
Technische Hochschule Deggendorf
Fakultät Angewandte Informatik

Studiengang Master Angewandte Informatik

Vergleichende Evaluierung von
Bildverarbeitungsbibliotheken für

industrielle Anwendungen bei Dassault
Systems

Comparative Evaluation of Image
Processing Libraries for Industrial
Applications at Dassault Systems

Masterarbeit zur Erlangung des akademischen Grades:
Master of Engineering (M.Eng.)

an der Technischen Hochschule Deggendorf

Vorgelegt von:
Sepehr Fazeli Shahroudi
Matrikelnummer: 12200627

Am: 01. Sep 2024

Prüfungsleitung:
Prof. Dr. Schober

Ergänzende Prüfende:
Martin Steglich

Erklärung

T E C H N I S C H E
H O C H S C H U L E

DEGGENDORF

Name des Studierenden: Sepehr Fazeli Shahroudi

Name des Betreuenden: Prof. Dr. Schober

Thema der Abschlussarbeit:

Vergleichende Evaluierung von Bildverarbeitungsbibliotheken für industrielle Anwendun-
gen bei Dassault Systems .

. .

. .

1. Ich erkläre hiermit, dass ich die Abschlussarbeit gemäß § 35 Abs. 7 RaPO (Rahmenprüf-
ungsordnung für die Fachhochschulen in Bayern, BayRS 2210-4-1-4-1-WFK) selbständig
verfasst, noch nicht anderweitig für Prüfungszwecke vorgelegt, keine anderen als die
angegebenen Quellen oder Hilfsmittel benutzt sowie wörtliche und sinngemäße Zitate
als solche gekennzeichnet habe.

Deggendorf, .
Datum Unterschrift des Studierenden

2. Ich bin damit einverstanden, dass die von mir angefertigte Abschlussarbeit über die Bib-
liothek der Hochschule einer breiteren Öffentlichkeit zugänglich gemacht wird:
⃝ Nein
⃝ Ja, nach Abschluss des Prüfungsverfahrens
⃝ Ja, nach Ablauf einer Sperrfrist von . . . Jahren.

Deggendorf, .
Datum Unterschrift des Studierenden

Bei Einverständnis des Verfassenden vom Betreuenden auszufüllen:

Eine Aufnahme eines Exemplars der Abschlussarbeit in den Bestand der Bibliothek und die
Ausleihe des Exemplars wird:

⃝ Befürwortet

⃝ Nicht befürwortet

Deggendorf, .
Datum Unterschrift des Betreuenden

Abstract

This thesis presents a comprehensive evaluation of alternatives to ImageSharp for image pro-
cessing in software applications. ImageSharp, though powerful and widely used, comes with
an annual licensing cost of 5,000$, significantly affecting project budgets. The primary goal
of this research is to explore more cost-effective, performance-oriented alternatives that can
either replace or complement ImageSharp while meeting the application’s image processing
requirements.
The study begins by identifying the core functionalities currently supported by ImageSharp,

such as image loading, creation, manipulation, pixel access, resizing, format conversion, and
image composition. These functions are essential in tasks like image transformation, cropping,
resampling, and metadata management. Performance metrics were established, focusing on
key operations like image conversion and pixel iteration. Several alternative libraries were
then evaluated based on their ability to meet these functional and performance criteria.
The alternatives investigated include Emgu CV, SkiaSharp, Magick.NET, OpenCvSharp, and

others, all of which were assessed for their support of advanced image processing features,
licensing costs, integration effort, and community support. Each library was tested for spe-
cific capabilities such as pixel manipulation, image format support, encoding efficiency, and
rendering performance. Benchmarks were conducted to measure execution times for image
conversion and pixel iteration across these libraries, providing insight into their real-world
performance.
Among the evaluated libraries, the combination of Emgu CV and SkiaSharp was identified

as the most suitable alternative. Emgu CV, based on the powerful OpenCV library, excels in
high-performance image processing tasks, including pixel-level manipulation, resizing, and
format conversion. SkiaSharp, on the other hand, complements Emgu CV by providing efficient
2D graphics rendering, image creation, and layer composition. Together, these libraries offer
a cost-effective solution that maintains high performance while supporting the full range of
image processing functionalities required by the application.
Benchmarking results showed that the Emgu CV and SkiaSharp combination significantly

reduced processing times for common tasks compared to other alternatives. For example, image
conversion times decreased to 490ms, compared to 2754ms for ImageSharp. Additionally, pixel
iteration tasks were completed more efficiently, making this combination an optimal choice for
scenarios requiring both image processing and rendering.
In conclusion, the Emgu CV and SkiaSharp combination was selected as the best alternative

to ImageSharp, based on its balance of performance, functionality, ease of integration, and cost.
This decision ensures that the project can maintain its image processing capabilities without
incurring high licensing fees, while also benefiting from enhanced performance and flexibility.

v

Contents

Abstract v

1. Introduction 1
1.1. Background . 1
1.2. Problem Statement . 1
1.3. Research Objectives . 1
1.4. Thesis Structure . 1

2. Literature Review 3
2.1. Overview of Image Processing Libraries . 3
2.2. ImageSharp . 3
2.3. Other Popular Libraries . 3

2.3.1. OpenImageIO . 3
2.3.2. SkiaSharp . 3
2.3.3. Magick.NET . 3
2.3.4. Emgu CV . 3

3. Methodology 5
3.1. Functional Requirements and Tasks . 5

3.1.1. Image Loading and Creation . 5
3.1.2. Image Processing and Manipulation 5
3.1.3. Pixel Formats . 5
3.1.4. Pixel Access and Manipulation . 5
3.1.5. Image Metadata and Conversion . 6
3.1.6. Creating and Disposing Image Instances 6
3.1.7. Cropping and Resizing . 6
3.1.8. Encoding Images in Various Formats 6
3.1.9. Composing Image Layers . 6
3.1.10. Resampling Methods . 7
3.1.11. Saving the image . 7

3.2. Performance Metrics . 7
3.2.1. Performance Metrics . 7

3.3. Benchmarking Setup and Tools . 8
3.4. Alternatives Evaluation Criteria . 8

4. Evaluation of Alternatives 9
4.1. Evaluation of Alternatives . 9

4.1.1. 1. OpenImageIO (OIIO) . 9

vii

Contents

4.1.2. 2. SkiaSharp . 12
4.1.3. 3. Magick.NET . 15
4.1.4. 4. Emgu CV . 19
4.1.5. 5. MagicScaler . 22
4.1.6. 6. SimpleITK . 24
4.1.7. 7. Structure.Sketching . 26
4.1.8. 8. OpenCvSharp . 29
4.1.9. 9. Microsoft.Maui.Graphics . 31
4.1.10. 10. LeadTools . 33

4.2. Evaluation of Alternatives in GO . 35
4.2.1. 11. Golang Image Package . 35
4.2.2. 12. Bild . 38
4.2.3. 13. GoCV . 40
4.2.4. 14. Gift . 42
4.2.5. 15. ImageMagick (via Go bindings) . 44

4.3. Summary of Evaluations . 47
4.3.1. Suggestion 1: OpenCvSharp + SkiaSharp 47
4.3.2. Suggestion 2: Magick.NET + MagicScaler 47
4.3.3. Suggestion 3: LEADTOOLS (Single Library Solution) 48
4.3.4. Suggestion 4: Emgu CV + Structure.Sketching 48

5. Analysis and Discussion 49
5.1. Performance Benchmarking Results . 49

5.1.1. Benchmark Overview . 49
5.1.2. Benchmark Results: . 50

5.2. Memory Benchmarking . 52
5.2.1. Benchmarking Overview: . 52
5.2.2. Benchmark Results: . 53

5.3. Development Effort Estimation . 55
5.3.1. Overview . 55
5.3.2. Custom Development of Image Processing Library 55
5.3.3. Use alternative Image Processing Library 55

5.4. Overall Comparison and Key Insights . 55
5.4.1. Overall Comparison: . 55
5.4.2. Key Insights: . 56
5.4.3. Meeting Outcome and Final Decision: 56

6. Conclusion and Recommendations 57
6.1. Summary of Findings . 57
6.2. Final Recommendation . 57
6.3. Future Work . 57

A. Appendices 59
A.1. Appendix A: Detailed Benchmarking Results 59

viii

Contents

A.2. Appendix B: Implementation Details . 59
A.3. Appendix C: Resource Links and Additional Documentation 59

ix

1. Introduction

1.1. Background

The purpose of this investigation is to identify and evaluate potential alternatives to Image-
Sharp for image processing. Currently, ImageSharp costs $5,000 per year, which impacts our
pricing structure. This review explores cost-effective and efficient alternatives.

1.2. Problem Statement

ImageSharp has limitations regarding cost and performance. These limitations motivate the
search for a viable alternative that balances cost, functionality, and performance.

1.3. Research Objectives

The objectives are:

• Identify cost-effective alternatives.

• Evaluate alternatives based on functionality and performance.

1.4. Thesis Structure

This thesis is organized as follows:

• Chapter 2 provides a literature review of image processing libraries.

• Chapter 3 describes the methodology.

• Chapter 4 evaluates the alternatives.

• Chapter 5 discusses the analysis and insights.

• Chapter 6 concludes with recommendations.

1

2. Literature Review

2.1. Overview of Image Processing Libraries

Image processing libraries provide essential tools for manipulating and processing images in
various formats.

2.2. ImageSharp

ImageSharp is a .NET library offering basic image processing capabilities. However, its high
cost impacts feasibility for certain projects.

2.3. Other Popular Libraries

2.3.1. OpenImageIO

An open-source library widely used in professional pipelines for handling multiple image for-
mats.

2.3.2. SkiaSharp

A high-performance 2D graphics library for various image processing tasks.

2.3.3. Magick.NET

Provides advanced image manipulation with support for a wide range of formats.

2.3.4. Emgu CV

A .NET wrapper for OpenCV, offering robust image processing capabilities.

3

3. Methodology

3.1. Functional Requirements and Tasks

3.1.1. Image Loading and Creation

• – Image.Load: Loads an image from a byte array with the RGBA32 pixel format.

– Image.LoadPixelData: Loads pixel data into an image with L8 (grayscale) format.

– Image.LoadAsync: Loads an image asynchronously.

– new Image: Creates a new image with Byte4 pixel format.

3.1.2. Image Processing and Manipulation

• – Clone: Clones the image for manipulation.

– Mutate: Applies various image processing operations.

– Resize: Resizes the image.

– Grayscale: Converts the image to grayscale.

– ColorSpaceConverter: Provides methods to allow the conversion of color values
between different color spaces.

3.1.3. Pixel Formats

• – Rgba32: Represents a pixel format with red, green, blue, and alpha channels.

– Rgb24: Represents a pixel format with red, green, and blue channels.

– L8: Represents a grayscale pixel format.

– Byte4: Represents a pixel format with four byte values.

– YCbCr: Represents a YCbCr (luminance, blue chroma, red chroma) color as defined
in the ITU-T T.871 specification for the JFIF use with Jpeg.

3.1.4. Pixel Access and Manipulation

• – Access individual pixels and convert them to Rgba32.

– ProcessPixelRows: Processes image pixel rows for manipulation.

– ToRgba32: Converts pixel to RGBA32 format.

5

3. Methodology

3.1.5. Image Metadata and Conversion

• – ImageFrame.SavePixelData: Saves pixel data of the specified format.

– PixelOperations.PackFromRgbPlanes: Packs pixel data from RGB planes.

– ImageFrame.GetPixelSpan: Retrieves pixel span of the specified format.

3.1.6. Creating and Disposing Image Instances

• – Creating an Empty Canvas:

∗ Create an empty canvas using Image<Rgba32> with specified width, height,
and RGBA color values.

– Disposing of the Canvas:

∗ Call the dispose method on the canvas object to free resources when it is no
longer needed.

– new Rectangle:

∗ Creates a new structure that represents a rectangular region defined by its
location (x, y, width, height).

3.1.7. Cropping and Resizing

• – Mutate Method:

∗ Perform image transformations such as cropping and resizing.

∗ Specify cropping rectangle and resizing options, including mode, size, and re-
sampler.

3.1.8. Encoding Images in Various Formats

• – ConvertImage Method:

∗ Handle image encoding into different formats.

∗ Use encoders like GifEncoder, JpegEncoder, PbmEncoder, PngEncoder, TgaEn-
coder, TiffEncoder, and WebpEncoder based on the specified output format.

3.1.9. Composing Image Layers

• – Stitch Method:

∗ Combine image tiles into the canvas.

∗ Assemble the final image from smaller pieces.

6

3.2. Performance Metrics

3.1.10. Resampling Methods

• – GetResampler Method:

∗ Return a resampler based on the specified resampler type.
∗ Common resampling techniques include Bicubic and Box, among others.

– public interface IResampler:

∗ Encapsulates an interpolation algorithm for resampling images.

3.1.11. Saving the image

• – SaveAsBmpAsync: Saves the image to the given stream with the Bmp format.

3.2. Performance Metrics

This section outlines the performance metrics used to evaluate the image processing libraries.
The metrics focus on two primary tests: Image Conversion and Pixel Iteration. Each test mea-
sures the time taken and memory usage for specific image processing tasks, providing a com-
prehensive assessment of each library’s performance.

3.2.1. Performance Metrics

Image Conversion Test

Measure the time taken to load an image and convert its format using each library, as well as
the memory usage during the process.
Steps:

a. Load the image into memory.

b. Convert the image to another format (e.g., JPG to PNG).

c. Save the converted image to disk.

Metrics:

• Time taken to load the image and to convert the image format.

• Memory usage will be measured.

Pixel Iteration Test

Measure the time taken and memory usage to iterate through all the pixels of an image, which
is often necessary for tasks like filtering, color adjustments, or complex image processing op-
erations.
Steps:

7

3. Methodology

a. Load the image into memory.

b. Iterate through every pixel in the image, applying a simple operation (converting to
grayscale).

Metrics:

• Time taken to complete the pixel iteration process.

• Memory usage during the pixel iteration process.

3.3. Benchmarking Setup and Tools

This evaluation uses BenchmarkDotNet to measure and compare library performance.

3.4. Alternatives Evaluation Criteria

Libraries are evaluated based on:

• Functionality

• Licensing

• Integration effort

• Performance

8

4. Evaluation of Alternatives

4.1. Evaluation of Alternatives

4.1.1. 1. OpenImageIO (OIIO)

• Type: Open-source

• Key Features: Supports numerous image formats, extensive image processing function-
alities

• Licensing: Free (BSD license)

• Performance: Known for high performance in professional pipelines

• Integration Effort: Moderate, requires familiarity with C++ or Python bindings

• Community and Support: Active community, well-documented

There might be a need to use P/Invoke or shell out to OIIO command-line utilities
if there’s no direct C# wrapper.

Feature
Category

Supported by OIIO Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- ImageInput:open: Opens an
image file for reading.
- ImageInput:read_image: Reads
image data.
- ImageOutput:create: Creates a
new image file for writing.
- ImageOutput:write_image:
Writes the image data.
- ImageBuf: Can create an empty
image buffer.

- Asynchronous image loading (no
equivalent to Image.LoadAsync).

9

4. Evaluation of Alternatives

Feature
Category

Supported by OIIO Not Natively Supported /
Requires Custom
Implementation

Image
Processing and
Manipulation

- Basic pixel manipulation through
scanlines/tiles.
- ImageBufAlgo provides some
algorithms for manipulation.

- No built-in functions for Clone,
Mutate, Resize, Grayscale.
- Requires external libraries (e.g.,
OpenCV) or custom code for
advanced processing.

Pixel Formats - Supports various pixel formats
including RGBA, RGB, L (grayscale),
YUV, etc.
- ImageBufAlgo:colorconvert
allows conversion between formats.

- Specific formats like Byte4, YCbCr
may require manual handling.

Pixel Access and
Manipulation

- Provides pixel access through
ImageInput:read_scanline and
ImageInput:read_tile.
- Can manipulate pixels by reading
and writing scanlines/tiles.

- No direct method like
ProcessPixelRows; manual
processing required.

Image Metadata
and Conversion

- ImageSpec: Handles image
metadata.
- ImageBuf: Manages pixel data and
metadata.
- ImageBufAlgo: Offers conversion
algorithms.

- Handling complex metadata and
conversions might require custom
implementation depending on needs.

Creating and
Disposing
Instances

- ImageBuf: Creates and manages
image instances.
- Resources automatically managed
in C++ (via destructors).

- Explicit disposal may be needed for
resource-intensive operations,
especially in languages without
automatic garbage collection.

Cropping and
Resizing

- ImageBufAlgo:crop: Crops
images.
- ImageBufAlgo:resize: Resizes
images with various techniques.

- No direct equivalent to Mutate for
fluent transformations.

Encoding
Images in
Various Formats

- Supports encoding in multiple
formats (BMP, JPEG, PNG, TIFF,
WebP, etc.) via ImageOutput.

- none.

Composing
Image Layers

- ImageBufAlgo:paste: Combines
image layers or tiles.

- No built-in methods equivalent to
ImageSharp’s Stitch method.

10

4.1. Evaluation of Alternatives

Feature
Category

Supported by OIIO Not Natively Supported /
Requires Custom
Implementation

Resampling
Methods

- ImageBufAlgo:resample:
Provides resampling techniques.

- Lacks a direct equivalent to the
IResampler interface; resampling
management is manual.

Saving the
Image

- ImageOutput:write_image: Saves
images to a file.

- No asynchronous saving; requires
standard async techniques for
implementation.

11

4. Evaluation of Alternatives

4.1.2. 2. SkiaSharp

• Type: Open-source

• Key Features: High-performance 2D graphics library, various image processing tasks

• Licensing: Free (MIT License)

• Performance: High performance, optimized for cross-platform use

• Integration Effort: Easy, seamless integration with .NET Core

• Community and Support: Active community, extensive documentation and examples

• Restricted Countries contributors: Need a check!

Feature
Category

Supported by SkiaSharp Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- SKBitmap.Decode: Loads images
from byte arrays or streams.
- SKBitmap: Creates new bitmaps
with specified dimensions and color
types.
- SKImage.FromBitmap: Creates
an image from a bitmap.
- SKImage.FromEncodedData:
Loads images from encoded data.

- No built-in asynchronous image
loading (no equivalent to
Image.LoadAsync).

Image
Processing and
Manipulation

- SKBitmap.Copy: Clones the
bitmap.
- SKBitmap.Resize: Resizes bitmaps
with various filtering modes.
- SKBitmap.ExtractSubset: Crops
bitmaps.
- SKImage.FilterImage: Applies
filters like grayscale or other color
transformations.
-
SKColorFilter.CreateColorMatrix:
Provides additional color
transformations.

- No high-level fluent API like
ImageSharp’s Mutate for chaining
multiple operations.

12

4.1. Evaluation of Alternatives

Feature
Category

Supported by SkiaSharp Not Natively Supported /
Requires Custom
Implementation

Pixel Formats - Supports various pixel formats like
SKColorType.Rgba8888,
SKColorType.Bgra8888,
SKColorType.Gray8, etc.
- SKColorSpace: Manages color
space conversions.

- Specific formats like Byte4, YCbCr
may require custom conversion.

Pixel Access and
Manipulation

- SKBitmap.GetPixel / SetPixel:
Accesses and sets individual pixels.
- SKBitmap.Pixels: Provides access
to the pixel data for bulk
manipulation.

- No direct method like
ProcessPixelRows; manual
processing of pixel rows is required.

Image Metadata
and Conversion

- SKImageInfo: Manages basic
image properties such as dimensions
and color type.
- SKImage.Encode: Converts
images into various formats like
PNG, JPEG,WebP, etc.

- Limited support for complex
metadata handling compared to
ImageSharp and OIIO.

Creating and
Disposing
Instances

- SKBitmap and SKImage: Create
and manage image instances.
- Proper resource management using
the Dispose method is necessary to
free resources.

- No direct equivalent to
Image<Rgba32>; pixel format and
dimensions must be managed
manually.

Cropping and
Resizing

- SKBitmap.ExtractSubset: Crops
images.
- SKBitmap.Resize: Resizes images
with different resampling techniques.

- No built-in equivalent to
ImageSharp’sMutate method for
complex transformations.

Encoding
Images in
Various Formats

- SKImage.Encode: Encodes images
in multiple formats (e.g., PNG, JPEG,
BMP,WebP).

- Custom handling might be needed
for less common formats.

Composing
Image Layers

- SKCanvas.DrawBitmap:
Composes images by drawing one
bitmap onto another.
- SKPicture: Records a sequence of
drawing commands for later
playback and compositing.

- No built-in method equivalent to
ImageSharp’s Stitch for seamless
image stitching.

13

4. Evaluation of Alternatives

Feature
Category

Supported by SkiaSharp Not Natively Supported /
Requires Custom
Implementation

Resampling
Methods

- SKBitmap.Resize: Provides
resampling techniques during
resizing operations.

- No direct equivalent to
IResampler interface; resampling
techniques are more basic.

Saving the
Image

- SKImage.Encode: Saves images to
a stream or byte array in the desired
format.

- No built-in asynchronous saving
method; async saving requires
custom implementation.

14

4.1. Evaluation of Alternatives

4.1.3. 3. Magick.NET

• Type: Open-source

• Key Features: .NET wrapper for ImageMagick, extensive image manipulation capabili-
ties

• Licensing: Free (Apache 2.0 License)

• Performance: Excellent for complex image processing

• Integration Effort: Moderate, straightforward API

• Community and Support: Large user base, comprehensive documentation

• Restricted Countries contributors: No

Feature
Category

Supported by Magick.NET Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

-MagickImage: Loads images from
byte arrays, files, or streams.
-MagickImageCollection: Handles
multiple images, useful for formats
like GIFs.
-MagickImage: Creates new images
with specified dimensions and colors.

- No built-in asynchronous image
loading (no equivalent to
Image.LoadAsync).

15

4. Evaluation of Alternatives

Feature
Category

Supported by Magick.NET Not Natively Supported /
Requires Custom
Implementation

Image
Processing and
Manipulation

- MagickImage.Clone: Clones the
image.
- MagickImage.Resize: Resizes
images with various filtering and
resampling options.
- MagickImage.Crop: Crops
images.
- MagickImage.Resize: Resizes
images with customizable
resampling options.
- MagickImage.Grayscale:
Converts images to grayscale.
- MagickImage.ColorSpace:
Converts between different color
spaces.
- MagickImage.Rotate,
MagickImage.Flip,
MagickImage.Flop: Performs
various image transformations.

- Magick.NET supports extensive
image processing, similar to
ImageSharp’s Mutate method.
Custom implementation is rarely
needed.

Pixel Formats - Supports a wide range of pixel
formats, including RGBA, RGB, Gray,
CMYK, and more.
- MagickColor: Handles color
conversions and supports various
color profiles.

- Fully supports advanced pixel
formats and color management, so
custom implementation is minimal.

Pixel Access and
Manipulation

- MagickImage.GetPixels: Provides
access to individual pixels or pixel
regions.
- MagickImage.SetPixels: Sets
individual pixels.
- MagickImage.ToByteArray:
Converts pixel data to a byte array.

- No direct method like
ProcessPixelRows; however, pixel
manipulation is flexible and
powerful.

Image Metadata
and Conversion

- MagickImage.Attribute: Accesses
and manipulates image metadata
such as EXIF, IPTC, and XMP.
- MagickImage.Format: Converts
images to various formats.

- Magick.NET offers comprehensive
metadata handling and format
conversion.

16

4.1. Evaluation of Alternatives

Feature
Category

Supported by Magick.NET Not Natively Supported /
Requires Custom
Implementation

Creating and
Disposing
Instances

-MagickImage: Creates and
manages image instances.
- Proper resource management using
the Dispose method is necessary to
free resources.
-MagickImageCollection:
Manages multiple image instances,
useful for animations or multi-layer
images.

- Fully supports instance creation
and disposal, with comprehensive
memory management.

Cropping and
Resizing

-MagickImage.Crop: Crops
images.
-MagickImage.Resize: Resizes
images with customizable
resampling options.
-MagickImage.AdaptiveResize:
Provides advanced resizing
techniques.

- Fully supports cropping and
resizing with advanced options, no
need for custom implementation.

Encoding
Images in
Various Formats

-MagickImage.Write: Encodes
images in a wide array of formats
including PNG, JPEG, TIFF, BMP,
GIF,WebP, and more.
-MagickImage.Format: Specifies
the output format.

- Supports a wider range of formats
than ImageSharp, with built-in
encoding capabilities.

Composing
Image Layers

-MagickImage.Composite:
Composes one image over another.
-MagickImage.Mosaic: Combines
multiple images into a mosaic.
-MagickImageCollection: Handles
layering for complex compositions.

- Fully supports complex image
compositions, with built-in methods
for layering and merging.

Resampling
Methods

-MagickImage.Resample:
Provides advanced resampling
methods and filtering options.
-MagickImage.AdaptiveResize:
Offers specialized resampling
techniques.

- Extensive support for resampling,
surpassing basic needs and requiring
no custom implementation.

17

4. Evaluation of Alternatives

Feature
Category

Supported by Magick.NET Not Natively Supported /
Requires Custom
Implementation

Saving the
Image

- MagickImage.Write: Saves
images to files, streams, or byte
arrays in the desired format.
- MagickImage.Save: Provides
simple saving options.

- No built-in asynchronous saving
method; async saving requires
custom implementation.

18

4.1. Evaluation of Alternatives

4.1.4. 4. Emgu CV

• Type: Open-source

• Key Features: .NETwrapper for OpenCV, robust image processing and computer vision

• Licensing: 799$ (for version 4, with additional costs for upgrades).

• Performance: High performance, suitable for advanced computer vision tasks

• Integration Effort: Moderate to high, depending on complexity of use

• Community and Support: Active community, extensive tutorials

• Restricted Countries contributors: Need a check

Feature
Category

Supported by Emgu CV Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- CvInvoke.Imread: Loads an
image from a file.
- CvInvoke.Imdecode: Loads an
image from a byte array.
-Mat: Creates a new image with
specified dimensions and type.
- Image<TColor, TDepth>: Generic
class for creating images with
specific color and depth.

- No built-in asynchronous image
loading (no equivalent to
Image.LoadAsync).

Image
Processing and
Manipulation

-Mat.Clone: Clones the image
matrix.
- CvInvoke.Resize: Resizes the
image with various interpolation
methods.
- CvInvoke.CvtColor: Converts the
image to grayscale or other color
spaces.
- CvInvoke.Rotate: Rotates the
image.
- CvInvoke.Flip: Flips the image
vertically or horizontally.
- CvInvoke.WarpAffine: Applies
affine transformations.

- Emgu CV provides extensive
support for image processing
operations, similar to ImageSharp’s
Mutate method.

19

4. Evaluation of Alternatives

Feature
Category

Supported by Emgu CV Not Natively Supported /
Requires Custom
Implementation

Pixel Formats - Supports various pixel formats
including BGR, RGBA, RGB, and
Gray.
- Mat.Depth and
Mat.NumberOfChannels: Specify
pixel depth and channels.
- Image<TColor, TDepth>: Allows
pixel data manipulation in a
type-safe manner.

- Default BGR format might differ
from ImageSharp’s RGBA, requiring
format conversion in some cases.

Pixel Access and
Manipulation

- Mat.GetData: Accesses individual
pixels or pixel regions.
- Mat.SetTo: Sets individual pixels
or regions with specific values.
- Image<TColor, TDepth>.Data:
Provides access to pixel data.

- Pixel manipulation is supported,
but the approach differs from
ImageSharp’s more abstracted
methods.

Image Metadata
and Conversion

- CvInvoke.Imencode: Converts
the image to various formats (PNG,
JPEG, etc.).
- CvInvoke.Imwrite: Saves images
to files.

- Does not extensively handle
metadata like EXIF or IPTC, focusing
more on basic properties and format
conversion.

Creating and
Disposing
Instances

- Mat: Can be used to create empty
images, with proper disposal via
Dispose to free resources.
- Image<TColor, TDepth>:
Manages images with type safety.

- Fully supports instance creation
and disposal, requiring careful
memory management due to
OpenCV’s low-level handling.

Cropping and
Resizing

- CvInvoke.GetRectSubPix: Crops
the image.
- CvInvoke.Resize: Resizes the
image with advanced interpolation
options.

- Emgu CV supports cropping and
resizing extensively, similar to
ImageSharp’s Mutate method.

Encoding
Images in
Various Formats

- CvInvoke.Imwrite: Saves images
in formats like PNG, JPEG, BMP,
WebP, etc.
- CvInvoke.Imencode: Encodes
images for various formats and uses.

- none.

20

4.1. Evaluation of Alternatives

Feature
Category

Supported by Emgu CV Not Natively Supported /
Requires Custom
Implementation

Composing
Image Layers

- CvInvoke.AddWeighted: Blends
two images together, allowing for
composition.
- CvInvoke.CopyMakeBorder:
Combines images into a larger
canvas.

- Supports basic layer composition,
though complex operations may
require additional code or OpenCV
functions.

Resampling
Methods

- CvInvoke.Resize: Provides
multiple resampling methods (linear,
cubic, nearest-neighbor).

- Resampling techniques are fully
supported, similar to ImageSharp’s
capabilities.

Saving the
Image

- CvInvoke.Imwrite: Saves images
to files in the desired format.

- No built-in asynchronous saving
method; async operations require
custom implementation.

21

4. Evaluation of Alternatives

4.1.5. 5. MagicScaler

• Type: Open-source

• Key Features: High-performance image processing, optimized for resizing

• Licensing: Free

• Performance: Excellent for image resizing with high quality

• Integration Effort: Easy, designed for high-performance scenarios

• Community and Support: Active, good documentation

• Restricted Countries contributors: No

Feature
Category

Supported by MagicScaler Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- MagicImageProces-
sor.ProcessImage: Loads and
processes an image from a file,
stream, or byte array.
- ImageFileInfo: Provides basic
details about the image without fully
loading it into memory.

- No direct method for creating new
images from scratch.
- Lacks asynchronous methods like
Image.LoadAsync in ImageSharp.

Image
Processing and
Manipulation

- MagicImageProces-
sor.ProcessImage: Supports
resizing, cropping, and color
adjustments.
- ProcessImageSettings: Allows
specifying transformations such as
resizing, cropping, and color
adjustments.

- Lacks complex manipulation like
cloning, rotating, flipping, or direct
pixel manipulation.
- Does not support advanced image
editing features found in
ImageSharp.

Pixel Formats - Supports various pixel formats
including RGBA, RGB, Gray, etc.
- Automatically handles color space
conversions.

- Handling of pixel formats is
abstracted, with no direct pixel
manipulation like in ImageSharp.

Pixel Access and
Manipulation

- Provides high-level processing but
no direct pixel access.

- No direct access or manipulation of
individual pixels, unlike
ImageSharp’s ProcessPixelRows.

22

4.1. Evaluation of Alternatives

Feature
Category

Supported by MagicScaler Not Natively Supported /
Requires Custom
Implementation

Image Metadata
and Conversion

- Handles basic image properties and
metadata.
- Supports conversion between
different image formats.

- Limited metadata handling
compared to libraries like
ImageSharp, focusing more on image
processing efficiency.

Creating and
Disposing
Instances

- Focuses on processing existing
images rather than creating new
ones.
- Managed disposal of resources.

- Does not support creating images
from scratch.
- No manual instance creation like in
ImageSharp.

Cropping and
Resizing

- ProcessImageSettings.Crop:
Specifies cropping options.
- ProcessImageSettings.Width
and Height: Specifies resizing
dimensions.
- Uses high-quality resampling
algorithms for resizing.

- Cropping and resizing are part of
the processing pipeline, not
standalone operations.

Encoding
Images in
Various Formats

- Supports encoding images into
formats like PNG, JPEG, BMP,WebP,
etc.
- Can control compression, quality,
and other encoding parameters.

- Lacks format-specific customization
that ImageSharp provides through
various encoders.

Composing
Image Layers

- Not supported; focuses on
single-image processing.

- Lacks capabilities for composing or
layering multiple images, unlike
ImageSharp’s Stitch or DrawImage.

Resampling
Methods

- Provides high-quality resampling
techniques for resizing.
- ProcessImageSet-
tings.Interpolation: Allows
specifying the interpolation method.

- Resampling is integrated into the
processing pipeline, without a direct
interface like IResampler in
ImageSharp.

Saving the
Image

-MagicImageProces-
sor.ProcessImage: Saves the
processed image to a file, stream, or
byte array.

- No asynchronous saving method,
with all operations handled
synchronously.

23

4. Evaluation of Alternatives

4.1.6. 6. SimpleITK

• Type: Open-source

• Key Features: Interface to the Insight Toolkit (ITK), simplifies complex image analysis

• Licensing: Free

• Performance: Suitable for medical and scientific image processing

• Integration Effort: Moderate, specialized usage

• Community and Support: Good community support, extensive resources

• Restricted Countries contributors: Need a check!

Feature
Category

Supported by SimpleITK Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- sitk.ReadImage: Loads an image
from a file.
- sitk.Image: Creates new images
with specified dimensions and pixel
types.
- sitk.ImportImageFilter: Loads
image data from NumPy arrays.

- No asynchronous loading methods
like Image.LoadAsync.
- More focused on scientific image
formats and lacks direct support for
common web image formats.

Image
Processing and
Manipulation

- sitk.Clone, sitk.Resample,
sitk.Cast: For cloning, resizing, and
pixel type conversion.
- sitk.Transform, sitk.Crop:
Supports geometric transformations
and cropping.
- sitk.Grayscale: Converts the
image to grayscale.

- Lacks the high-level abstraction of
ImageSharp’s Mutate for chaining
operations.
- More tailored to medical image
processing than artistic or graphical
manipulations.

Pixel Formats - Supports a variety of formats,
including scalar, vector, and label
images.
- Automatic pixel type conversions.

- Limited in handling non-medical
specific color spaces and formats
compared to ImageSharp.

Pixel Access and
Manipulation

- sitk.GetPixel/SetPixel: Access
and manipulate individual pixels.
- Full image data accessible via
NumPy arrays for batch processing.

- Less intuitive pixel manipulation
compared to ImageSharp’s
ProcessPixelRows.
- Focus on scientific data rather than
general-purpose image formats.

24

4.1. Evaluation of Alternatives

Feature
Category

Supported by SimpleITK Not Natively Supported /
Requires Custom
Implementation

Image Metadata
and Conversion

- sitk.Image: Handles metadata
such as image origin, spacing, and
direction.
- sitk.Cast: Converts images to
various pixel types.

- Limited advanced metadata
handling, focusing on medical image
properties.

Creating and
Disposing
Instances

- sitk.Image: Creates empty images.
- Automatic resource management
with Python’s garbage collector.

- Does not offer the fine-grained
control over image creation seen in
ImageSharp.

Cropping and
Resizing

- sitk.Crop: Crops the image.
- sitk.Resample: Provides resizing
with multiple interpolation methods.

- Requires more manual setup
compared to the intuitive API of
ImageSharp’sMutate.

Encoding
Images in
Various Formats

- sitk.WriteImage: Supports
encoding and saving images in
formats like PNG, JPEG, and TIFF.

- Focuses more on medical image
formats, and does not natively
supportWebP.

Composing
Image Layers

- Can handle multi-channel images,
simulating layer composition.
- sitk.LabelOverlay: Can overlay
labels on grayscale images.

- Lacks direct support for layer-based
compositions found in ImageSharp.
- Limited artistic composition tools.

Resampling
Methods

- sitk.Resample: Offers various
resampling methods with advanced
interpolation options.

- Resampling is powerful but less
user-friendly than ImageSharp’s
high-level options.

Saving the
Image

- sitk.WriteImage: Saves images to
files in various formats.
- Supports scientific formats like
NIfTI, DICOM.

- Limited optimization for modern
web formats compared to
ImageSharp.

25

4. Evaluation of Alternatives

4.1.7. 7. Structure.Sketching

• Type: Open-source

• Key Features: Image transformations, filters, and format support

• Licensing: Free (Apache 2.0 License)

• Performance: Competitive, with various resampling filters and transformations

• Integration Effort: Easy to moderate, supports .NET Core and .NET Framework

• Community and Support: Growing community, good initial documentation

• Restricted Countries contributors: No

Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- png.loadPNG: Typically read an
image file and decode it using the
appropriate decoder from a
format-specific sub-package.
- image.NewRGBA: Can create new
images using the image package,
which provides several types like
image.RGBA, image.NRGBA,
image.Gray, etc.
- png.Encode: Can save it using an
encoder from the appropriate
format-specific package.

- Limited support for creating images
from scratch in more diverse formats.
- Requires third-party libraries for
formats likeWebP.
- No inherent support for
asynchronous operations, can
achieve asynchronous behavior by
running image-related operations in
separate goroutines.

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Extensive transformations and
annotation capabilities.
- Image Enhancement: High-level
enhancement tools for noise
reduction, contrast adjustment, etc.

- Requires custom code
implementation.

26

4.1. Evaluation of Alternatives

Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Pixel Formats - image.RGB: Represents a color
image with 8-bit RGBA values per
pixel.
- image.Gray: Represents a
grayscale image with 8-bit gray
values per pixel.
- image.YCbCr: Represents a color
image using the Y’CbCr color model,
typically used in JPEG images.

- Basic support for different image
formats but does not explicitly
handle pixel formats like image
processing libraries.

Pixel Access and
Manipulation

- No direct methods like getpixel,
setpixel or RasterImageData.

- No direct pixel access, unlike
ImageSharp’s ProcessPixelRows.

Image Metadata
and Conversion

- Does not support comprehensive
metadata handling directly.
- Focuses on image manipulation and
format conversion but lacks built-in
tools for managing or accessing
metadata like EXIF data or other
detailed image properties.

- Lack of support requires custom
implementations.

Creating and
Disposing
Instances

- Use functions from the image
package along with specific image
formats (like image/png,
image/jpeg).
- Go’s garbage collector handles
memory management, so no need to
manually dispose of images.

- Does not directly provide
CreateImage or Dispose functions
as in other libraries or languages
with more explicit image
management.

Cropping and
Resizing

- Does not include built-in support
for more advanced operations like
cropping and resizing directly.

- Requires custom implementations.

Encoding
Images in
Various Formats

- Save: Create a file using os.Create,
then use png.Encoder or
jpeg.Encoder to encode and save
the image.

- For other image formats likeWebP,
need to import the corresponding
encoding package.

Composing
Image Layers

- Does not directly support complex
operations like combining images or
drawing one image onto another.

- Requires custom implementations.

27

4. Evaluation of Alternatives

Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Resampling
Methods

- Does not natively support advanced
resampling techniques.

- Provides basic image manipulation
capabilities, including resizing, but
does not include advanced
resampling algorithms.

Saving the
Image

- Does not directly support saving
images or providing asynchronous
save functionality.

- To perform asynchronous saving,
need to use Go’s concurrency
features such as goroutines.

28

4.1. Evaluation of Alternatives

4.1.8. 8. OpenCvSharp

• Type: Open-source

• Key Features: .NET wrapper for OpenCV, similar to Emgu CV

• Licensing: Free (Apache-2.0 license)

• Performance: High performance, supports a wide range of tasks

• Integration Effort: Moderate, different API style from Emgu CV

• Community and Support: Active community, good documentation

• Restricted Countries contributors: Need a check!

Feature
Category

Supported by OpenCvSharp Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- Cv2.ImRead, Cv2.ImDecode:
Loads images from files or byte
arrays.
-Mat, Cv2.ImCreate: Creates new
images with specified dimensions
and types.

- No asynchronous loading methods
like Image.LoadAsync in
ImageSharp.

Image
Processing and
Manipulation

-Mat.Clone, Cv2.Resize: For
cloning and resizing.
- Cv2.CvtColor: Converts between
color spaces.
- Cv2.Rotate, Cv2.Flip,
Cv2.WarpAffine: Provides extensive
geometric transformations.
- Cv2.Crop: Crops images using a
Rect object.

- Lacks some of the more advanced
image effects and filters available in
ImageSharp.

Pixel Formats - Supports multiple formats,
including CvType.CV_8UC3 (BGR),
CvType.CV_8UC1 (Grayscale),
CvType.CV_8UC4 (BGRA).
- Handles automatic color space
conversion.

- May require custom
implementations for less common
pixel formats.

29

4. Evaluation of Alternatives

Feature
Category

Supported by OpenCvSharp Not Natively Supported /
Requires Custom
Implementation

Pixel Access and
Manipulation

- Mat.At,Mat.Set: Direct pixel
access and manipulation.
- Mat.Data: Provides low-level
access to pixel data arrays.

- Less intuitive pixel manipulation
compared to ImageSharp’s
ProcessPixelRows.

Image Metadata
and Conversion

- Mat: Stores image properties like
size and type.
- Cv2.ImEncode, Cv2.ImWrite:
Converts and saves images in various
formats.

- Limited metadata handling
compared to ImageSharp’s extensive
metadata support.

Creating and
Disposing
Instances

- Mat: Creates and initializes images.
- Dispose: Required for freeing
unmanaged resources.
- Effective memory management
through manual disposal.

- More complex resource
management due to reliance on
unmanaged resources.

Cropping and
Resizing

- Cv2.GetRectSubPix: For precise
cropping.
- Cv2.Resize: Resizing with various
interpolation methods.

- Lacks some of the more advanced
cropping techniques like those in
ImageSharp.

Encoding
Images in
Various Formats

- Cv2.ImWrite: Saves images in
multiple formats including WebP.
- Cv2.ImEncode: For encoding
images to byte arrays.

- Less flexible format optimization
compared to ImageSharp’s encoders.

Composing
Image Layers

- Cv2.AddWeighted, Cv2.Add,
Cv2.Subtract: For image blending
and compositing.

- Less comprehensive layering
system than ImageSharp.

Resampling
Methods

- Cv2.Resize: Offers multiple
interpolation methods.
- Cv2.PyrUp, Cv2.PyrDown:
Pyramid methods for scaling.

- Fewer options for specialized
resampling methods compared to
ImageSharp.

Saving the
Image

- Cv2.ImWrite, Cv2.ImEncode:
Saves images to files or byte arrays.

- Lacks some advanced saving
options like those in ImageSharp.

30

4.1. Evaluation of Alternatives

4.1.9. 9. Microsoft.Maui.Graphics

• Type: Open-source

• Key Features: Graphics functionalities across platforms, uses SkiaSharp

• Licensing: Free (MIT)

• Performance: Optimized for cross-platform use within MAUI framework

• Integration Effort: Easy if using MAUI

• Community and Support: Active support from Microsoft, good documentation

• Restricted Countries contributors: No

This repository has been archived by the owner on Dec 21, 2023. It is now read-only.

Feature
Category

Supported by
Microsoft.Maui.Graphics

Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- IImageLoadingSer-
vice.LoadImageAsync:
Asynchronous loading from various
sources.
- GraphicsPlatform.CreateImage:
Creates images with specified
dimensions and formats.

- Unlike ImageSharp, there is limited
support for creating images from
scratch in more diverse formats.

Image
Processing and
Manipulation

- IImage.Clone,
ICanvas.DrawImage: For cloning,
resizing, cropping, and applying
transformations.
- ICanvas.SetFillColor,
ICanvas.DrawRectangle: Supports
color transformations and selective
drawing for cropping.

- Lacks extensive image
manipulation tools available in
libraries like ImageSharp.

Pixel Formats - Supports RGBA, RGB and other
common formats.
- Designed for higher-level graphics
tasks rather than extensive pixel
format diversity.

- Limited to basic pixel formats
compared to the wide range in
ImageSharp.

31

4. Evaluation of Alternatives

Feature
Category

Supported by
Microsoft.Maui.Graphics

Not Natively Supported /
Requires Custom
Implementation

Pixel Access and
Manipulation

- Focuses on high-level operations,
without direct pixel access.
- Does not offer low-level pixel
manipulation like GetPixel and
SetPixel.

- No direct pixel access, unlike
ImageSharp’s ProcessPixelRows.

Image Metadata
and Conversion

- Handles basic image properties and
conversion via IImage.Save.
- Can save to various formats.

- Less detailed metadata handling
compared to ImageSharp.

Creating and
Disposing
Instances

- GraphicsPlatform.CreateImage:
Easily creates new images.
- Disposal managed via .NET’s
garbage collection.

- Lacks manual resource
management options, unlike some
lower-level libraries.

Cropping and
Resizing

- ICanvas.DrawImage: Supports
cropping and resizing with simple
interfaces.

- Less advanced cropping and
resizing techniques compared to
ImageSharp.

Encoding
Images in
Various Formats

- IImage.Save: Supports encoding in
multiple formats.
- Provides functionality to save
directly to files, streams, or byte
arrays.

- Limited format-specific encoding
settings compared to ImageSharp
and does not mentionWebP support.

Composing
Image Layers

- ICanvas.DrawImage: Allows
layering images over one another.
- Basic support for image
compositing and blending.

- More limited compositing features
compared to ImageSharp.

Resampling
Methods

- ICanvas.DrawImage:
Automatically handles resampling
during resizing.

- Fewer advanced resampling
methods compared to ImageSharp.

Saving the
Image

- IImage.Save: Saves images to files,
streams, or byte arrays in various
formats.

- Lacks advanced saving options and
optimizations available in
ImageSharp.

32

4.1. Evaluation of Alternatives

4.1.10. 10. LeadTools

• Type: Commercial

• Key Features: Extensive image processing features, supports numerous formats

• Licensing: Paid (More than 17k$)

• Performance: High performance, enterprise-grade reliability

• Integration Effort: Moderate to high, depending on features used

• Community and Support: Excellent support, extensive documentation

• Restricted Countries contributors: Need a check!

Feature
Category

Supported by LEADTOOLS Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- LoadImage, LoadAsync: Robust
image loading with asynchronous
support.
- RasterImage.Create: Flexible
image creation with control over
dimensions and pixel formats.

- None; LEADTOOLS provides
comprehensive loading and creation
features.

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Extensive transformations and
annotation capabilities.
- Image Enhancement: High-level
enhancement tools for noise
reduction, contrast adjustment, etc.

- While comprehensive, some
specific manipulation tasks might
require custom scripting or code.

Pixel Formats - Supports multiple formats:
Extensive support for various pixel
formats such as RGB, RGBA,
Grayscale, CMYK, and more.

- None; pixel format support is
exhaustive.

Pixel Access and
Manipulation

- GetPixel, SetPixel,
RasterImageData: Direct access
and manipulation of pixel data.
- Lock/Unlock: For precise
pixel-level operations.

- Pixel data manipulation can be
complex, especially when
locking/unlocking is required.

33

4. Evaluation of Alternatives

Feature
Category

Supported by LEADTOOLS Not Natively Supported /
Requires Custom
Implementation

Image Metadata
and Conversion

- Comprehensive Metadata
Handling: Extracts, edits, and writes
metadata for a wide range of formats.
- Advanced Conversion: Extensive
format support including DICOM.

- None; LEADTOOLS excels in
metadata and conversion capabilities.

Creating and
Disposing
Instances

- CreateImage, Dispose: Facilitates
creation and proper resource
disposal of images.

- Proper disposal requires careful
management, similar to .NET
libraries.

Cropping and
Resizing

- Crop, Resize: Advanced cropping
and resizing with various resampling
methods.

- None; cropping and resizing are
robustly supported.

Encoding
Images in
Various Formats

- Save: Encodes images into
numerous formats including WebP,
including advanced options for
compression and format-specific
settings.
- Multimedia and Document
Formats: Extends to multimedia and
document encoding.

- Format-specific settings might
require additional configuration.

Composing
Image Layers

- Combine, DrawImage: Supports
complex image layering with
detailed control over blending and
transparency.

- Layer management might need
additional custom code for complex
use cases.

Resampling
Methods

- Advanced Resampling: Provides
high-quality resampling techniques
during resizing.

- Resampling methods are extensive
but need careful selection for optimal
results.

Saving the
Image

- Save, SaveAsync: Saves images
with extensive control over
parameters.
- Asynchronous Saving: Supports
performance-enhanced operations.

- None; saving features are
comprehensive and powerful.

34

4.2. Evaluation of Alternatives in GO

4.2. Evaluation of Alternatives in GO

4.2.1. 11. Golang Image Package

• Type: Standard library

• Key Features: Basic image processing (decoding, encoding, and simple manipulations)

• Licensing: Free (BSD-style license)

• Performance: Suitable for basic image processing tasks

• Integration Effort: Minimal, as it’s part of the standard library

• Community and Support: Large community, extensive documentation

Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- png.loadPNG: Typically read an
image file and decode it using the
appropriate decoder from a
format-specific sub-package.
- image.NewRGBA: Can create new
images using the image package,
which provides several types like
image.RGBA, image.NRGBA,
image.Gray, etc.
- png.Encode: Can save it using an
encoder from the appropriate
format-specific package.

- Limited support for creating images
from scratch in more diverse formats.
- BMP: The image/bmp package is
available in the Go ecosystem but is
not included in the standard library.
- TIFF: The image/tiff package
exists as a separate package but is
not part of the standard library.
-WebP: Requires third-party
libraries such as
golang.org/x/image/webp.
- Does not inherently support
asynchronous operations; can
achieve asynchronous behavior by
running image-related operations in
separate goroutines.

35

4. Evaluation of Alternatives

Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Extensive transformations and
annotation capabilities.
- Image Enhancement: High-level
enhancement tools for noise
reduction, contrast adjustment, etc.

- Requires custom code
implementation.

Pixel Formats - Image.RGB: Represents a color
image with 8-bit RGBA values per
pixel.
- Image.Gray: Represents a
grayscale image with 8-bit gray
values per pixel.
- Image.YCbCr: Represents a color
image using the Y’CbCr color model,
typically used in JPEG images.

- Provides basic support for different
image formats but does not explicitly
handle pixel formats like image
processing libraries.

Pixel Access and
Manipulation

- Does not have direct methods like
getpixel, setpixel or
RasterImageData.

- No direct pixel access, unlike
ImageSharp’s ProcessPixelRows.

Image Metadata
and Conversion

- Does not support comprehensive
metadata handling directly. This
package focuses on image
manipulation and format conversion
but lacks built-in tools for managing
or accessing metadata like EXIF data
or other detailed image properties.
- Does not support advanced
conversion.

- Lack of support requires custom
implementations.

36

4.2. Evaluation of Alternatives in GO

Feature
Category

Supported by Image Package Not Natively Supported /
Requires Custom
Implementation

Creating and
Disposing
Instances

- To create an image in Go, you
generally use functions from the
image package along with specific
image formats (like image/png,
image/jpeg).
- Go’s garbage collector handles
memory management, so you don’t
need to manually dispose of images.

- The Go image package does not
directly provide CreateImage or
Dispose functions as we might find
in other libraries or languages with
more explicit image management.

Cropping and
Resizing

- Does not include built-in support
for more advanced operations like
cropping and resizing directly.

- Requires custom implementations.

Encoding
Images in
Various Formats

- Save: Create a file using os.Create,
then use png.Encoder or
jpeg.Encoder to encode and save
the image.
- Does not directly support more
advanced multimedia or document
formats.

- For other image formats likeWebP,
need to import the corresponding
encoding package.

Composing
Image Layers

- Does not directly support complex
operations like combining images or
drawing one image onto another.

- Requires custom implementations.

Resampling
Methods

- Does not natively support advanced
resampling techniques.

- Provides basic image manipulation
capabilities, including resizing, but
does not include advanced
resampling algorithms.

Saving the
Image

- Does not directly support saving
images or providing asynchronous
save functionality.

- To perform asynchronous saving,
need to use Go’s concurrency
features such as goroutines.

37

4. Evaluation of Alternatives

4.2.2. 12. Bild

• Type: Open-source

• Key Features: Basic image processing functions like resizing, cropping, and rotation

• Licensing: Free (MIT License)

• Performance: Suitable for lightweight image processing tasks

• Integration Effort: Easy, simple API

• Community and Support: Active community, well-documented

Feature
Category

Supported by Bild Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- Does not support image loading
and creation directly. Instead, it
focuses on image processing,
including operations like resizing.

- Does not support image loading and
creating; need third-party package.

Image
Processing and
Manipulation

- Resize: Is supported.
- Does not include advanced image
processing capabilities.

- Requires custom code
implementation.

Pixel Formats - Supports several basic pixel
formats.

- Primarily works with the standard
Go image package types like
image.RGBA, image.NRGBA.

Pixel Access and
Manipulation

- RGB and RGBA: These are the
primary formats supported. The bild
package can handle images in these
formats for manipulation and
conversion tasks.

- Primarily deals with RGB and
RGBA formats. We can manipulate
and convert images using this
package, but we may need to handle
pixel formats explicitly.

Image Metadata
and Conversion

- Does not provide image metadata
and conversion features for handling
image metadata or advanced image
format conversion.

- Lack of support requires custom
implementations.

Creating and
Disposing
Instances

- Does not explicitly manage the
lifecycle of instances.

- The Go bild package does not
directly provide CreateImage or
Dispose functions as we might find
in other libraries or languages with
more explicit image management.

38

4.2. Evaluation of Alternatives in GO

Feature
Category

Supported by Bild Not Natively Supported /
Requires Custom
Implementation

Cropping and
Resizing

- Crop, Resize: Provides functions for
cropping and resizing images.

- None, Resize and crop is supported
by bild.

Encoding
Images in
Various Formats

- Does not directly handle encoding
images to various formats.

- Requires third-party packages to
handle formats likeWebP.

Composing
Image Layers

- blend.Overlay: The function is
used to combine two images.
- The bild library offers various
blending modes such as Add,
Multiply, Screen.

- None.

Resampling
Methods

- Provides various resampling
methods:
- ResizeNearestNeighbor
- ResizeBilinear
- ResizeBicubic
- ResizeLanczos

- None; Resampling robustly
supported.

Saving the
Image

- Does not directly support saving
images or providing asynchronous
save functionality.

- To perform asynchronous saving,
need to use Go’s concurrency
features such as goroutines.

39

4. Evaluation of Alternatives

4.2.3. 13. GoCV

• Type: Open-source

• Key Features: Go wrapper for OpenCV, advanced image processing and computer vi-
sion

• Licensing: Free (MIT License)

• Performance: High performance, suitable for advanced image processing tasks

• Integration Effort: Moderate to high, depending on usage complexity

• Community and Support: Active community, extensive documentation

Feature
Category

Supported by GoCV Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- gocv.IMRead: Reads an image file
from disk into a gocv.Mat object.
- gocv.IMWrite: Writes images, and
uses the Mat type to manipulate
them in memory.

- None; supports read and write of
images.

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Transformations such as resizing,
rotating, and cropping using
OpenCV functions available in gocv.
- Image Enhancement: High-level
enhancement tools for noise
reduction, contrast adjustment, etc.

- None.

Pixel Formats - Supports multiple formats,
including 8-bit grayscale, 16-bit
grayscale, RGB (24-bit color), RGBA
(32-bit color), etc.

- The gocv library provides support
for various pixel formats through its
integration with OpenCV.

Pixel Access and
Manipulation

- img.Cols(), img.Rows(): Provide
the dimensions of the image.
- img.At(x, y): Gets the pixel value
at the specified coordinates.
- img.Set(): Modifies pixel values.

- GoCV, a Go wrapper for the
OpenCV library, allows pixel access
and manipulation in images.

40

4.2. Evaluation of Alternatives in GO

Feature
Category

Supported by GoCV Not Natively Supported /
Requires Custom
Implementation

Image Metadata
and Conversion

- Supports various operations,
including image metadata extraction
and conversion.

- For more advanced metadata
extraction (such as EXIF data),
additional libraries or tools might be
needed, as gocv itself doesn’t handle
metadata like EXIF.

Creating and
Disposing
Instances

-Mat: Use Close() to release the
matrix object when done.
- gocv.NewMat(): Creates a new Mat
object to store the captured frame.

- Use defer for cleanup to make code
cleaner and more reliable.

Cropping and
Resizing

- gocv.Resize: Resizes the cropped
image to the specified dimensions.

- Crop is not supported.

Encoding
Images in
Various Formats

- gocv.IMEncode: Supports various
formats like JPEG, PNG, etc. The
format can be specified by changing
the file extension in the function
parameter.

- Supports various formats like JPEG,
PNG, etc.
- Like OpenCV, WebP is not
supported by default.

Composing
Image Layers

- gocv.AddWeighted: Blends the
images based on the specified
weights.
- Use OpenCV functions like
AddWeighted for blending or Add
for overlaying images.

- None.

Resampling
Methods

- Support for image resampling
methods through its bindings to
OpenCV such as
cv2.INTER_NEAREST,
cv2.INTER_LINEAR,
cv2.INTER_CUBIC,
cv2.INTER_LANCZOS4.

- None; resampling robustly
supported.

Saving the
Image

- gocv.IMWrite: Saves the processed
image.

- To perform asynchronous saving,
need to use Go’s concurrency
features such as goroutines.

41

4. Evaluation of Alternatives

4.2.4. 14. Gift

• Type: Open-source

• Key Features: A package for image filtering, supports many common filters

• Licensing: Free (MIT License)

• Performance: Efficient for applying various filters

• Integration Effort: Easy, straightforward API

• Community and Support: Moderate, good documentation

Feature
Category

Supported by Gift Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- Does not support Image Loading
and Creation.

- Does not support Image Loading
and Creation.

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Transformations supported but
Annotations not supported.
- Image Enhancement: Supports
operations like sharpening, blurring,
adjusting brightness and contrast,
and more.

- To clone an image, you can create a
new image with the same
dimensions and copy the pixel data.
- Need to use gift for image
transformations and another library
like gg for annotations.

Pixel Formats - Does not directly provide pixel
format manipulation or conversion
functionalities.

- Need to write custom
implementation.

Pixel Access and
Manipulation

- Does not provide pixel-level access
and manipulation.

- gift’s built-in functions aren’t
sufficient.

Image Metadata
and Conversion

- Does not directly handle image
metadata or conversion between
different formats.

- The gift package does not provide
direct support for format conversion.

42

4.2. Evaluation of Alternatives in GO

Feature
Category

Supported by Gift Not Natively Supported /
Requires Custom
Implementation

Creating and
Disposing
Instances

- Does not directly support creating
and disposing of instances.

- We create a gift processor with a
specific filter. We need to apply the
filter to an image. Once done, Go’s
garbage collector will handle
memory management.

Cropping and
Resizing

- gift.Resize: Resizes image to the
specified dimensions.
- gift.Crop: Crops image to the
specified dimensions.

- For cropping, need to use a
combination of gift.Crop and
gift.Resize. While gift does not
have a direct Crop function, we can
achieve cropping by resizing and
then applying the crop manually.

Encoding
Images in
Various Formats

- Does not inherently include
encoding images in different formats.

- Does not directly supportWebP.

Composing
Image Layers

- Does not natively support
composing image layers.

- Can achieve layer composition by
manually handling image layers
using Go’s image processing
libraries.

Resampling
Methods

- Provides a variety of resampling
methods for image.

- None; Resampling robustly
supported.

Saving the
Image

- Does not directly handle file I/O for
saving.

- To perform asynchronous saving,
need to use Go’s concurrency
features such as goroutines.

43

4. Evaluation of Alternatives

4.2.5. 15. ImageMagick (via Go bindings)

• Type: Open-source

• Key Features: Extensive image manipulation capabilities, leveraging ImageMagick

• Licensing: Free (Apache 2.0 License)

• Performance: Excellent for complex image processing

• Integration Effort: Moderate, requires use of Go bindings

• Community and Support: Large user base, comprehensive documentation

Feature
Category

Supported by ImageMagick Not Natively Supported /
Requires Custom
Implementation

Image Loading
and Creation

- imagick.NewMagickWand: Load
images from various file formats like
PNG, JPEG, BMP, and others.
- NewImage, SetFormat, SetSize:
Create new images from scratch by
setting up dimensions, colors, and
other properties.

- None

Image
Processing and
Manipulation

- Clone, Resize,
ConvertToGrayscale: Supports
advanced image processing tasks.
- Transformations, Annotations:
Supports image processing tasks.
- Image Enhancement: Supports
operations like sharpening, blurring,
contrast, and noise reduction.

- All advanced image processing and
manipulation supported.

Pixel Formats - Supports various image pixel
formats: RGB (Red, Green, Blue),
RGBA (Red, Green, Blue, Alpha),
Gray (Grayscale), etc.

- None

44

4.2. Evaluation of Alternatives in GO

Feature
Category

Supported by ImageMagick Not Natively Supported /
Requires Custom
Implementation

Pixel Access and
Manipulation

- Provides the PixelWand API,
which allows you to manipulate
individual pixels in an image.
- A PixelIterator is used to access
and modify the pixels of the image.
- The SetRed, SetGreen, and
SetBlue methods are used to change
the color of the pixels.

- None

Image Metadata
and Conversion

- Reading Metadata: Allows
reading metadata from images, such
as EXIF data, image properties, and
other relevant information.
-Writing Metadata: Allows
manipulating and writing metadata
back to the image file.
- Format Conversion: Supports
conversion between a wide range of
image formats (e.g., BMP, PNG,
JPEG, TIFF).
- Quality and Compression:
Allows adjusting quality and
compression settings when
converting images.

- Robust support for image metadata
and conversion.

Creating and
Disposing
Instances

- imagick.NewMagickWand:
Create image instances.
- imagick.Destroy: Free resources
when the image is no longer needed.

- This process is crucial for managing
memory usage, especially when
working with large images or in a
long-running application.

Cropping and
Resizing

- imagick.MagickResizeImage:
Resize the image.
- imagick.MagickCropImage:
Crop the image to the specified
dimensions.

- None

Encoding
Images in
Various Formats

- Allows encoding and decoding
images in various formats. Some of
the most commonly supported
formats include JPEG, BMP, PNG,
WebP, GIF, etc.

- None

45

4. Evaluation of Alternatives

Feature
Category

Supported by ImageMagick Not Natively Supported /
Requires Custom
Implementation

Composing
Image Layers

- base.png: The base image.
- overlay.png: The image to be
composited on top of the base image.
-
imagick.COMPOSITE_OP_OVER:
Specifies the compositing operation
(in this case, overlay).

- None

Resampling
Methods

- Provides a variety of resampling
methods for images.

- None; resampling robustly
supported.

Saving the
Image

- SetImageFormat(): Sets the
format of the image (e.g., PNG).
- WriteImage: Writes the image to a
new file.

- Does not directly support
asynchronous operations for image
saving.
- To perform asynchronous saving,
need to use Go’s concurrency
features such as goroutines.

46

4.3. Summary of Evaluations

4.3. Summary of Evaluations

4.3.1. Suggestion 1: OpenCvSharp + SkiaSharp

Strong points:

• OpenCvSharp: Image processing, pixel access, extensive pixel formats,
high-performance manipulation metadata handling.

• SkiaSharp: High-quality 2D graphics rendering, image creation, layer composition, ef-
ficient drawing operations.

Why this combination:

• OpenCvSharp: Lacks advanced 2D graphics and layer composition.

• SkiaSharp: Complements with robust 2D rendering and drawing features.

Pricing:

• OpenCvSharp: Free for commercial use.

• SkiaSharp: Free for commercial use.

4.3.2. Suggestion 2: Magick.NET + MagicScaler

Strong points:

• Magick.NET: Comprehensive image processing, wide format support, advanced meta-
data handling, image composition.

• MagicScaler: High-quality, efficient image resizing and resampling.

Why this combination:

• Magick.NET: Lacks optimized high-quality resampling.

• MagicScaler: Ensures top-tier resizing and resampling, covering Magick.NET’s limita-
tions.

Pricing:

• Magick.NET: Apache-2.0 license

• MagicScaler: Free for commercial use.

47

https://github.com/dlemstra/Magick.NET

4. Evaluation of Alternatives

4.3.3. Suggestion 3: LEADTOOLS (Single Library Solution)

Strong points:

• Comprehensive image processing, extensive format support, advanced metadata han-
dling, versatile imaging features.

Pricing:

• Paid (More than $17,000).

4.3.4. Suggestion 4: Emgu CV + Structure.Sketching

Strong points:

• Emgu CV: Advanced image processing, pixel manipulation, built on OpenCV.

• Structure.Sketching: Efficient drawing, resizing, and layer composition.

Why this combination:

• Emgu CV: Lacks comprehensive drawing and layer composition.

• Structure.Sketching: Complements with effective graphics rendering and basic image
processing.

Pricing:

• Emgu CV: $799 (for version 4, with additional costs for upgrades).

• Structure.Sketching: Free for commercial use.

48

5. Analysis and Discussion

5.1. Performance Benchmarking Results

5.1.1. Benchmark Overview

This benchmark evaluates the performance of image processing tasks through three key met-
rics: Image Conversion, Pixel Iteration, and their associated times. These metrics provide in-
sight into both the initial setup time and the efficiency of processing during steady-state oper-
ations.

Benchmark Metrics

Pixel Iteration:

• Warm-Up Time: Time taken for the initial pixel operation during the first setup.

• Average Time: Average time measured across 100 iterations, excluding warm-up; indi-
cates processing efficiency.

• Total Time: Cumulative time for all 100 iterations.

Image Conversion: Time taken to load the image into memory and iterate through every
pixel in the image, applying a simple operation (converting to grayscale) and then save the
image.

Benchmarking Resources

Image used for this benchmarking: Image Link

Benchmarking Implementation repository: Benchmarking Repository

49

https://dsext001-eu1-215dsi0708-3dswym.3dexperience.3ds.com/api/media/streammedia/id/E_f8pedmRKKh2YOrjjqJoQ/type/picture/key/l1/update/f79c98dbee35f056b55aeabe4f2b6845
https://gd-git.dsone.3ds.com/SFI19/sc-176

5. Analysis and Discussion

5.1.2. Benchmark Results:

Library Benchmark Time (ms)

ImageSharp Image Conversion 2754

OpenCvSharp + SkiaSharp Image Conversion 539

Magick.NET + MagicScaler Image Conversion 4333

Emgu CV + Structure.Sketching Image Conversion 490

50

5.1. Performance Benchmarking Results

Library Benchmark Warm-Up
Time (ms)

Avg. Time
Excl.
Warm-Up (ms)

Total Time
Incl. Warm-Up
(ms)

ImageSharp Pixel Iteration 755 117.06 12461

OpenCvSharp + SkiaSharp Pixel Iteration 813 159.44 16757

Magick.NET + MagicScaler Pixel Iteration 12149 2054.18 217567

Emgu CV + Structure.Sketching Pixel Iteration 1118 118.87 13005

51

5. Analysis and Discussion

5.2. Memory Benchmarking

5.2.1. Benchmarking Overview:

In this benchmark, we utilized BenchmarkDotNet tomeasure the performance of various image
processing libraries. BenchmarkDotNet is a powerful .NET library that provides accurate and
detailed performance metrics. It handles the complexities of benchmarking, such as warm-up,
iteration, and statistical analysis, ensuring reliable results.
The benchmarking process involved the following steps:

• Setup: Initialize the environment and load the image.

• Warm-Up: Perform initial iterations to stabilize the environment.

• Measurement: Execute the image processing tasks (Image Conversion and Pixel Itera-
tion) and record the time and memory usage.

• Analysis: Analyze the collected data to determine the average, total, and warm-up
times, as well as memory allocations and garbage collections.

The attached images and tables provide a detailed comparison of the performance metrics
for different libraries, highlighting their strengths and weaknesses in various tasks.

52

5.2. Memory Benchmarking

5.2.2. Benchmark Results:

Library Task Mean Time Allocated
Memory

Gen0/Gen1/Gen2
Collections

EmguCV Image Conversion 52.53 ms 0.00068 MB (712
bytes)

- / - / -

ImageSharp Image Conversion 475.71 ms 5.67 MB (5,805.41
KB)

1,000 / 1,000 /
1,000

SkiaSharp Image Conversion 63.97 ms 0.05612 MB
(58,864 bytes)

- / - / -

53

5. Analysis and Discussion

Library Task Mean Time Allocated
Memory

Gen0/Gen1/Gen2
Collections

EmguCV Pixel Iteration 85.49 ms 170.00 MB
(177,976,185 bytes)

33,142 / 1,571 /
1,571

ImageSharp Pixel Iteration 86.56 ms 0.01932 MB (20.26
KB)

- / - / -

SkiaSharp Pixel Iteration 2.82 s 384.00 MB
(403,300,552 bytes)

85 / - / -

54

5.3. Development Effort Estimation

5.3. Development Effort Estimation

5.3.1. Overview

In this section, we outline the development effort estimation for implementing image process-
ing functionalities within our project. We evaluate two primary approaches: custom develop-
ment of an image processing library and the integration of existing external libraries such as
OpenCV or ImageMagick.

5.3.2. Custom Development of Image Processing Library

During our team discussions, we evaluated the possibility of developing our own image pro-
cessing library. While this would give us complete control over the feature set, we found that
it would require a significant amount of effort +100 story points. For example:

• Implementing basic functionality like converting BMP to JPEG alone would require
approximately 40 story points.

• Expanding to cover the full range of necessary image processing features would take an
impractically long time for the scope of the project.

Given these factors, developing an internal library from scratch was deemed too resource-
intensive, and we opted for an external solution.
We referenced the following resources for additional insights into the complexity of image

conversions:

• YouTube Video 1

• YouTube Video 2

5.3.3. Use alternative Image Processing Library

Based on our discussions, the implementation effort for integrating either OpenCV or Im-
ageMagick into our Imagegen and ImageProcessor NuGet packages can only be estimated
roughly at this stage. However, we anticipate that the development effort will be approxi-
mately 20 or more story points for either solution. This estimation takes into account the
necessary feature scope and the complexity involved in replacing our current image processing
functionality.

5.4. Overall Comparison and Key Insights

5.4.1. Overall Comparison:

The benchmarking results highlight the strengths and weaknesses of each library in differ-
ent tasks. SkiaSharp excels in image conversion tasks due to its fast processing time and low
memory usage. EmguCV, while consuming more memory, provides the best performance for

55

https://www.youtube.com/watch?v=Kv1Hiv3ox8I
https://www.youtube.com/watch?v=0me3guauqOU

5. Analysis and Discussion

pixel iteration tasks, making it suitable for complex image processing operations. ImageSharp,
although efficient in memory usage for pixel iteration, falls short in image conversion perfor-
mance.
The decision to adopt SkiaSharp for image conversion and EmguCV for complex image pro-

cessing is based on a balance between performance and cost. SkiaSharp’s superior performance
in image conversion and EmguCV’s comparable performance to ImageSharp, combined with
cost savings, make them the preferred choices for their respective tasks.

5.4.2. Key Insights:

• SkiaSharp showed excellent performance for image conversion, with both the fastest
time (63.97 ms) and the least memory allocation (~58 KB). This makes it an ideal choice
for image conversion tasks.

• EmguCV performed best for pixel iterationwith a fast mean time of 85.49ms, though
its memory consumption was higher (~170 MB). The extensive garbage collections in
EmguCV indicate high memory usage, but the performance benefits outweigh the mem-
ory cost for more complex operations.

• ImageSharp consumed minimal memory for pixel iteration (~20 KB), but its image
conversion performance lagged behind, taking significantly more time than SkiaSharp
and consuming more memory (~5.67 MB).

5.4.3. Meeting Outcome and Final Decision:

• SkiaSharpwill be adopted for image conversion tasks due to its superior performance.

• EmguCV will be the preferred choice for complex image processing. Although its
memory consumption is higher than ImageSharp, the performance between the two
is similar. However, the increased memory usage of EmguCV is within a manageable
range for our needs. The primary reason for choosing EmguCV is the significant cost
savings, as ImageSharp is considerably more expensive, and switching to EmguCV
allows us to reduce licensing costs while maintaining comparable performance.

56

6. Conclusion and Recommendations

6.1. Summary of Findings

A summary of key findings from the evaluation and analysis.

6.2. Final Recommendation

After evaluating the various alternatives and the effort required for custom development, the
team has decided to use a combination of Emgu CV and SkiaSharp for our image processing
needs.

• Reason for Decision:

– Emgu CV provides powerful image processing capabilities, including pixel manip-
ulation, resizing, and format conversions. It is built on OpenCV, which ensures
high performance for tasks such as image resizing, cropping, color conversion, and
basic filtering.

– SkiaSharp complements Emgu CV by providing robust 2D graphics rendering, ef-
ficient image creation, and handling of different image formats. It excels at drawing
operations and layer composition, making it suitable for both simple and complex
image manipulation scenarios.

• Why This Combination?

– The combination of EmguCV and SkiaSharp covers both the low-level, performance-
critical image manipulation provided by Emgu CV and the high-level, efficient ren-
dering and image handling offered by SkiaSharp. Together, they meet the project’s
feature requirements with minimal integration effort. The one-time cost of $799
for Emgu CV, while notable, seems reasonable given its extensive capabilities and
the absence of recurring subscription fees.

6.3. Future Work

Suggestions for future research include exploring additional libraries and evaluating for specific
use cases.

57

A. Appendices

A.1. Appendix A: Detailed Benchmarking Results

Include detailed benchmarking tables and data here.

A.2. Appendix B: Implementation Details

Code snippets, setup configurations, and other technical details go here.

A.3. Appendix C: Resource Links and Additional
Documentation

Provide links, references, and documentation resources here.

59

	Abstract
	Introduction
	Background
	Problem Statement
	Research Objectives
	Thesis Structure

	Literature Review
	Overview of Image Processing Libraries
	ImageSharp
	Other Popular Libraries
	OpenImageIO
	SkiaSharp
	Magick.NET
	Emgu CV

	Methodology
	Functional Requirements and Tasks
	Image Loading and Creation
	Image Processing and Manipulation
	Pixel Formats
	Pixel Access and Manipulation
	Image Metadata and Conversion
	Creating and Disposing Image Instances
	Cropping and Resizing
	Encoding Images in Various Formats
	Composing Image Layers
	Resampling Methods
	Saving the image

	Performance Metrics
	Performance Metrics

	Benchmarking Setup and Tools
	Alternatives Evaluation Criteria

	Evaluation of Alternatives
	Evaluation of Alternatives
	1. OpenImageIO (OIIO)
	2. SkiaSharp
	3. Magick.NET
	4. Emgu CV
	5. MagicScaler
	6. SimpleITK
	7. Structure.Sketching
	8. OpenCvSharp
	9. Microsoft.Maui.Graphics
	10. LeadTools

	Evaluation of Alternatives in GO
	11. Golang Image Package
	12. Bild
	13. GoCV
	14. Gift
	15. ImageMagick (via Go bindings)

	Summary of Evaluations
	Suggestion 1: OpenCvSharp + SkiaSharp
	Suggestion 2: Magick.NET + MagicScaler
	Suggestion 3: LEADTOOLS (Single Library Solution)
	Suggestion 4: Emgu CV + Structure.Sketching

	Analysis and Discussion
	Performance Benchmarking Results
	Benchmark Overview
	Benchmark Results:

	Memory Benchmarking
	Benchmarking Overview:
	Benchmark Results:

	Development Effort Estimation
	Overview
	Custom Development of Image Processing Library
	Use alternative Image Processing Library

	Overall Comparison and Key Insights
	Overall Comparison:
	Key Insights:
	Meeting Outcome and Final Decision:

	Conclusion and Recommendations
	Summary of Findings
	Final Recommendation
	Future Work

	Appendices
	Appendix A: Detailed Benchmarking Results
	Appendix B: Implementation Details
	Appendix C: Resource Links and Additional Documentation

