WebAR for CIFT

Felix Kopp, Mat. no. 6290790, 2020-01-17, Augmented Reality PStA

Abstract

This application, accessible under <https://webar.sandtler.club/>,is an
augmented reality application designed for smartphones. It renders an arbitrary set
of vectors received over a REST API in almost real time over a Hiro AR marker. The
generated documentation is browsable under

<https://webar.sandtler.club/apidoc/>.

General Architecture

The application is written in TypeScript’, a subset of JavaScript that extends the
language with features like interfaces and strong typing which makes it easier to
maintain in the long term. In order to keep page load times at a minimum, all code is
bundled and minified using Webpack?®. AR marker recognition is realized with the
ar.js% a library that, besides being poorly written, has excellent performance as well
as native three.js* integration. The latter is used for rendering vector data that are

streamed from the server in the browser viewport.

The rendering loop uses a basic layer of abstraction, which is provided by the
AbstractRenderModule class. Among other features, it has callbacks for
initialization, painting, and canvas resizing that can be hooked into with ease. The
ARRenderer class is supervising all modules and initializes the context for three.js. It
serves as the main outward-facing API, if this code base were used as one. New
RenderModules can be added dynamically to it via the addModule() function. Every
new module is instantiated by the control code that also spins up the ARRenderer
class. In this project, it is located in the main.ts file. This makes it easy to pass
configuration parameters to the module’s constructor and thus allows for a high

degree of customizability.

! https://www.typescriptlang.org/

2 https://webpack.js.org/

3 https://github.com/jeromeetienne/AR.js

4 https://threejs.org/

https://webar.sandtler.club/
https://webar.sandtler.club/apidoc/
https://www.typescriptlang.org/
https://webpack.js.org/
https://github.com/jeromeetienne/AR.js
https://threejs.org/

Up to this point, everything described is working in sync with the renderer, making
development remarkably straightforward. However, retrieving the vector data in
almost real time meant asynchronous network operations were necessary. To cope
this, a simple buffering mechanism was implemented with the VectorDataSource
class. New data is pulled in bulks of configurable size, and when the buffer length
falls below a certain threshold, it is refilled. While the networking requests itself are
async, the VectorFieldRenderModule can still pull new data in sync with the main
rendering loop. If the buffer ever underruns, the corresponding method call will just

return null which in turn tells the render module to not update the screen content.

The AR.js framework hooks directly into three.js, which is why ARRenderer exposes
some of its elements with getters. These are then accessed by the ARRenderModule
and passed to the framework upon initialization, acting as a convenient wrapper for
AR js.

Challenges and Pitfalls

Perhaps the most notable difficulty was time. The project was started 12 hours before
submission, requiring many design choices to be left to intuition. Fortunately, this
strategy turned out successful in most cases. In some instances, however, it demanded
hours of time. The most notable example is using Webpack and therefore Node]S
modules: Even though most libraries behaved well and worked without a problem,
the AR.js library seemed to rely heavily on being loaded as an external script in a
browser rather than bundled into a single file at transpile time. The solution was the
script-loader® package from npm, providing a compatibility wrapper for this exact
scenario. Furthermore, the AR.js library was poorly documented, even requiring
manual code inspection to understand how it should be used in some cases. The
modularized design helped a lot, however, allowing the wrapper code to be written

once and then never touched again.

5 https://www.npmjs.com/package/script-loader

https://www.npmjs.com/package/script-loader

