diff --git a/README.md b/README.md
index 7e33afb8bc702a917ed9c5b394262e7865c9e7ec..16a98849afc9e732ef6f18c90b2727c3a81e5be7 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,4 @@
-![test](https://mygit.th-deg.de/roboct/robo_quality/gitlab-profile/-/raw/main/resources/rq_controller.svg?inline=false)
+![test](https://mygit.th-deg.de/roboct/robo_quality/gitlab-profile/-/raw/main/resources/rq_controller_450.png?inline=false)
 
 # RoboQualityController
 
diff --git a/example/tigre_example.py b/example/tigre_example.py
index 63ce16aacffa4168e36dcb748f13ed024dec5b1f..fd7c55138c371b0ca9b33d607002c288eafd7c59 100644
--- a/example/tigre_example.py
+++ b/example/tigre_example.py
@@ -12,7 +12,7 @@ import matplotlib.pyplot as plt
 # This script assumes that the service nodes a started with the rq_wokflow/launch/tigre_artist_launch.py file.
 # !!!
 
-NUMBER_OF_PROJECTION = 100
+NUMBER_OF_PROJECTION = 80
 FOD_MM = 1000.
 FDD_MM = 2000.
 
@@ -37,16 +37,18 @@ def main():
     # Move source / dtector and aquire projections
     for i in range(NUMBER_OF_PROJECTION):
         rotation = Rotation.from_euler('Z', angles[i], False)
-        scan_pose = projection.look_at(rotation.apply(source), rotation.apply(detector), np.array([0, 0, -1]))
+        scan_pose = projection.look_at(rotation.apply(source) + (np.random.random(3) - 0.5) * 30, 
+                                       rotation.apply(detector) + (np.random.random(3) - 0.5) * 30, 
+                                       np.array([0, 0, -1]))
         projection_stack.append(workflow.aquire_projection(scan_pose))
 
     # Define reconstruction area and call reconstruction client
-    roi = PyRegionOfIntrest(np.zeros((1, 3)), np.ones((1, 3)) * 120., resolution_mm=np.array([0.5, 0.5, 0.5]))
-    volume = workflow.get_volume(projection_stack, roi)
+    roi = PyRegionOfIntrest(center_points_mm=np.array([0., 0., 0.]),
+                            dimensions_mm=np.array([120., 120., 120.]), 
+                            resolution_mm=np.array([0.5, 0.5, 0.5]))
 
-    # visualize middle slice
-    plt.imshow(volume.array[:, volume.shape[1] // 2, :])
-    plt.show()
+    workflow.reconstruction.set_reconstruction_algorithm_name('ossart') # ossart / fdk
+    volume = workflow.get_volume(projection_stack, roi)
 
     
 if __name__ == '__main__':