{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import sklearn as sk\n", "import matplotlib.pyplot as plt\n", "import json\n", "import math\n", "from sklearn.model_selection import train_test_split" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 1. Read Dataset and remove NAN values" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>carat</th>\n", " <th>cut</th>\n", " <th>color</th>\n", " <th>clarity</th>\n", " <th>depth</th>\n", " <th>table</th>\n", " <th>price</th>\n", " <th>x</th>\n", " <th>y</th>\n", " <th>z</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.23</td>\n", " <td>Ideal</td>\n", " <td>E</td>\n", " <td>SI2</td>\n", " <td>61.5</td>\n", " <td>55.0</td>\n", " <td>326</td>\n", " <td>3.95</td>\n", " <td>3.98</td>\n", " <td>2.43</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.21</td>\n", " <td>Premium</td>\n", " <td>E</td>\n", " <td>SI1</td>\n", " <td>59.8</td>\n", " <td>61.0</td>\n", " <td>326</td>\n", " <td>3.89</td>\n", " <td>3.84</td>\n", " <td>2.31</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.23</td>\n", " <td>Good</td>\n", " <td>E</td>\n", " <td>VS1</td>\n", " <td>56.9</td>\n", " <td>65.0</td>\n", " <td>327</td>\n", " <td>4.05</td>\n", " <td>4.07</td>\n", " <td>2.31</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.29</td>\n", " <td>Premium</td>\n", " <td>I</td>\n", " <td>VS2</td>\n", " <td>62.4</td>\n", " <td>58.0</td>\n", " <td>334</td>\n", " <td>4.20</td>\n", " <td>4.23</td>\n", " <td>2.63</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.31</td>\n", " <td>Good</td>\n", " <td>J</td>\n", " <td>SI2</td>\n", " <td>63.3</td>\n", " <td>58.0</td>\n", " <td>335</td>\n", " <td>4.34</td>\n", " <td>4.35</td>\n", " <td>2.75</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " carat cut color clarity depth table price x y z\n", "0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43\n", "1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31\n", "2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31\n", "3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63\n", "4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diamonds = pd.read_csv('diamonds.csv')\n", "\n", "diamonds.dropna(inplace=True)\n", "diamonds.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 2. Mapping non-numerical values to numerical ones" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Cut Quality**\n", "| Cut | Mapping |\n", "|------------|------|\n", "| Ideal | 0 |\n", "| Premium | 1 |\n", "| Good | 2 |\n", "| Very Good | 3 |\n", "| Fair | 4 |\n", "\n", "**Color Grade**\n", "| Color | Mapping |\n", "|-------|------|\n", "| E | 0 |\n", "| I | 1 |\n", "| J | 2 |\n", "| H | 3 |\n", "| F | 4 |\n", "| G | 5 |\n", "| D | 6 |\n", "\n", "**Clarity Grade**\n", "| Clarity | Mapping |\n", "|---------|------|\n", "| SI2 | 0 |\n", "| SI1 | 1 |\n", "| VS1 | 2 |\n", "| VS2 | 3 |\n", "| VVS2 | 4 |\n", "| VVS1 | 5 |\n", "| I1 | 6 |\n", "| IF | 7 |" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "cut_mapping = {cut: i for i, cut in enumerate(diamonds['cut'].unique())}\n", "color_mapping = {color: i for i, color in enumerate(diamonds['color'].unique())}\n", "clarity_mapping = {clarity: i for i, clarity in enumerate(diamonds['clarity'].unique())}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 3. Replace the non-numerical columns with their numerical mappings" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "diamonds_numerical = diamonds.copy()\n", "diamonds_numerical['cut'] = diamonds['cut'].map(cut_mapping)\n", "diamonds_numerical['color'] = diamonds['color'].map(color_mapping)\n", "diamonds_numerical['clarity'] = diamonds['clarity'].map(clarity_mapping)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>carat</th>\n", " <th>cut</th>\n", " <th>color</th>\n", " <th>clarity</th>\n", " <th>depth</th>\n", " <th>table</th>\n", " <th>price</th>\n", " <th>x</th>\n", " <th>y</th>\n", " <th>z</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.23</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>61.5</td>\n", " <td>55.0</td>\n", " <td>326</td>\n", " <td>3.95</td>\n", " <td>3.98</td>\n", " <td>2.43</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.21</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>59.8</td>\n", " <td>61.0</td>\n", " <td>326</td>\n", " <td>3.89</td>\n", " <td>3.84</td>\n", " <td>2.31</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.23</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>56.9</td>\n", " <td>65.0</td>\n", " <td>327</td>\n", " <td>4.05</td>\n", " <td>4.07</td>\n", " <td>2.31</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.29</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>62.4</td>\n", " <td>58.0</td>\n", " <td>334</td>\n", " <td>4.20</td>\n", " <td>4.23</td>\n", " <td>2.63</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.31</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>63.3</td>\n", " <td>58.0</td>\n", " <td>335</td>\n", " <td>4.34</td>\n", " <td>4.35</td>\n", " <td>2.75</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " carat cut color clarity depth table price x y z\n", "0 0.23 0 0 0 61.5 55.0 326 3.95 3.98 2.43\n", "1 0.21 1 0 1 59.8 61.0 326 3.89 3.84 2.31\n", "2 0.23 2 0 2 56.9 65.0 327 4.05 4.07 2.31\n", "3 0.29 1 1 3 62.4 58.0 334 4.20 4.23 2.63\n", "4 0.31 2 2 0 63.3 58.0 335 4.34 4.35 2.75" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "diamonds_numerical.head()" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>carat</th>\n", " <th>cut</th>\n", " <th>color</th>\n", " <th>clarity</th>\n", " <th>depth</th>\n", " <th>table</th>\n", " <th>x</th>\n", " <th>y</th>\n", " <th>z</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>0.23</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>0</td>\n", " <td>61.5</td>\n", " <td>55.0</td>\n", " <td>3.95</td>\n", " <td>3.98</td>\n", " <td>2.43</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>0.21</td>\n", " <td>1</td>\n", " <td>0</td>\n", " <td>1</td>\n", " <td>59.8</td>\n", " <td>61.0</td>\n", " <td>3.89</td>\n", " <td>3.84</td>\n", " <td>2.31</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>0.23</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>2</td>\n", " <td>56.9</td>\n", " <td>65.0</td>\n", " <td>4.05</td>\n", " <td>4.07</td>\n", " <td>2.31</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>0.29</td>\n", " <td>1</td>\n", " <td>1</td>\n", " <td>3</td>\n", " <td>62.4</td>\n", " <td>58.0</td>\n", " <td>4.20</td>\n", " <td>4.23</td>\n", " <td>2.63</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>0.31</td>\n", " <td>2</td>\n", " <td>2</td>\n", " <td>0</td>\n", " <td>63.3</td>\n", " <td>58.0</td>\n", " <td>4.34</td>\n", " <td>4.35</td>\n", " <td>2.75</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " carat cut color clarity depth table x y z\n", "0 0.23 0 0 0 61.5 55.0 3.95 3.98 2.43\n", "1 0.21 1 0 1 59.8 61.0 3.89 3.84 2.31\n", "2 0.23 2 0 2 56.9 65.0 4.05 4.07 2.31\n", "3 0.29 1 1 3 62.4 58.0 4.20 4.23 2.63\n", "4 0.31 2 2 0 63.3 58.0 4.34 4.35 2.75" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X = diamonds_numerical.drop('price', axis = 1)\n", "y = diamonds_numerical['price']\n", "X.head()" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0 326\n", "1 326\n", "2 327\n", "3 334\n", "4 335\n", "Name: price, dtype: int64" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y.head()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>#sk-container-id-1 {color: black;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>LinearRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">LinearRegression</label><div class=\"sk-toggleable__content\"><pre>LinearRegression()</pre></div></div></div></div></div>" ], "text/plain": [ "LinearRegression()" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.linear_model import LinearRegression\n", "model = LinearRegression()\n", "# Train the models\n", "model.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Squared Error: 2029299.0804379764\n", "R^2 Score: 0.8723456077895886\n" ] } ], "source": [ "from sklearn.metrics import mean_squared_error, r2_score\n", "\n", "y_pred = model.predict(X_test)\n", "mse = mean_squared_error(y_test, y_pred)\n", "r2 = r2_score(y_test, y_pred)\n", "print(\"Mean Squared Error:\", mse)\n", "print(\"R^2 Score:\", r2)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "<style>#sk-container-id-2 {color: black;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=100, n_jobs=None,\n", " num_parallel_tree=None, random_state=42, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" checked><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">XGBRegressor</label><div class=\"sk-toggleable__content\"><pre>XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=100, n_jobs=None,\n", " num_parallel_tree=None, random_state=42, ...)</pre></div></div></div></div></div>" ], "text/plain": [ "XGBRegressor(base_score=None, booster=None, callbacks=None,\n", " colsample_bylevel=None, colsample_bynode=None,\n", " colsample_bytree=None, device=None, early_stopping_rounds=None,\n", " enable_categorical=False, eval_metric=None, feature_types=None,\n", " gamma=None, grow_policy=None, importance_type=None,\n", " interaction_constraints=None, learning_rate=None, max_bin=None,\n", " max_cat_threshold=None, max_cat_to_onehot=None,\n", " max_delta_step=None, max_depth=None, max_leaves=None,\n", " min_child_weight=None, missing=nan, monotone_constraints=None,\n", " multi_strategy=None, n_estimators=100, n_jobs=None,\n", " num_parallel_tree=None, random_state=42, ...)" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from xgboost import XGBRegressor\n", "model2 = XGBRegressor(n_estimators=100,random_state=42)\n", "model2.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Squared Error: 314752.8223018785\n", "R^2 Score: 0.9802002668730396\n" ] } ], "source": [ "y_pred2 = model2.predict(X_test)\n", "mse2 = mean_squared_error(y_test, y_pred2)\n", "r22 = r2_score(y_test, y_pred2)\n", "print(\"Mean Squared Error:\", mse2)\n", "print(\"R^2 Score:\", r22)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/fadi/Desktop/dev/sas2/ws-23-sas-02/sas2/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.\n", " warnings.warn(\n" ] }, { "data": { "text/html": [ "<style>#sk-container-id-3 {color: black;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>MLPRegressor(max_iter=500, random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" checked><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">MLPRegressor</label><div class=\"sk-toggleable__content\"><pre>MLPRegressor(max_iter=500, random_state=42)</pre></div></div></div></div></div>" ], "text/plain": [ "MLPRegressor(max_iter=500, random_state=42)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.neural_network import MLPRegressor\n", "model4 = MLPRegressor(random_state=42, max_iter=500)\n", "model4.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Mean Squared Error: 2029299.0804379764\n", "MSE 2 314752.8223018785\n", "MSE 4 1320105.4212450413\n", "R^2 Score: 0.8723456077895886\n", "R^2 Score: 0.9802002668730396\n", "R^2 Score: 0.9169579009682819\n" ] } ], "source": [ "from sklearn.metrics import mean_squared_error, r2_score\n", "\n", "# Predict on the test set\n", "y_pred = model.predict(X_test)\n", "y_pred2 = model2.predict(X_test)\n", "y_pred4 = model4.predict(X_test)\n", "# Evaluate the model\n", "mse = mean_squared_error(y_test, y_pred)\n", "mse2 = mean_squared_error(y_test, y_pred2)\n", "mse4 = mean_squared_error(y_test, y_pred4)\n", "r2 = r2_score(y_test, y_pred)\n", "r22 = r2_score(y_test, y_pred2)\n", "r24 = r2_score(y_test, y_pred4)\n", "print(\"Mean Squared Error:\", mse)\n", "print(\"MSE 2 \", mse2)\n", "print(\"MSE 4 \", mse4)\n", "print(\"R^2 Score:\", r2)\n", "print(\"R^2 Score:\", r22)\n", "print(\"R^2 Score:\", r24)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([3461.6711], dtype=float32)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "test_diamond = [[\n", " 1.00,\n", " 2,\n", " 1,\n", " 1,\n", " 60.4,\n", " 55,\n", " 4.20,\n", " 4.3,\n", " 2.27\n", "]]\n", "model2.predict(test_diamond)\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "sas2", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 2 }