gray
values per pixel.
- image.YCbCr: Represents a color
image using the Y’CbCr color model,
typically used in JPEG images.

- Basic support for different image
formats but does not explicitly
handle pixel formats like image
processing libraries.

Pixel Access and
Manipulation

- No direct methods like getpixel,
setpixel or RasterImageData.

- No direct pixel access, unlike
ImageSharp’s ProcessPixelRows.
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Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Image Metadata
and Conversion

- Does not support comprehensive
metadata handling directly.
- Focuses on image manipulation and
format conversion but lacks built-in
tools for managing or accessing
metadata like EXIF data or other
detailed image properties.

- Lack of support requires custom
implementations.

Creating and
Disposing
Instances

- Use functions from the image
package along with specific image
formats (like image/png,
image/jpeg).
- Go’s garbage collector handles
memory management, so no need to
manually dispose of images.

- Does not directly provide
CreateImage or Dispose functions
as in other libraries or languages
with more explicit image
management.

Cropping and
Resizing

- Does not include built-in support
for more advanced operations like
cropping and resizing directly.

- Requires custom implementations.

Encoding
Images in
Various Formats

- Save: Create a file using os.Create,
then use png.Encoder or
jpeg.Encoder to encode and save
the image.

- For other image formats likeWebP,
need to import the corresponding
encoding package.

Composing
Image Layers

- Does not directly support complex
operations like combining images or
drawing one image onto another.

- Requires custom implementations.

Resampling
Methods

- Does not natively support advanced
resampling techniques.

- Provides basic image manipulation
capabilities, including resizing, but
does not include advanced
resampling algorithms.

Saving the
Image

- Does not directly support saving
images or providing asynchronous
save functionality.

- To perform asynchronous saving,
need to use Go’s concurrency
features such as goroutines.

8. OpenCvSharp

• Type: Open-source

• Key Features: .NET wrapper for OpenCV, similar to Emgu CV
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• Licensing: Free (Apache-2.0 license)

• Performance: High performance, supports a wide range of tasks

• Integration Effort: Moderate, different API style from Emgu CV

• Community and Support: Active community, good documentation

• Restricted Countries contributors: Need a check!

Feature
Category

Supported by OpenCvSharp Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- Cv2.ImRead, Cv2.ImDecode:
Loads images from files or byte
arrays.
-Mat, Cv2.ImCreate: Creates new
images with specified dimensions
and types.

- No asynchronous loading methods
like Image.LoadAsync in
ImageSharp.

Image
Processing and
Manipulation

-Mat.Clone, Cv2.Resize: For
cloning and resizing.
- Cv2.CvtColor: Converts between
color spaces.
- Cv2.Rotate, Cv2.Flip,
Cv2.WarpAffine: Provides extensive
geometric transformations.
- Cv2.Crop: Crops images using a
Rect object.

- Lacks some of the more advanced
image effects and filters available in
ImageSharp.

Pixel Formats - Supports multiple formats,
including CvType.CV_8UC3 (BGR),
CvType.CV_8UC1 (Grayscale),
CvType.CV_8UC4 (BGRA).
- Handles automatic color space
conversion.

- May require custom
implementations for less common
pixel formats.

Pixel Access and
Manipulation

-Mat.At,Mat.Set: Direct pixel
access and manipulation.
-Mat.Data: Provides low-level
access to pixel data arrays.

- Less intuitive pixel manipulation
compared to ImageSharp’s
ProcessPixelRows.
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Feature
Category

Supported by OpenCvSharp Not Natively Supported /
Requires Custom
Implementation

Image Metadata
and Conversion

-Mat: Stores image properties like
size and type.
- Cv2.ImEncode, Cv2.ImWrite:
Converts and saves images in various
formats.

- Limited metadata handling
compared to ImageSharp’s extensive
metadata support.

Creating and
Disposing
Instances

-Mat: Creates and initializes images.
- Dispose: Required for freeing
unmanaged resources.
- Effective memory management
through manual disposal.

- More complex resource
management due to reliance on
unmanaged resources.

Cropping and
Resizing

- Cv2.GetRectSubPix: For precise
cropping.
- Cv2.Resize: Resizing with various
interpolation methods.

- Lacks some of the more advanced
cropping techniques like those in
ImageSharp.

Encoding
Images in
Various Formats

- Cv2.ImWrite: Saves images in
multiple formats includingWebP.
- Cv2.ImEncode: For encoding
images to byte arrays.

- Less flexible format optimization
compared to ImageSharp’s encoders.

Composing
Image Layers

- Cv2.AddWeighted, Cv2.Add,
Cv2.Subtract: For image blending
and compositing.

- Less comprehensive layering
system than ImageSharp.

Resampling
Methods

- Cv2.Resize: Offers multiple
interpolation methods.
- Cv2.PyrUp, Cv2.PyrDown:
Pyramid methods for scaling.

- Fewer options for specialized
resampling methods compared to
ImageSharp.

Saving the
Image

- Cv2.ImWrite, Cv2.ImEncode:
Saves images to files or byte arrays.

- Lacks some advanced saving
options like those in ImageSharp.

9. Microsoft.Maui.Graphics

• Type: Open-source

• Key Features: Graphics functionalities across platforms, uses SkiaSharp

• Licensing: Free (MIT)

• Performance: Optimized for cross-platform use within MAUI framework
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• Integration Effort: Easy if using MAUI

• Community and Support: Active support from Microsoft, good documentation

• Restricted Countries contributors: No

This repository has been archived by the owner on Dec 21, 2023. It is now read-only.

Feature
Category

Supported by
Microsoft.Maui.Graphics

Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- IImageLoadingSer-
vice.LoadImageAsync:
Asynchronous loading from various
sources.
- GraphicsPlatform.CreateImage:
Creates images with specified
dimensions and formats.

- Unlike ImageSharp, there is limited
support for creating images from
scratch in more diverse formats.

Image
Processing and
Manipulation

- IImage.Clone,
ICanvas.DrawImage: For cloning,
resizing, cropping, and applying
transformations.
- ICanvas.SetFillColor,
ICanvas.DrawRectangle: Supports
color transformations and selective
drawing for cropping.

- Lacks extensive image
manipulation tools available in
libraries like ImageSharp.

Pixel Formats - Supports RGBA, RGB and other
common formats.
- Designed for higher-level graphics
tasks rather than extensive pixel
format diversity.

- Limited to basic pixel formats
compared to the wide range in
ImageSharp.

Pixel Access and
Manipulation

- Focuses on high-level operations,
without direct pixel access.
- Does not offer low-level pixel
manipulation like GetPixel and
SetPixel.

- No direct pixel access, unlike
ImageSharp’s ProcessPixelRows.

Image Metadata
and Conversion

- Handles basic image properties and
conversion via IImage.Save.
- Can save to various formats.

- Less detailed metadata handling
compared to ImageSharp.
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Feature
Category

Supported by
Microsoft.Maui.Graphics

Not Natively Supported /
Requires Custom
Implementation

Creating and
Disposing
Instances

- GraphicsPlatform.CreateImage:
Easily creates new images.
- Disposal managed via .NET’s
garbage collection.

- Lacks manual resource
management options, unlike some
lower-level libraries.

Cropping and
Resizing

- ICanvas.DrawImage: Supports
cropping and resizing with simple
interfaces.

- Less advanced cropping and
resizing techniques compared to
ImageSharp.

Encoding
Images in
Various Formats

- IImage.Save: Supports encoding in
multiple formats.
- Provides functionality to save
directly to files, streams, or byte
arrays.

- Limited format-specific encoding
settings compared to ImageSharp
and does not mentionWebP support.

Composing
Image Layers

- ICanvas.DrawImage: Allows
layering images over one another.
- Basic support for image
compositing and blending.

- More limited compositing features
compared to ImageSharp.

Resampling
Methods

- ICanvas.DrawImage:
Automatically handles resampling
during resizing.

- Fewer advanced resampling
methods compared to ImageSharp.

Saving the
Image

- IImage.Save: Saves images to files,
streams, or byte arrays in various
formats.

- Lacks advanced saving options and
optimizations available in
ImageSharp.

10. LeadTools

• Type: Commercial

• Key Features: Extensive image processing features, supports numerous formats

• Licensing: Paid (More than 17k$)

• Performance: High performance, enterprise-grade reliability

• Integration Effort: Moderate to high, depending on features used

• Community and Support: Excellent support, extensive documentation

• Restricted Countries contributors: Need a check!
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Feature
Category

Supported by LEADTOOLS Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- LoadImage, LoadAsync: Robust
image loading with asynchronous
support.
- RasterImage.Create: Flexible
image creation with control over
dimensions and pixel formats.

- None; LEADTOOLS provides
comprehensive loading and creation
features.

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Extensive transformations and
annotation capabilities.
- Image Enhancement: High-level
enhancement tools for noise
reduction, contrast adjustment, etc.

- While comprehensive, some
specific manipulation tasks might
require custom scripting or code.

Pixel Formats - Supports multiple formats:
Extensive support for various pixel
formats such as RGB, RGBA,
Grayscale, CMYK, and more.

- None; pixel format support is
exhaustive.

Pixel Access and
Manipulation

- GetPixel, SetPixel,
RasterImageData: Direct access
and manipulation of pixel data.
- Lock/Unlock: For precise
pixel-level operations.

- Pixel data manipulation can be
complex, especially when
locking/unlocking is required.

Image Metadata
and Conversion

- Comprehensive Metadata
Handling: Extracts, edits, and writes
metadata for a wide range of formats.
- Advanced Conversion: Extensive
format support including DICOM.

- None; LEADTOOLS excels in
metadata and conversion capabilities.

Creating and
Disposing
Instances

- CreateImage, Dispose: Facilitates
creation and proper resource
disposal of images.

- Proper disposal requires careful
management, similar to .NET
libraries.

Cropping and
Resizing

- Crop, Resize: Advanced cropping
and resizing with various resampling
methods.

- None; cropping and resizing are
robustly supported.
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Feature
Category

Supported by LEADTOOLS Not Natively Supported /
Requires Custom
Implementation

Encoding
Images in
Various Formats

- Save: Encodes images into
numerous formats including WebP,
including advanced options for
compression and format-specific
settings.
- Multimedia and Document
Formats: Extends to multimedia and
document encoding.

- Format-specific settings might
require additional configuration.

Composing
Image Layers

- Combine, DrawImage: Supports
complex image layering with
detailed control over blending and
transparency.

- Layer management might need
additional custom code for complex
use cases.

Resampling
Methods

- Advanced Resampling: Provides
high-quality resampling techniques
during resizing.

- Resampling methods are extensive
but need careful selection for optimal
results.

Saving the
Image

- Save, SaveAsync: Saves images
with extensive control over
parameters.
- Asynchronous Saving: Supports
performance-enhanced operations.

- None; saving features are
comprehensive and powerful.
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