diff --git a/README.md b/README.md index 7e33afb8bc702a917ed9c5b394262e7865c9e7ec..16a98849afc9e732ef6f18c90b2727c3a81e5be7 100644 --- a/README.md +++ b/README.md @@ -1,4 +1,4 @@ - + # RoboQualityController diff --git a/example/tigre_example.py b/example/tigre_example.py index 63ce16aacffa4168e36dcb748f13ed024dec5b1f..fd7c55138c371b0ca9b33d607002c288eafd7c59 100644 --- a/example/tigre_example.py +++ b/example/tigre_example.py @@ -12,7 +12,7 @@ import matplotlib.pyplot as plt # This script assumes that the service nodes a started with the rq_wokflow/launch/tigre_artist_launch.py file. # !!! -NUMBER_OF_PROJECTION = 100 +NUMBER_OF_PROJECTION = 80 FOD_MM = 1000. FDD_MM = 2000. @@ -37,16 +37,18 @@ def main(): # Move source / dtector and aquire projections for i in range(NUMBER_OF_PROJECTION): rotation = Rotation.from_euler('Z', angles[i], False) - scan_pose = projection.look_at(rotation.apply(source), rotation.apply(detector), np.array([0, 0, -1])) + scan_pose = projection.look_at(rotation.apply(source) + (np.random.random(3) - 0.5) * 30, + rotation.apply(detector) + (np.random.random(3) - 0.5) * 30, + np.array([0, 0, -1])) projection_stack.append(workflow.aquire_projection(scan_pose)) # Define reconstruction area and call reconstruction client - roi = PyRegionOfIntrest(np.zeros((1, 3)), np.ones((1, 3)) * 120., resolution_mm=np.array([0.5, 0.5, 0.5])) - volume = workflow.get_volume(projection_stack, roi) + roi = PyRegionOfIntrest(center_points_mm=np.array([0., 0., 0.]), + dimensions_mm=np.array([120., 120., 120.]), + resolution_mm=np.array([0.5, 0.5, 0.5])) - # visualize middle slice - plt.imshow(volume.array[:, volume.shape[1] // 2, :]) - plt.show() + workflow.reconstruction.set_reconstruction_algorithm_name('ossart') # ossart / fdk + volume = workflow.get_volume(projection_stack, roi) if __name__ == '__main__':