
WebAR for CIFT
Felix Kopp, Mat. no. 6290790, 2020-01-17, Augmented Reality PStA

Abstract
This application, accessible under < https://webar.sandtler.club/ >, is an

augmented reality application designed for smartphones. It renders an arbitrary set

of vectors received over a REST API in almost real time over a Hiro AR marker. The

generated documentation is browsable under

< https://webar.sandtler.club/apidoc/ >.

General Architecture
The application is written in TypeScript , a subset of JavaScript that extends the 1

language with features like interfaces and strong typing which makes it easier to

maintain in the long term. In order to keep page load times at a minimum, all code is

bundled and minified using Webpack . AR marker recognition is realized with the 2

ar.js ; a library that, besides being poorly written, has excellent performance as well 3

as native three.js integration. The latter is used for rendering vector data that are 4

streamed from the server in the browser viewport.

The rendering loop uses a basic layer of abstraction, which is provided by the

AbstractRenderModule class. Among other features, it has callbacks for

initialization, painting, and canvas resizing that can be hooked into with ease. The

ARRenderer class is supervising all modules and initializes the context for three.js. It

serves as the main outward-facing API, if this code base were used as one. New

RenderModule s can be added dynamically to it via the addModule() function. Every

new module is instantiated by the control code that also spins up the ARRenderer

class. In this project, it is located in the main.ts file. This makes it easy to pass

configuration parameters to the module’s constructor and thus allows for a high

degree of customizability.

1 https://www.typescriptlang.org/

2 https://webpack.js.org/

3 https://github.com/jeromeetienne/AR.js

4 https://threejs.org/

https://webar.sandtler.club/
https://webar.sandtler.club/apidoc/
https://www.typescriptlang.org/
https://webpack.js.org/
https://github.com/jeromeetienne/AR.js
https://threejs.org/

Up to this point, everything described is working in sync with the renderer, making

development remarkably straightforward. However, retrieving the vector data in

almost real time meant asynchronous network operations were necessary. To cope

this, a simple buffering mechanism was implemented with the VectorDataSource

class. New data is pulled in bulks of configurable size, and when the buffer length

falls below a certain threshold, it is refilled. While the networking requests itself are

async, the VectorFieldRenderModule can still pull new data in sync with the main

rendering loop. If the buffer ever underruns, the corresponding method call will just

return null which in turn tells the render module to not update the screen content.

The AR.js framework hooks directly into three.js, which is why ARRenderer exposes

some of its elements with getters. These are then accessed by the ARRenderModule

and passed to the framework upon initialization, acting as a convenient wrapper for

AR.js.

Challenges and Pitfalls
Perhaps the most notable difficulty was time. The project was started 12 hours before

submission, requiring many design choices to be left to intuition. Fortunately, this

strategy turned out successful in most cases. In some instances, however, it demanded

hours of time. The most notable example is using Webpack and therefore NodeJS

modules: Even though most libraries behaved well and worked without a problem,

the AR.js library seemed to rely heavily on being loaded as an external script in a

browser rather than bundled into a single file at transpile time. The solution was the

script-loader package from npm, providing a compatibility wrapper for this exact 5

scenario. Furthermore, the AR.js library was poorly documented, even requiring

manual code inspection to understand how it should be used in some cases. The

modularized design helped a lot, however, allowing the wrapper code to be written

once and then never touched again.

5 https://www.npmjs.com/package/script-loader

https://www.npmjs.com/package/script-loader

