From ce76d0a15a929714f3fc2a081b26936b18d0e5ca Mon Sep 17 00:00:00 2001
From: Aida Nikkhah Nasab <aida.nikkhah-nasab@stud.th-deg.de>
Date: Fri, 14 Mar 2025 11:58:51 +0100
Subject: [PATCH] update Mastersthesis.pdf and main.tex to enhance clarity and
 detail in APT detection analysis

---
 .../Nikkhah_Nasab-Aida-Mastersthesis.pdf      | Bin 1607059 -> 1604800 bytes
 .../Nikkhah_Nasab-Aida-Mastersthesis.tex      |   8 +++---
 Thesis_Docs/main.tex                          |  24 +++++++++++++++---
 3 files changed, 25 insertions(+), 7 deletions(-)

diff --git a/Thesis_Docs/Nikkhah_Nasab-Aida-Mastersthesis.pdf b/Thesis_Docs/Nikkhah_Nasab-Aida-Mastersthesis.pdf
index 7e3a5a94b2e735b443278789e6c728b2b5ca72d9..0e3295d241468b265aae1a849fbdc8596ff2586e 100644
GIT binary patch
delta 23486
zcmV)0K+eCDi(<g}VSt1IgaWh!n79KtH#L`m)dMJhg;-0E+cprs=U4a^35Xp%ZR@xR
zx_z8-Fi;fT9%zXxv5_cOq&9JWedi_lu}T6M5IGzUIj?Vqj#l+5TK)Pay8C`Oym|k)
zjaNyu*>013b$DLo#U@Yot8D?KU9vh<tG|PXqw|9*efZDek9qI=$Fx|*(WZ!s7&k_%
zb-LYu6iLi`ez)N|Px8R`;d&QT>ipI*!C0?{a37StwHnt-PoD~xv!F7y@v3FsR@usx
z>V)e$jHBQk(2Fd12;(HEUX(4bw|>%tGtO)4dG}M2#CVccUe11s@+bt(hfjwvD*^}e
zm{)YT3%;J(-jI^0Oq_1=oOJ=2s`bq|T*v!=U2ud?1VTXpW9u7Qqh3ruFbNgMFG_w<
zmF8Kcy(n#Z3)&=66p(ton}s=3Tk`}fr9xGZG#K~U-N{8eo?t;FTkXGqvi<PcZLW35
z3RVKGp^-Vslfd<-225p2H5(tv<yjONa2^M~x!8}^mF0o4c)u2+!cP*<V5QEz;~8y#
z>y#1p(O&evoEHbr{lE-le(+p%eH(WBVAf0Oa9GiK(KdiMfr}U7$LqTx(P`_9H!pZ8
zrc}x++1jbkY<VF2Mt3|?_}StGJ5#A+EBneuwXL?bOzHkapAF|&&2cdP%xfn!M*pnc
zq8<+7K(*kqb+X@*lMEU=MdNG7W3)GaT^>AEgH}QW1|Eo^@Uol|xV?YA<NELr?$Y2d
zm}J49VGJ4c5N^}p5az+h-+0gSpgOdm1k!Z2d@Be!^L$2YEhsYO6h>nd9MAk!pxpTz
z8+cdDE@khTl9|fB>qd*g2*zO2Nj)WTss}6bz8K#aS(}2z%^n5Gm+)t%wy$}AAg+!9
zHk9e^E-wj=IhEuf**0Q8oT#Ba^YA8XnM4tXgU*ms<^@NAR~s#9$PoED7tys@vY*|Y
zB>(~txe3G&uPFY2btr^%bEPtJlN}VOB&Q=YdR?UQ;3r;3Id@(MV`aM}P$E%P9JlKw
zMXn(j^Mz4>$CXAPyIz%aft&+>==A*n&Y&c`fyJ37IlaA!p<+i4<%LU-Oj}N;)?A-R
zU<qH&&fYgmk;@p@u37&Uwx+2-N}2+CoGn<>W3VC}k9XQ*#)1TfRc0hP4#EbjTf^K$
zJIRVg97QU5XC8pxi2>obWl;#2!^v2zFtP_cyKwg(x|hHhc8<O^T&r+@Y8cHy!?p$=
z_@+bEh`={DlP^ZPmek!OM;%ZJgSSL}j7++|Mb(5y5<_&O1Fh|;2u=|EIsrTF8$oo?
zHij<2^LO;7HQzK*C4i7Txy+kRGez0HQ<$$fxyx7F%I=JF2_GEI;d3REcJ)wyaVNMq
z+wbQ-q95x<4qHTWihad@ffB`1_}fuQsZZlf91n}mj}=}vf<yzO;*S?*j=QXUE9<YY
z9*KyIC<<B<Pd9DbDGR2XeEnfH?ZAQTRRA!JX5qlQK{^Q>Kt_ToF)+E*f(F7QFo?0y
z(!uYT@H)%ruu@wE_24I9iF$%3CadkSyMS&D#Gf6{(Wm=j87ygkD_{|27xE&Y5a{CU
zWY{#2Bf{$&<!5n6APeWCa$ZI~6nN;8z6*?pFaed7b?7LrKG=LdJ|4K|jEi)F!wg(K
zh2DRow&i(U_1rrl*Ig_lKNdr&Xe0O6Wj~ONb}FGLezaG6=GHe%v*6?7!YweD)(g2g
zT_(+ofDAfFb1Er+vW<(mpdn8+lAU1$a7@vt2n~S%K4DA|R$4udWL21Qhj9_kR4i%f
zHhR@NK#FPvofP^e$~6karRXL!g?Iz?ZExI}hmb54r8zfW2%3PLJuhC885%y>a7k#*
z1V%U*uugzfn!5)ean|6j?<EVYQIB>lXo7PnEQ@)%)VJ+_mnwKd#dt1U3B>GFxOfZ4
z5RTYKHHhfA(M96FhOv=n7(5WnHP;Y25chOENmxELQ80}m&}bm7@N)YO4?Bs$-Bjv#
zH*YH@@N01mm<yJ7OruZ+Gq{to@&p5F9PyV*K77+i2y%_P6NjmF+yymwWSAa87z^9o
z<+Vf-E{4Q^>1@aay(YOymIwqQw9c;@pkil?U(g3$7ScDueB=ip4i}&jsMilZoL_gm
zNd}bzp6HYiNtTIIF<?zK%T@e=QadaqI@dRXd@4yDy`*tYaSC54>CsYgBG6YSb%Zp)
z%)BiJ6^H)dL_jauOa_=LkG3y{?rrhtpO*xDz8Qdj`MRN~h6b=!X6`s~RpJ!h4#IHX
zqahPjO>-P6ts{;gdQ?umDP2`A%u9qQ&O_X?ae<9&6m6xyK#Fv^KWLwMbDB=CXPz*0
zz(Ae@^2oz~V7NoXwX1HW18Z?4i2#09<6xY6IGUR75*GA8pV~I=M2VBa6E8u3uYBjN
zCvlKpbHiQEuOC6Qod4x%TT@F2O>GylT&ge9rMNZLK<#tWX6C$f?R;3NDlN_G>u#Gx
zSCfPastN<gc}WAYCN;O4oBy?@?<$MqO|pw&U$Nh$@lIYmi_E_q-uw><Mp$EqE4~AV
zE4~DWE4~GXE4~JYE4~MZE4~PaE4~SbE4~VcE4~Z2E4~bN^8qrKal{G~0XLVS!44{a
zT1%7Twh_MjS4{1RQ?=59Z^}12l}((=$yrw=mCXSoQ4(q>QX$A4&pJOo{Q?L+#<6pl
zA=rQ#4WJ)iH>e&i59;Ah-za&0|LL0#AG7!&R{MiG#1Eg&4@p(+iz0p~%WAKZ{NdB-
z;h#~yPak)=Qqd=Ks~>ksuA(2>q3$1lcX1wl(G8QndxU?jZeFdiOzF=2{OQNPa^pw%
zbs7D8tnFYQ|MlrFUK02G@G(6+RQp3wWGKxpNe=rsO&@k?yicl>#WC&49Q9D+EJ+d#
z*IF9gK(auy9dAz{or+M%BuQBm=wMNx@x@p(2#5Z$ib%3!hs_hUPu%xnhO23Rxn1ky
zm0Q<t>>u+(w1?L!jXozyTzkHwZp>Fbn63@km(dq|>P99#89SKvIEd^ts6AO0*UdOu
zSO9DkY|ai(DL?QQ=;L6%nBf&=cn?DlF$v1jXnt68Y0c+EsiSUjmMV)*I7@fuewqWG
zv=iJsc4JGMf?R0q*q-=RW#1})B~zWdrs-foFK*vt%+u>!fT7l>SDqPGN-Na1mN7C7
zpB^+$T7G?}i7zzV+S=~7HUM`V)hx}*=&nB}aa#8+zuNI~AqAti;i?C2we^4kcl|TI
z7t<b6uVZ$t^%v6!@z}M;x*d8@Hd!W8Ph)S|3%7-%e@DfzuuW;{P6VlcH`AIM>Ly9l
zgS;v}ZY|5RPGo1WQR|)rO0wwI^{pRpN15v0bR-+7Vjjm%6>+e=>i*6{S*4GSX@w_k
zN+QR~!)XVQt?mbN92+-l8nxX}Kf1LJSEqGpme4Wc5F`9<x_`FJPs=iT-GYLlHEb+c
ztaR|IRHIgAS;S|>?Z8xjvOKz9L5VE)kXgesJX?Gpt-jRXqCOp>caI<pYZvsmQ-8;=
zpB4Bu1$*!d?F78WGL94<rhC_#%XN7B$M~~f68B?t2nXfVb7R4_zT7~ioO?*&D8!g>
zNofYg)eD^;w@%y>cAn}%o5tH5bmPJNtU<v7j<hRj#@>S{vdve2&~4A246?H_?Fn5)
zQnMQxc*wx+K1E*<xO+=puZTV}D>QC9Xt0z=nB)Cy(G@S6Rk_F_Ug<6{Js{5Ym}xgn
zojJN>_5?JlYo&ka_^HRCy9MS6q$hoRzD&-GX6RX&zy!#ppz<El=;ca#N&K9IcI+?G
zL<dQI&R|KPM$=Y*$bgL#7P~#L&ZVj1001mfwnB1E&`-O-XN#|VS~#9|8+*GJ_d18p
zA5L&8=KRXW4`W~!D?c3S8*ffeE(R%6G$DR6p>g8|iU>#|ZNo-)htoD+J%8SG409E1
z+GY$wy~XvA=3!_6_X7$lizH4EeZZ37gc?J;jzie8R4itHeHo3t%Ha47e*hhA*OLdu
zHg4s397dYhx><xPFLA)_a^o$F1ilqj4k^QxqY(u=95F&<-&&&}8GF34ij9-;0a>Kg
z5GQyA2zq*cE;JKKGcQG4bt~bGFb~Wf@3SP~xxd4Mz!-D`k8CU&cbZmwnDB%-Pp}DI
z^I_=b=HXa>R!JD4N#A-+Dh?epoP-0=bzp~sM@aKQ2|0;d#`ffvan#(3MM!2>IsvLE
z$##UDaLqfn=wQQ-uc&Vg`tCGVf)4V@iNE95rOQCtwkyvoQ4JU|aU-Apzj&=Ydm0}+
z)cb8Rk$1kDCx)6p(5*a!gTQy#s4exoi{}C^29>FQ5jd5+R~WXFDwmTYWad2@4iR9L
z2aB!Nz7}cr>f;X#*G#;^k0^Q|DHOJnsEhOvBBD?^3zdmbxMhdjV>SHAgxxnirxu_p
zkqhVWp@Lwfu$h7)5Z5S;u&!t=4wt<EoFK6rX!D(z_KzSwaUC0BB_`rlK<=l;csI?)
z&^M2N&LD5sTiMvrG1GPuWMkno6q)3VBC%Pp1tqzQDnRHjy7l=5cCiaDrXd`+vFmHs
z)(b|swL)^a&5Zx#qzF+~(cfqlI7ah`5N`uDz}qAQoZ-e2Ax2T~fAzize-I}ueVlr^
zfOICky79{rnBdq8aey2_-{HV0>cPk`90@0Xh7s_Kt9FqVs9!W=8HuJqVP(+IP84>K
z(1BY?a3QH2o(HPtae#}>vDQyby#;#aDGy*}O1QE#RB51kJ<VJ)1VoQHQ`Ut&Ls@T0
z#LZ5F05Nn-o`V5m8l;wi6k=jPS%O0#9kq;_R3E`UX7>YcICdg<*f{D?Lt)amfVcyH
z*a8=cZIl$Bf;eh^3u7a`FYpI*nIR6Lq4&WCfE(v4<)~@0t2AnYa0blwRi;1la}ExW
za)W3NMhpVuwgb-lxV_Ff?1g+C{8oDcEe7g|&or(aP{Zb=Wz$;_Fp(H01MoUS4A_0b
zRMMiaV=sdfbo`W~V%rS3@rH>APaxWVi#buLAg&m!#Hb!uTFGX@67El0f>D7=k9<Bz
zNGE_$iotM`JPtfvD8Zp&;R1HIfbjg?BU<^1QbZ8gWtW*kdoaRF`@#}(A@wBIb#vzy
z`7!7+GoV~13p}_LWJ7!kM&`V>60Z&D@NS-KX>-*i_DO;K$On#?eGWEWbl*#V=_QWN
zBV^7T)DYm4iUNGPxU>yfcKobc*<K-EYd7^!Uj)Ne4o6oDc)MkfQic=wqh>BXtipZx
zSi}!;wokJn!SWmMNz;9i6~C(t_<xoF7o|U#J5l>0DFqB8*RK-LvnilUib@rxFh!jO
z?nO2M9V`wseCbal3Q$J2%$JaV#MwE*fYT$Mlvg!^6fQ8j-?wu#lg%<aK?ZP&TZN!S
z9#!V6#0E&K{9~etH)k_T!K;1$%Kdg2Pa<+Dm;uSMk<hy6yPdIGY+s2<dFzzUr?5z0
z?B;vX+kxjYHe86c=BaU$cUyZfwny*H#c<|3Eb4{ynJ+a*ZzK*<Drc5|%0p0otIcGV
zKF5T%J2N#ypfP()pxP0<!qIf2NV3{?T70$gCR5V5+gh_bNvaRfT5tEk6#;zF6WZ3P
z2cy8lR0yhN#8ijCfMK4-X)LE@$^*s2%6gEtolZi>`k2!U>la>f{$)pSX_B==46^Bf
zPmCl%_;GM}RofY=1>o9$nqh%uT~r{XdH`?4<f($`E0x&<aDz|+Z)XmWqvd%4O}E@J
z(>{;PY3UbYJ;%b<!Dz0m7MvVy0>ch|5|b$v;Ki+F2~3c_6v~zJi+Ew=s8$6gDzys{
zFl6n;fP)SOSgz?Ibzll!4E!8UxGM2s4VRn-bV?C|yhh<dQV}nIR0~IvMdA=ttxeFh
zP&8G9rAT~TA%0aNJM_2wa_+T5<w^{U*vRi8pY6Fu2QTaSO3LmLbOd_I)dJ!|+6axN
zYcFqeDTs?`EdH9riQSzD4nUN$wF81s5HYUHRf+N?&&Joc5*O{0cz#o)<fbTg{wh&R
zh?P`{RBDshIf;9h%)1RB53=drFj2&cTfQof0m;5vm;1X79Dhe3ou;i(7_DwMa2_se
zAnsvYQC#$Z$1L|v$};+ChUd47z1HD0fg*FOaIjIHnjg<KrNY!kZzZwiEWcj_{}Alm
z41-43v4Q{-Z4rwOQ*{XVHMX0ComF8uVsEU~r{#npU98M~ti*z-OTk{OFNn_d@r`2V
zM{{wQ7w_f>YJa8~z^tYjDcvFWoVjoSJ&UN8NmR%jltIeMY=O2N)!=7@330?mcq<P6
zHZKt2ACD0BcKT-{tU;uEqhEttQ5@yO({C0%o9+V6b-3Ql5z{d$46}uj8dkpOs1DKJ
zvFIps;!qNnZ4{lnP(>HjI<R9e83s->`9G@7qltep(|`3h4dwJwMMcgGpCIjh&sk#-
zgjff!eh8CRmp9vGzfKfIQiitPO_DLqtn&;=tu9{2W~!+q-4V7Vcs^V0n`#(r^k`*W
zWR*bB{5n4@pz~o-vy*jmd;~(MA+(*A>GL~Q?1AadW5d0iWI)4xOd!RCfbk0*6Da`f
zgPUF?oqsE^I|{to-@mDY80q5!UpL6rJ6CKDu80B+St>S3Mr^q39@}s@BN{5UxiA9_
ziaB>z5<v<k1T!Af*91f;gb}Kls;22@TfdN}ZZR~uxn(U)%^;}Xf??Vz*Hlb~m&FZh
zu4Wf7VM^=M>3RIb`cgP-jm^j>PM5DZ>GJY5_kSjwuaViW>u##z<wqz;T7QIsRLu{}
z=fIr`+KOitUU;4CJXHezura?pQXIdgxq>AlQ9eO%B~d4UT`(2rt>UH4r_=4=?oBOT
zq^f-9bK_P}k0p2u4(!j<S1cY6NVsH_>lNd`rkk@HfJadKrFW_kxrt`iO^aJLx$U9n
zhJS7x7@^DEk;5ohtY&Jg7S3_u;@@x9@VG?J2DrKfl5{ziibY)I64B$Sgfc59B&Gkt
z;n&&89SU;vg=C(FQgBx~h~-Wxb_E$pu;!8oj^IKaSwA6v9Hc`*x~6#ptlfCyuDUh$
zM&1Q)2bcG>kopmy6M_yI#Fx5d@TJ(;OMf~9<K=Sr_-uI;`|lj@Qb@muXxcMECbUS>
zKKWFKqD)@Q_gVP(3=Zc25X&B@5CsE&SYKd2Hi0&;XzS8>`kH|pk#mAv@rMSNRIvpb
z1NsfPa2B4Qz<&5UBJzFix;w;!zX|cVP>Y2j%82+=HNog5!#OHgaRmh^OFa{6Sbq}=
z%1q1ZT`3z^7V|y9D%i9q<y0Ve&&iW^d<W)>8ziK;-{uS+>A%xYr7D>h7T`VjL<ZkD
zDP2~xi4<f=__}4VSypilhyxba7Ag1*bCzlFkqQ!q_u2I|60EryFXH+*h&mm|*7sf`
z)gLNf-vIa3hik_^(kbW}TgDDF4}T{_Q^jHlZSk~9{tyj$xa-^E5Zqw_T{8_oj+DvH
zvr&>r{YP`JBx2XrfQ#mVLHVX)l;|a*TVSBVk-SXhm%|(N%^*uHi&d5inkIXMDmje-
zRoLMl$VsJuPHMqi)KJkM68Z80##^^PKD6yQnfXCx;0qRFjn|Y?6R6xrwSQ$;E#ty3
z?`l~r0fie4zI3;Rw(x?5znbF<NOvipZB*{5TBqfkyAw?!wgo?%pgwfItsl@iX(BEv
zE9S=2yt>&r7V#Y{eYS|xxDqC~3i;Hqm#5T=vw3YI_&RWMduolb@!mM7rloP_Kjn(k
zc{vff^hKk&a_4hPaHZug=Te6)cM|pjGRFjV|40w+spwNM;pJ_D5PvPx0X8zV+{e=w
zc0ilTRY+w=1Z4aOLSNqgh&%YEJX6I!&&r2gR)YJNkGPX^^S6Ke^v!<(NvXm0mr*GT
z6PJ3y4HN@1H8__MYzirVjTy;u>$vgmuh1=2)sr3x?#U^WH!n*ihe<qDNsV)WDVjo=
zi-sWWr(`}py@88FCn=Xrpd09J^bXkHRXcz8`v+gX-#tEj{u%|lz(3}G9_$`pc0rII
z{W#vGX?FBgyn8(De)8h|A@+Umiyrj;pkm+q?H>NLy1rUt_y2r<{L@77_WS+gLjVJR
z7fh7nI6MZi+7->i&kx5iP12lJEQW*%0zW?HiU4t>j#=h#pa0loyD#0t5Abu#&~ZCB
zc83K&I&YY7oi`5EG4*pk?^jce{XX+bK5cvqfBj!ix%-LMeKB_E&GR^zuH7HP#P_-v
z_{O<6n5JZiX@|0Z-yee5d(*XL>@&=LuN>Z)W$Kl({l~xlnFqbY{5+O+kZn&s80Ftd
z%u6ici>^IcKm^DAAyK~fq*NfB|Grm|chKM1V!J3i=0O5_3XgFl=O#86`fJOU_$1LJ
ze0(oFU{MMHDeu{|#F@dS<t+=bJ^>^TJ>8y!?petGV;|*zA{im<x!b4SyS-V~j*V!l
zXAEc;PvUPJVyP=M4H^W$;=grQ>D~<I#uN;&g|5pz&^~S&n!E-SmLw56&A}-z%#Kl>
zF<(2{iz!Su3d>D7Ub<ceV-E+DiD}<R=Yy#<Iu8lK{NQZhm|=M5m|>8DV@5bgV4iy4
zh7y#_2-X>YAhZio0+TxeR4fXRJBtEr+Z|yWyCbZ)cSj`JF;eri)_p~WLUAU3lb+ET
z!q9sMBgpo%EV=R1gHr><Y%C@&b#X?`Ww#z{+KS<tKV4fM8q<zL$@A55K?DVHLAoo-
z%fL&-LKzFB;uKC|1qUuJo8HgHiJ+^B_=D+6%b=5gBub!$sIJ-IE=%jKt;&g`ZYPh%
z<BDg65K{_*nNMONv{k0O$9)od9b+{5PiIa%t2@hzfUy`;Lj+DR5fAqb{N=MMpRIbT
zN(@$|5~pb-gb|Gcd(kbK=JVG$Sp)^B<(OgqCYhg967Zr`<V43jRBlb^3&lA{{01PQ
z3lk-O#?j4XavBtBk~Wx)D-x2&s3bmSO09k7KDPyVDyj(bWVRH7Q8EOgPvbn7`9e~(
zLK?XQi;I?N3>OoxMnhU;Jmw&TYo4xh5D{O*hVn7&?AVjha5*@~!0Xtg9R>~}&Zasa
zUX~%*7T1*<i3TX~qW)@1ulIWZd7tBPgLcJ#5b$rtn&-L{1e1)tLbnVNe-mieT=c|6
zxR+1LSFFduP~NMrdnjk*)*&g>2;b2PAxvDvkEiSOt(@uzSGF3&v$LmcXu_N@SAZOT
zp}ANq6$z8r8%Scxr3lsqd4{!ee&EbGUb)hUV3L5M2HdyNui%S;SBXjop~TY*o}Em8
zfPDIwu@+(-A!=SFArN_Edn$W7fT|^cfr5TgL0I;!h{2%=6_S&7*S~I^dgx)B9~2)}
zm%o|DK-z{h9A%u&BT0ieSd<c&&5`76i%_ciQM#&A0EPw%^L-l5)WD5KU7LT2{t?6*
zQjdIst5L+|1du287+Rw_y^(Zct0nt?h0N=g0RYl6Y!#LJdX3EreU+pf0Eoq5v<ehn
zwOKi7*ST!mE_Vh><WZ2%9uH_cR@Ka%V;(6(B=ifmx<Iu#8C`UuoLA^UbX{K=Rn((J
zDW?eBa0@KK<Um=BomWq%QrYC(*=<hv#I(6|BYLV~u&L4)%g}9Q0OCf`M{Em!WA6`B
zL^v1dF)I)=4jrK0c7x{RgTh|S>m(rK*Q6Quf2GC?1!bvwil}fY1Rnd!(3n3`hp8In
z!24t{jc{;=9OWTLc?r3K6wiq&oFiA(4y!$`XIiF~aM_zu;h!_)Jr^@vB_+rLs8tZN
z&>A{U%WMYIy57<Ubb7cT@>#QgVJ-m>ar0oy0S_N3=dXNtT1H30jq<&(ySPp>5(-2^
z={K4>m9u^`l=@(m9jW^Oq!w{(ab`~*>#3$7TWw#hh@{7%YxI<saMws`I%zW6#&L;X
zF78u}lml_@qAprR9fqxv%1;Ff@Z^h@$3-{RCpYZ*<ec+c0b_1;{5rUQF1AD^_K?Aw
z8H}Su%7<^G+pF-of-M_CJF&rgYr~byZuO616csEAxkAst3OFTdDbN8+2Ve0mC`1kK
zAT0}_fk8;&+j8?dRs13r#2uD*JnQ1M;)A!c$MvHD9Iq|TglwfWP>{)ugCp6VMgA+y
z3Msm<1hlbX+LcN1qDKmU<nbA*4COEwi(eJ5_QUe%TD>gsx@YT7xlkTr?!!LF(p%rg
zh14bD2Hg*)KmjpnBgC4jmF5JamKL{6hoTSxV7!4ZeIn2ce^2G$S}STC0n|X5m22rj
zl<7i%OT_P_4g07-{$(blVn|CJq_W^$TuR#37@ZcXj`S+9%yp}O(3{9cZW>_#lHG2H
z8x2yWQUMc)4d@X{$I<mCIN8Xr6Sp~u0Epa~xPfnKBa|`ojIB9r`OMT5CR3G5BH96>
zAMh8|Pi|WCDtZI~#=lei0)nuWhxFv733#c<?FvRBMF74lS50mj3@VeM^1izYl3Li8
z>qG@ygOX7a-4T+1<h0cY<0*sezHSEDechC5jGb~{X&0cDR~H)kU7-dfph_DG)PV2e
z@Og%^QFE#b+%+4n`z@pw>Yo6(=wErujWv-NIS=fcJ>4O$JUCJ9HXG?MU#3HRYG~l<
zG`NQls^ao&GPY1fpcew)bKPw~8HOJ*7B4;Y;xVOdEDgDTnqJ+4bX9+GzFDx5<#tM8
z@>9uPyzQi}5^s92l%N=|_U=LIhCV%q+10byE2{45-lRw&(|eU0++-L8adE>l8nPsD
z<u2E~dr8a#0<T7HADv6PYoL>osKd>75J?(nmbpm%&)kfTvA!HmZ%#1eq>CWau+05H
zDHcJKLvG%GPYL7hEPMd>W`&q{bCOZ7p%>;M-6yBlFJgatw?^wahrW+N^q#RD?8hnD
z9XrWyjtu~J?3CIp>A)=I(!}+1i)Aom6~F+W6iOL`q$6!gofQE{rRSpgjtp~Z_Ldat
z`F^`3^NAl#pz9<&D>C)xeVRW_$J*F%?Pp!<wwU98BLcIO#0(~(JaI<LM-rU6MiZCt
z12h18J-wwybH`5#KSYa0o6zm~j_vve3zQ3e(a%t^IHsfdEdnQ6*3>1l?HNqh`^_@6
zxbw$c;Z+>FXGw6r(m62)UF@B%tp@Yk^#*BT<K*`07`yiySY*eGiwHpppLpxBWI=ta
z3@3|!2Z~SphRW}y8@=h=kw$k>3HOuf734PU;Js*|{!K1C_Ya---N5uz60S=PUbm*l
z5qgFCv4*IHa!}7@4`asNs-WYR+;x_x9di<tk=LY?!E4c`VXF~pqZDrcgL^U{rplO1
zkq3k42@Ha*^$ew+-E^WYMufoZbyG@6!kK?AWgRu~R$AQg*R>WryG`!NO^W{T-zAHG
zvcdVI^cX2g)+*cF_5I_+e*mTpzkHWbDGL*q0mKb=0Wr6E#0|Gx0Wr5RAr2}90XUcO
zJs1-LGBlSEYzixX8BKHRw(;&?q3Ma5T6`o(P-JgSlh?jZ4sGJhw3F8ZOwkf*ic|>F
z?>YVR-7kQoEO&D2c*a}+i^XEU7fLqAO|tp(T_WFa9_~JT%+pPp#8pzIn}?^3Qdz8Z
zvDxp-I8l1@aM=7D={Vo+bdp5hS~m{%aT;ykZFfp1QUAn$-@o*3bPRrDT(jNnqk~`w
z=1-mdWoiWe;d?>;Q{RoI9%aM79{w7byZ(OnaF+s*Y|@RcVy()J)>)itwW-f{zud*y
zzSviUumEW(O%okgiY9cf;<EH>A3mL{&A0vC-{J52Jb&0uPTMVxBf(|WQgEK9OvU@8
zV!3^^$7$GqmXX{V#Q2B*dBx4ogm)$7RI`-RA{y<v;ThYF&9L18^kQ1atB){FqGtTU
zNA9CWwu87CWAH1W3Dy^^eok~^J4QI$ZW<d0Q)vt{WfFZ>DwQ+;u~m7rGheM+P`l9o
z9o}n`mvNOAn_UVvl#2{p)8RpBQ4046U2~6f$Ob@vDtfdXG2l`8E1b=^>3_21_hF58
z+{3Wck?9U{;7QK==QgiA=Qwt!e!GvpxGS`7I*SYkx=*scinsN*Qe2q1;ZNHi&0xpV
z+15PaYST7bpdH^d0Wv2LUs2>}O*=2jOvkz?`26uiC!5i&X?*xtfDh+!mKO>)1KVJQ
zW%d7m^xmuc081)~Gw>c_>8I|{3~mHP+3tu+%R~tPkZk}_VlplB=wd#rG;4;=F#<A;
z-xD*9;1`gz74$%;V^8RZXCW-e_IyEp`vJ}$dCyZn$l3wS)jqujww@a>lvjqGw^>^^
z4sET1TQ_|BdfWw*fuNwpWQdL`DzM4^Y+6fy`_w*X8&!J{@CDq${u&UMT;rH{Z3f`*
zY`R)32+RUB_3BBR_EiV~LApQAAJ*!I8B#Z(h~#kUaiMO+5KJZlsJC2VaX+M(B}Fue
zc_7T@fe=z5>1BzI>ZPrK6f%{7c$__+MnSJl$AFy3gQKyXXA#F>AN@?8H})WzZX67M
zUlmXDj4j29V>GN6JHE=OJ6w@E*cbG%;ifhnZB(U5vMkpo!ArtC>jTE7h9wa)Xf97m
zim6u6Nqde*WprxVi!7W#GA&AnhpZ7mIfL>%<&n9S4Wd;ddSGPOWe4F4g9nGbz?<-T
zGB36tz%*~%`Qo>|SaH@W$EZD-$F|{rk?qJj#bYZi?gT3r+p({K(!%B%;-ZCU$fK2)
z!k9vw>nU%tn<-QaxY+<<J`h3a>_Fq6Rg%^`HGwibKBoZW4IKKWE`yh=B4a1(NA!K<
zOBE_&jn&h@ItL`OGKfOxeyWN-;w5n&ZTzb_UpTxY0|hd`WTtL%lWAL_fowB>v~(=O
zB$I*#?@Bnwi5n*0rW}}jBGsH3)$knZ78qGxxa13;*lvKgvmtKwptu7lVr+QCECcJ0
z9jdeC*${p2IUsyF+4{swbw9NS-s7g@v0?f^Xc{5djdNTnycMBD(HR^gvIGl~AQ^JU
z^B5^>+fR;{S5~^!6$QXtVF0{;q1Y!rW@0PP(u{%{e%Z;>E7=pq6MsV(16aZsKuZti
zna5ZDHU?#pLD7QJy=TLKR3sb4h9oNCIbf~|tW@aor*0cF`14nJamgB2EH^DVctMtM
zmdlcSj{bA(#G8;Foa3QHz5FUlW<D;4Qwd4p3mqaknn##@8RZ3P9#R{BPOoAkMn0{g
zKW;%*hl53tkXL{<QEXV-o;>RzB;L5Ju?MO>Dk=<Bkwnurjn-nrSq_(g)&}Ehd4l~6
zbl)A#u{k$b1K>R00-=LtHIYTi>N+h$IoBL<E5(~4jf?|+$8h=z8+Mxm#x92$3gYbT
zLP6@SWjWw$%@7Wy#B5uCwsA98avbpifGWWp!}c{JSe6>WJ3wUfSX^Tm!ND>e^pz?V
z{f=0rG7i{HV{p#5olROniK!W|Z9CC5$;DHjw$eA%NGgg*=ez|V*7cwM#;`dY`0}oi
zb^vFW^-3!B%JP_XSY4bF!YaU0z{)<VP;juSP^iS-?EKvqs`4FwQGV4C<@vHBlD-GA
zm^lE}%mF?z2Md9@oSHSVDgX!5i7H_*M|&8gLb+!;siqwTM(4I!otm$jA6%H5pA{NJ
zb29c^2ew!<H>}my+nEY65Fkt?$DW=3RpPWxQ!g+?d9j!c?XSL4Q`ubSI3ABDGkQpN
zoz1^{&cisOh^Rt;{g2=x9)Ut69wBPi$|l1f2dSlH@HbSp=(=+{=Ef)H%JoO~8FE7m
z7fHPcXOxdGp>q0aF&lCTkVNVJ9-1*G9t!bfZG61Sg+)F3o$SiD*^*Pe{xRmz@e{=b
zJXYT)aO{nn`aY^EgB(2<ILFdNh^5I;!+>W4VPGR>h@!lIkmPo(S~u5B<mo1jz)H>C
zu9G70w~$&~<-ocLG;Y`P$4->jjkESB#Ez$aqFPN;GFd$1m<0?mzimU{eP!r0chjQP
z5NXf-Vl!C!`qAL2;cV-h?D)O#8yX0$=K_s~Qi;hTI}<|dOrRHykkUouiIFqDGCX%x
zvr+1mS>aHBPG!F$u#pqlgEVLYGb4FCX;SY)uGQSlyccOh#gR)5##Ipv#j$aLi;Wht
z=AzWeDRxSA!@b~})`Cisoa=Zb@urT?(sIdy1g0eSTIFpsE94af46;KU7U8)=&e_Uu
z6*t~EN(C2s=8yq!coN~h%~xEwgz3?DEv0(fkHXY{R12<gyqm~%e#=O;MBkEbssyX|
z6Os(o#gZ)b#vYT(_fq;0-<@=$=XzB(-%295>k)ctQUx~OpSoaqV0Khcqj3g*(pUbJ
zd-H3}aHO27uaj)B!&w73=bx~&G(!Mf<!;`y@K+t)2Aqt0IlwJ*0cN-N?<`&???BL>
zdhHZ{q8)uzD-s&|P^e;ic@gpySPS}1*99cqs~elM&|N$vi5(RrzEV@!-tf~#Ax|3+
zI*faEf;P7ew8Bpj^tiHnPqPqc(82cm5UesN1=dv{Hcs5%C}~d-XWj16VspNnj03?s
z9!n>euHN$MW=(Of{0FIsaR+2b$i<euI%V^J$1kRVcI1XIg#b75^m9kWQg^GPZkr>h
zl4Y*4GBjdTi(!M|e2tBZ9Eky1y!gO~9=#9<eJc-pnVugQ1F6+(1$i4xy2)Ka(~PGC
zON;p_$d|2n=IXud-RJ1VuN!$%#5&(^K%sH2GQPj6Ztnf=;qJe+gEE{7Wo~41baG{v
zSt$z(ms=(db^<vtx6>vL|AYcLFt;%w4k-nfiNOvR0W+6?)dMPj8QG59xbc0yq94_O
zTPAgD-@HD84YCLlPl5#NJa8n9ny^ImitOo~{rc2FsihvxWDyv4Q&q)c-BqN;uHA{<
zpYDYJ{qg?p{g*`UqzFq<%H93rPRcSAX}ZhvA{0@&yRUb@1nK^e3K4u#PVEm-DuNGt
z_{XU3*=oE0&;6f&XO6eOpYQJ^EW}REoYOQ8Wg6|O{_fYiFwV2QB#On7P*RFCEF%J>
zNfZ{vgnR!}FU9WDaQ8R(b9>@+++jNJusDzuj>|2D(>MxqQL@5cbbB86MbNOiX_)@-
zrkcB7i0+fNZqyHFrw6k?#Igv6NBqr$<6xa-(1WtTHV<llPhptiZ1k_^hGGBs`(G?W
ztHC%`Io=TN4@sE@-=au*!hh|fBsi$wv?nK-PxP;C%ygnVHYoirDZ)}_V3{~f6R)W`
z_YeDn6hSkBu9+l>qfE^5AdKZf=t>?&K0Gt3QPq(lsO&pj#(^?5V^Ib|{(GO4lgNm$
z$6=ob7t2_GPlgAbjhiJx>BU-bZ&5V6HvH=)fK{bj(+;4KOoQirS_a{!`zRK`C|Q<Z
zC>$mO#YtF5K8DO8(!ezC0%je?@A#bsZdBhQAuGnB6A`NTv(vr4+6Vx)aZE6=^A^P|
zogElfsd3be^*eNHG@KwRW&B><pE?biL2!AZM^q7iQETbapdXBO!>CQm-|Pk;<j||m
zqjp!junEAtkQJ#n?~mx!JPvdXaikxgnN^;64*{kJ2k`3Ar%E0`#2DB4t*WXTJI6Xg
zP-_f~LV&2PGWvJYW-kNF%t2YEJdGN}clvjK*h+3bzEPHQ)bC|u0EU4BAwdGt@UWqx
zJ1Vk&Y!s*|*Tt+BKs)`tAzc9K28Q`u@jx}U&BD(S=K?ZO;3++vt><5XGi-?BWwYz!
zg#Zntz;7pH)IbQB${%pl?U4zV;kK4{_!ddo7*BTe(8q!7r8<Ta>p@dRpiS45LW2}+
zkm`9V1#p;*RrQ^`RYrk5Q)U%Ope+BMj@ll7IVj-ER>!7qCTh_BGK&b<dQldM1Oylv
zRSkU)!Fj;HSX*${&@t|tNW~t+`53`UA}l6)s7#y%V9>ZsFjSYyc<<JFj>^ihppgtn
zF^p)+*hsKrBPu)?V+g7+@Yr;KxQQl|Kgw3&YnhN^7Z!~<Dt2K+bx)7}><8U(_%6<W
zt$hGh&J$6l0s&MI-7433o_#a6hb=uxwOC?elBmjIpe02HO<G0}m~e(hF;&-5%7X@R
zELSChw^L6^SKeY2H?j2E#FBLrOM{7WX0mE4OCHxYm&|RB_vKKjiG=IMmab&t7|d~O
zx)ZL%T%Q=O%mBehd51_Z!cjdzHQ{o92ZKx!e8KQTdTp#DUjZ4}rN9zSCr}xP$%D!<
z>}(c!%1&b=bkD2vT5T-v@a>X~jPfyEhlPV7OG9mFOlC{2-8fFBZj4Z9l3mR}ZEDPl
zh7tB`Pg4OxEXwc%k>IO7s+uJ}tC3!LhKk7{%V>xgdVO^>plj6sNmpKw#<Z$`UE;A3
z<L@=|24j@Amh%Dk44Z1!JXu0ml7+GFbx`trl1C8CpTSWN-CT2GvL*gtBzD>~{KZWG
z7G@ZGO5r&2z9iyRKroxGn+K3szDR5UQK|x)ewb<+$_X+?Q+0VlIJFAE%n`YzCmV3)
zo=)L~t6n|xV$n|ZVhVjckB}#S<23Wop_Yn-ud6r$QSD(H!6#})bR($Apw*}V-<uNw
z3`WIbFxqIIAExP_&w1ou2u)sm1jkR-K~<UOa@e}D%m->?II)#kP#t;icTz;c%u9s@
zQ5^iZV#DF;LK?E6keKVBXHqi_c4pp1bsov6oT1%Bj#ju@$_p`=sykbM_7u`n^&wu<
z5P%=`s4gB(=eE@OYK>D(JD<r5qny81yf%|?`A@}*NL?72n>;K?f%V1Y{g*Ub7+Dr!
zmg8M04~ximc`&rN*>mIUOyI4Hh(9)?^JA#<r_LgNUC(3y`R5)ccNl$Y4)7n|aJv`g
z>(Em|mGf)}HNsCD08~DIa<Y7vhe;kGhdc=rxUYEuhsvJ9TDMS?Mi)Zi+Bmb2VN_<*
zj(0CvCZUXz700$49$+$uA^a7dr3i~Z%(5E0|IM+;LXqcJmShSv_6y!{W6kr~MV0I7
zj^}u&>LSd+(W{ucKyMf>_Iv`jG;f(GT^*iY$IJwVd24y3)ap8a@dEs!-H}(-O{gT$
zU>pRz_2^Yj6H5vtARByHOJ2<R0C~E`6Sjg<@cq|LImCjm$Ap{W1EG}DEZxCh$Dh9J
z(yH+k{zeJQS#w;k3w#myIUQO}@0$@{yayPWjNdeC>ltznfo;Z~7rf`QNlVrlz9`e-
z7vtJNJ=z+Dme!_!i7)1t0V>I*7n?bjMZnNv8WUI{2GL=-fj@C%(dNu|7x<<|H;j&n
zNDqMa3N90hF5d7pdu`&HuLpI{8CsKRI{R)*AFjPL$l(>@Hkbee2R7}vm|(;dLV)Bq
zkEw>!jhQYY=Ag|1tbFKoU3Z=nUMzn82{`1z{m=ex0pR(6(u3BN<@C<NXZu#bpKP*d
zy2`<dj_>Bw*iaBH7sKp%qggC`zw)yCdz&A=fu2;v#gt6AW1UQdJ-2Pc<2i0(GPrv{
zz&B=|(E!!-r=z0AjbD69I{Wj=Z|zc&d@!3gkeggvJjl$Q>UQX8%o9yEgXzIp;ae^2
z!2ReTld#BtlmDZI{nh8Ia`Ra9_1U_nziDS5PV@7MA7*GH7R@(1nYY5%n+YP#@~NlE
z0uq8ks74W9*7GP2)3lfb_Jz6~hPG?eN!wRywiF^vqWFy_1ns}1CspnPmrK~&M@Qwc
za-f!bm2(-E#j+QX3Y*R75T{vKCizXYV^8`cjRzlpc_XpxJh_l_{mrDfEm;V{{L7@A
zDmH@F8G#VG3Lw?64gkbi9{_|N8KxHgr`9rwwo>eT4GJg|S(?x72+9duw+GB5%O8^#
zxOUGcd{dyCBBD0hX`D;nPKn~|fY$;UEzaieo>hjjs%?*fmWU|09Gk_ljj0!JKO4zA
zJvxzpH1#ARzNbx7G=D*J<JUFn003BaGI|!Ie##Go+P}nEdYrnx1?9e+;o|m1F9}Y{
zffucRJY4KSy@|6wnk)bw!}p&ozIHv_#;>VB#QD~2zauOL1n!XuK9h6(#L|x^A!yN+
z@N-$lkc?j{^z^QSB%~iM7WP3>jyUUyW<&vhw>m?mlVTGo`R48Y()l~tA&2Y3a`3r*
zy1N~DlIS|W;ac|`2cx6+<Rr>CK@hhp{s^GDO}plv%M3|5SWH4IuXw~S+pE3P^(x8A
z;5*6IoR%l_uRqBz{(A;|8G>VXha{(BN7}|>bMNQ-yZ-{&6FzwgWo~41baG{3Z3<<V
zT`3C(m(r^aYL{@{2nCmL#0>_w6wD4<asxRxFq44;DSvHNL9^o~48Ff#;al-c<A=dc
z?Bl++uboa$Z91J!-yV22iJ7%=3OH@{*RMd3IJ>z7BP8)j`XoZLV@9)|pJ-fP_D|2R
zRhgBvXlYw!`$JZiZ9(fg+wGcyvO3%M**~PtH#Mc?N8v=iVKpTma`@3=yjW%PkNaP*
z9=~3nUw^mYzAAXNW!^o_HoPoY!=vLOy8dICCSmeTS(D41!{=AtW=+v<w^g(UfDPTE
z{TpMY1W08?dIVQ;A`-A5KbgEC(n{?>aYuTTDvhffP>+*t5GN<i%4p7a<g9ub9Yycm
zJfX`$YOBuv3(ptbOJkkTz0yY%%?Gq`!wRI8?ti=J(mJzrZVB%4l9KO1%u2FYzyV1J
z(L!nJ7NdQK{7|@9oYiddx()hO2?6(7y8k?6^GQLVMs!Zi+7@u$H00$1D{mnfyNFSJ
zMtmUn^Y`EUM?(++r03s7T8D?-yl7{yS3pj0hOF8Q^J1=URkS&YH;7jno$Ms!@P9EW
z?SD-lgyhuZQ^Oh(a0ddM#b{9$0}i1Dcv9oRJ>GB`XFd;jY~9jd5G?F4`|!~#NVs}m
zd~Q$@3Iyvg-@HUhfb>QQ*etpWgzz_;sPM^$cS-oIIu6dJJB5o*gnksb(udhhzCJs0
zD<1CW6Qo6b77-^%Ff#bCA?j{1%3Y$w8GqsAQAuCzit=kuz}Xw4G|<uFegK4{M~S?^
z#DH8)C+~JPz}_y(LTX?=%y^^4eEJi8^R{_dR0A}iWd~|4_ayVF<@DPYX`umSx?7B>
zf8!ADL#u*j=!zim>^}PhU<-K9m>@XoCH6U}q$`4dX;cWLR}t2IGX+sB8kkJtl7B7-
z1IX{AFem7xPR&awd6gWBZuVpktrv@7C2FiGQjsy-!K%d13Q`RTN>va0z&%b5ivcBr
z($#olDe$$IUM8B3^J#*)hhn69MI@Alr4*&{70hDd?n~OFKE<jtGNINWw6as+Rf#2P
zSRzzOUOwbIPX6{Yfc%x0C4(1Z%YVr}ugMR;pzgtl$s>)-hkWs7i=zro$7>Kq93%6f
z!TU236z4cxlt!Ak0gPb`TKVCCYO#M9bPH%&2Q?iZmQ=a{X@b+BNz;H=t7*V%GKVah
zcmxw`5$~hKvsIb7FS?sij@jY&uK>uwu^-sLP!BAcA!0a<wCC01@edH!k4{yb(D+(`
zwVg-RKYU9BQV8C0q#1lj4OQ*Xg@51IV+r<O%^r{-Nce~?=0{p65a28x{x1m6`ReZm
zpsE=wYWSBBU~%@)?5F+H7aj6tm+@c$6SrMX50ohZH<y6b11Xmqcn>Fk1&XTE{`!80
zqHM{sWl|*S2YblT;mkMZeCIM8>KKI*Iws+qa5jkM$_k?_S`t=~&`AmFxZenyxIYRP
zlyIa31%vw_ybcpbUU;X`Z$t>(I+2t|8--T*K_~pF$Riq|wMn?JxCj`N&}%da=kb$)
zpz}^>ry_=hoFmA1Aax0UlY5LqK;tlr_L$arOc4U(vOEp{!{doUgVZR60r9g@jSLB6
zjGegPg|R^AB4ivdEjVGwvP{55L{Ef_PnaU&r)aqc<0OxfBlMv(ud7iM%iuyQH6aC+
z8NhH@sdcObjBbfn0bn*Lfaj+o>yUM=_#aQB8FRv)RZuyv)_Dtm8N<t_iEC5?O}LbJ
zZ6rwZ0vyZWhSf`$kBl|A2!bq@f^LDyHM;TVo1P>n8pvoMNIp#nEAbjyCG>iOnMvb<
zHBVTHCrn7%2_J}M(8I<h*bFH6Coh807}+=xELKTIi9i9`KySd%=<&=9AT&{gh;EG~
zhv<1gjFTF?cq&1E*@Oi|1@&uaBWiSOV8TOe*d(ISaYC?1H2k=AB3i~{2^XwY&?_=s
ziCOJD5L)yQC__$(=z$l!zy;W3z>gT3$2~4cPYC3Xkrf5vCdI&@8ZZmvfbYow2Eh@M
zh58BJk*sI8fsBJN`%iMjbHNGN=EUCMt({z6PO>-R%31b*y!Rse?Z5wn4<xDJ0^~_T
zeZ^+E{51LDhm*3_25CXM1L3!2QH#q<k-cSq)7z)s;_<k<1k&~r>}U6GZvt*ydjpMt
zVSJ5YvtO%n_93sumB@a5^HyXZ^KZ4doAKkHs~kT}uk%Uv8nfp`y#{BSp(fe;d|hs;
zS-x(fN7MCxb3R{8e=NU=E1rT9RtzN3X&KWe%r>ns1hc*o-%|o8ey0SAvf&V(PC$F4
zumjn&m8Bqq(p~g*zy3Xiovn&=tcoyH6$gBX4IduW#RI_4K&5a5mFOI(*{h-`G2&H|
z3>YdW18yH6Xyhi@ht21@x&QZ~_&UjcEUS55H8ZJyPuah+ciHPJ-P|y?8J3f*G>8$1
zgc2DAS%oA;4)z|lHV}K&SoMR*ekwnf0!sVt%i?-d<&vcSo^3e}3@0@fsDqY?Gnn#{
zv!ISfTAxnCF#9mrsN}oz`#|;tzn_pr<d+<kyU1E=q<P9~9`%&HfOD?XczeV|ug_xQ
zPgS{pS#g?w=tJIg^r0hRA7tV*Vn}kP?j&rq#|)i<^?tzl?U&F0XQr{#yBn^hTCsOG
zU_05<N`@5l`uaI#2XmzCpa#0Vk0ZN#MB&3JFPPZ)SyObmC{eMT_A~p?&w}pmX9u#a
z?<ge$YQR3G93!QM<2(|=2rjW_w6LuPxGo-l(Ri9HqGV+5N>q6$*d@CN99nwsP8-jS
z7pqN75(~7!$bh|tRR#`;HUeFUeK{0+1djvZUGQ)o%IM1?;tk6a!GZThVU&0fkIR7A
zuMCLk8K%W?s{xplRf9J2ehk%s;^G!Xg7K#<OAjp@dt~8#S(G7?%ic!~do=Jil%TqQ
zLK!nGlpK-(dqSVaAOR_TM1qvYB|&OS!(`jmwe2<x@xFL_@7p%C?Wx@I7+bJ)6#708
zU;`B*?{|<*TtgGZfkERou~^H$hJM+r%gbhh?A5GZltuO-`_KD#{P$fsTd(ANalM%3
zRV`=b&G%1)s^=kLA0~P4yn~bwQDDb^^B`R>%g@v0dU0J01LctD3<%hQaxsFex<9B{
zwHyr-DK4YZ4imQPXxtf?>g9YXZx_Y9yj^cr^J$$A1Ew9agf;wTNID&bF;RNWK)sCC
zz92G#gcsq9Mic7@2@psXzXC&`Qq&z;3+B2kub26BwO9}2Jfbzf=-c5U<q$`Ibbnm8
zx3}_U{iU9jMS+p)d|i)ZOCXBe5_U_r0cxD@4(wS=zF|VE?v=!$@SsX!@0HMfQGwhN
zp#P_~A6g*@jI!k*eN@cycJ!R=a+gj>?b3#C+t9Y#h4QP<?frIr{Ni)lw*AJm_q*1%
zt!sbZ-M91Tb{^vfr6WyBHm}To5yK*aK1YrOdj=DvZ8kR@>9(HUEah~$Tuh6<28Il)
zCBOaOL9)mM78$cQBzDamqIo_fKO%-9-tPc84bMdJ-W$+#Q<w9_dRG3CSEC?vni1%G
zWFa(}yubDG>JL;B7e#qH%y^MxRE}TDBZef@r3QOs3xFOrv@ZZi8!Z!mg31n&0h^qq
z{)leN>g#$nogs`a>T2<A0KpY+0<G}c0vc)?WNAL%@CNsNLj0omQcc%&wVBn}Ph3Dx
zH`8K%f$S*rjV$upDqk*U1M4u2^n;q`4s1)Y^T3XattFd>K8cUskU4eab0i~E3@-{z
zdnY+I@30w%g?x2T8$i=H1PQJIf|ufMp=cmja4qgyiWZ8sSdd`BHH89&;6Yj_#fldS
zZGj@ip-4)LRd9!w=Xu|m@6Yd#-_6dR%-+t<-R;fpDy*I)wifvzPz!$#J&%LWfAyh&
zk{EfzIQ4(3+0uq#%KGZ<n)y4n$z?Ye&{vW6c_}VV{WuX9jib{(n}lQH*^jCFneVRD
z8uPn;PyaCfD{ahs=S&h-HO2pu9%2NeuOnKQS;1b#yD5{C)<_GFKNBkpZ`&3h)R|k)
zF!_4gTPW7hIaBc>it9~M$DT00#j*{Ji}BW){9akG<{jKb0K_fl6hgv}r*SeXs%6)u
z?aDY_iGp&=zzF{+_)1rs4=#KUMit-2KPev6{CQQHO^}<?EWy0k@s|B_i83-=f3{BG
z-D$BKsnyw1zF~6>{n;T>teFukV#06jkEY*J38&LuGU7x~rTSbOb0>17s(_UH&#I9N
z<NYC^2c&{>9fzTZmm%{R>M?1*GgPkS=EUBAsDQrTQ@+@G#B~4IANY5%`0V6iR+AwR
zll}34$*O0ej5jwfeU+;8bl>$=*v0b#J(ZnAfW^Ufp}O*P4c<BOKH>M_fp-yd!5aH`
z#D^bEPQmZA#J%m1ynPP2!Gc2`NZ)M60S;-UgUUXxqzC`3ydDVIyHV=Wzv`U0N_OkK
z<(j7d#&KE4w-`zBcKCU-N5IWi9kLgHGR`#>9neldpGX=*eFvI5(B6UW4*%hS?!a&d
z#x~LzCOsU!%zvLhh;A$2hph5+H+QiLe{Dm<EcMK7Z5aSuJef!s;D?v6yA$3j%gcE_
z@yp%UGUZKh7D@b7d#n?j#VAxItkX8k$6M5SP(hQ&axnHD{ArQ2OCOy#Wx(=Rq5uo}
z4<wd0v|McK@W&XiGCq*-*Z4fGhlc-lQs!AAy&keTwv^o2b;6MB-T;|8&j%wm3AVEl
zI~?9WSKO;L4auPB(1uZMDXj`s!tAoLyh49A#lFl@ZrG@rB1Vp?;*AEWihs61GC?K9
z&1K9`D1@rzkp?pjcbd1Qu{g8iiFYW8z5Gzp?OZ(v+R+`%ju`PuaaJm`!Qm~mu#BZi
z4hm_}5EXJu_~!B4a5_%P!DgAorgZya`a>)3C+I<jE5QAuBbZ9s8}323Oh&dfK<<#$
zGA$4DSO?d~HP<h^RBSz?k;++iDI%;-oU=lIfXbx}qq!dSokruH_Ia{J_s873M<aJH
zc&(PG9+=tA#{4Eb8b0b2fXO1oyOOnH!XvxA)`~9aKcGc}9)TsP3AJ-&zSq^K%$2Ku
z-75TsHhTo-MgVv|3noWp3M9(J5EvHq+Z-Vk;!>owa|!C%AGRe9jNUUDC#_&iRujuI
zh|^yusryih7;iT&Uqx_E;y6PY$`s$GoNu~?Kru@>b#-1QV`5m|b975kM7X7BK5l{c
z`l*VedCI5bG1T|8{WQ;D2Kcdhy<eDQZ#Vn&OU_VP#7rt?#Vtw)J-vUBaAPm}Gf25^
zYiFsb(T~ww^YzbD@-Ufmo5{@|iuM+clU3N2uY7OG^pcdzZI9$vsuYiin&FO9&<nCa
z_~|x&r26Vq=nJlk5{^mNi<qbi{t<Dgy3p2(l4<fV9Z8bzD%qe|a^ef7;wf8&^1v{y
z-U%Xm#1un!wd1zzMe$83V%jSt*|@1rwEH5JFB=z$3Qap@_#>Cff#^98JR0WAaH6`p
z5XUkf4BR}4a0bq~m6dNtBt$0ZVDsyeIiJ8@xgJe_JmPu+6Xzf4d)iDvDAncIpcA3=
zJi%eSdU}5&;I%Njz}2q<KwEQusxtoZM$^|1h|f(gw<TM>+x#bppr>eZM8^^Ovt#4c
z=AxtDmHUSJOvTy4H%GtgA@$P33-!jWfv@>D%?Idk#QBc+>W-{J1k|sLEm^+zm7%Z*
zoWKge6pWR3YBKnXZp&G?=7y3QysjG(Z9P5@N*=bGUY7IJmA3f%@WOFc;0FB?mZKYi
zh)^We*=)IZs!~FgtFYoLRNRvuZ%F+<*wAR3`C8*E6E39}Yu=q2a(>JcF;S2GMs>8B
zv8?wvn6)*xMJB=)V!6t8JlaMAxl9cTGXE=!;)v=IZy8HD_mRP9o&Kr|+u=N*U11Ry
zz9lUa4-Hv;^7pz`rNGzV=fir`60X4n;rq^BRGcyA{Y=FA*ZXF6fA`Pbn(Uyx%;Nsl
zER)v(FV;?EG5k4SX2$5KC1$#o^68bc#&U4yiOhVzn(yC$PBTgfgF|<x-{ufd2P2+3
zh+4cjio*dc(5`vd6!Ro1i^&h4FRf-?4|*wBU01}DNhOkDsLfT_cV40um&8x#5jBw&
z>HBQ86ZRH)>BjcdSYen<FBMj|lxz#O39YH8W{6@pD*@s8%@w=EJ2Vw4TU-X!D=IE6
zy$&_4w<UVhY+0Y_16ZM(fI66S)`cs~POq%2eCP)4I^fs+aek-M(M<Kaak%ccbKc&z
zmE)6MdAXI#-{<|~wZgEy-?gpeh)JW_?$uw02h})vc}1o0W4e8|y#heVcLzdJcZ@po
z5xEhnnm|E8KKy#ap0Wl;^H&y#Aj$k4+OWKqbbj{q@7_Wn;Ze^Wf2Mbb&P~DN9*lFG
zxO!xJ@?;oi$zhnx0i91b3|VVeE}}F<mA6$V@|P5sOOKO9m-ZF}9}XcDlIs6(FaChZ
zEw3)f*V5+E&DL!-J~mk)7VcYcn!Y_-KN`D9WHID&#yEZ@g|2+)d4tdJ;3O2c>m`r*
z`s)<TKDPQiz8j06!;U!`iCtUrsPv1z?wH}E6)m(Klb1Z+`)W{h_><(2-#n5@4H=HJ
zfv_^rqMop+6TTRLtPvrQ?<qqq196DlCAkEOcK1GEbM=>yb$KLstl+(MD%_T4p(wqk
zjP(^Nv4iB4Z;o}y7{AT5KXlD7K3HIF{U#TT;+15fN_sRF25Bp+83<%9k%hLHP&BZJ
zwOEvy#u-hItB>BgurDTnxx_ms1qP9Y57JQgs^nP`U6K-AULg9CO;j3K7l=OR@OeKS
zCg8Z84zSm{|E<D1@Mao(Gb%D{Tvl*pG<Mugt9nd5rV@ZP*yRDa>Zv_CI*E#3mFTwb
zCfY#n`(rK)-rN{;l*kyaEQZ9cz7No&c>IdiTWu&YzMgVb6#M!(V`e3-x#__Jo0p@D
z!3}9b*1L~Ifei?P5!snj^J~}eesogLe5SZBy(6#PVnd`S_^6WJvFpbd4M(pD^wz~x
z>kmD+W7nRr)o!+ot*x-)3(x6eqWZut_zMHycr)bUMdBwlp(L(gc{lnBD?43H?<}kL
z$6drCL4c;ARhZ8{FiDD<ZrAbA@oFcfsxEU@(~Y~u?EoUA!M%3etsWr=Y{<DlSKh^{
z-|z}wlFjn++_&h8mLlge@sw%lW5M!Ln2NdxlgQ*6Rb^*NkuEgy`S^K;XmUt}q>d<5
zQBEO$R02RvuI=nCh6?bcSaA;9m|ZT%-=}jQEoqrD()u-jlGEAMyRi$GbTkJiiIUHX
zSSU$v1|tZ)b1Fn(q@K8^622l2h;s<?01tSTSAdH%5H59##Y`b;=F7y&>$g->$e{R0
zyyZ?rUw>)vltC&wqF_sp@?xh1Oud#p$;5f!Zoi?2j%av~UoUzmfBXfIeA0%x5(14}
zEc7z%OjxLBxh@c|F#E-2PEpYMNkN;wnMa@x(YQo-&o}4f+KH0a`_1Gcg-z&7ViDo<
zsYx{3(F~N2qmLIOZgIj;Pd-ej(E%)2{sJ}_q?mUDI)13nnHM{c=|R@ea!n`g-s4KH
zbU<Ngq|9Gf^J8gru{0PVq&~yXo}i67q%c-(#LO9PuLD&37L$1wSxcELWXCU8Q5KI_
zsNfPgFN0|8lN3DDXKjstWuwJT;?;icZYukUw%Ng;hE<+K4y6SKW$^j3xa<DIS!8++
zz6&Pkt)S)d(inl<=MkdT{Y-&@BlWp|&VEwRWug5qt%jlfqWxd$k;uP_9n&F_WEZ6K
z5Q&MTS`~Os6|i54P1&H9LhPeeL6tZ$l*-7UW9zcUNqsWK7lxJBdcLJVH)@SEk^(qV
zgIi6fK-DZhvvy#)Fc|;PbV%zz{Lu(rR8y+35PSsWdbhO(wcOZDoqh-<pNU206`bAq
zf#>7OZ30`Z|FVNKX__bg@ad}N==4*#=v);D-01V&9Bi8L4QmMH*f=?N6zJ1E*Jf5f
zD9cQSLwM63W8jckstcFo*J_uAHDH4~p=bNiBGz?}ML*9P_;~Bi?q0}BwBT5y2Q5v5
zMc?pI`j+xg-r`49GrUDR+kxrP`cJ?Kgfb7LWYDuuz?}a}oj(Cjqw$@{1lx}N!T3Z7
zY;vH&T)QBp!XkyD4xxd->v0)hyu^6#&_5w#1>g6>gKx78-474dbss&FC@&E<W=FER
zvWtb=HBA0dM#jcQiwHT;7z-wRfbo?+rAUm`hw&CXDU^<VSZ=Co*}+xaNi&w+H%jRI
zCNDZR+BDBx6;`WzHvwx3lKOmR;OmFr<x$J45FsqrPmJ^DE7h+QBVi+TAvHYycv>8-
z8#6&R!pcmjR(_BgCSJObb6I)fJc7~UX^>aY1c{m!<W*@l=+df>>@k4L({0EHx7ro!
zX`pHz^Xrf~ZkT~KOD<#SI`4K2%FL9TmM=^6u(__zqJSxwTGw6DGu?f&><>b9TR*WX
zVLWNFXhc`wv6PiH58Onnfyf2o-b_nl#(^fTtdwK5(YZFwv#_2j<TI7cen4Zwp-raX
zmG@l7tI>@ywosT<P>nK2S4+oKwsx8cW-99`rSi>y<>CLW^et==@^CTN%!WgA^OF~L
zAp4b+xmk%120LLW_74#|V_r9^$3^+j9RlI9HWtZXX369r^|eu$C;Q@RhBD5m{X(Fl
z3ape8-O=)8$zl;i1HOS&$&eh<4GwXsQ?Jj8(YtOImc>%966!Ts8lP8M=i(hf$8PgB
zJjh~HEq3SD(6$0oWCI!j@Zb8wSGaX`s|`>_&J}9PMl!PpgJ@A8kyriDp<@8EdDKx7
z-C~AXpcO37781{?!l&mujQV=n^WAXLpJ1&@Ab6KS-(+VlF*pqN!Ee07s)Dl4?s@V9
zQsGV-<7vEg1yw^6%!o&445k<pRNJ=#s`MtJA|K=~*1skWW>ZwQ+qXB-+DfG~&d-s;
z8pA!S1vdXYLUiW7pZ+rXTWHRKr%|oniS8cTx_pwLt{cqI<UWBHinuonm9WJARzvB{
zrxvE<mn9o+`UZ0HW)Y|<MXO{%-AfG_9exM_X6hm2%)UrC#-OTOdpRC2LhWNb-n7mi
zz`iq+iepLk!fJ0wrvRCFs$kLuR<uzP+R^bzslYC71CdteEYuvSWDOz`HU~}S(sc@8
zp7ZK<bSTgII2HvKFRd6(9GjKVfG+0pnKa#GieB(x{8<&mQ&3-OahfJp6oX@gD-c!l
z9=sQikwlfFiDZAwRKFRidY~|{8AeU6d|{NDNPCvk4~4e(d8NrOIY+f7jucC4e*S&&
zyFtSpg}^wur(oVJj?xG1cgEMTlENDU-`kRQKJ$2JMP=93At(YA`@ZUL3z`(nxhvi$
z&0~a;*Ht<CT|Xf!mFh;GFa&zYu(M#QTbmm8E~rx9{aZPyNv;Y0RPw8&n*B|z0ERK2
z>DM;$&$55Mo2AO{k1uP_zMooky(oN_ovewGS3um@zJ-e>wT02x+9b{G(p*X>i4u+e
z1x<5;$W<^Jw@s1>Bg`8OEJwXV2?*1pR~NGxjFpPLTri$`?)7;BSeFg*EQK5#br|Ir
zLQS(W%mLca<R452Y!pKWmpmj+fDI9gDil53Gtc5FnxOIX&s49PfQ*f#7bg|Zs8IMD
z2ugu@?OAy9gW1n;z=@Vt{*XH#G0MXzNs(@OIV!<2{JH5zOUjJ|fY?FCdy+v>f}c!=
z+Z9)m-e<j59}gw^##R@}PhMR!&)^-XNO!$b3O}p-v$GPQj^LkP3#S&k(OGZPYxAbU
zXTEWyVI+>;M+mdtp5hi&t}ge0n|L=iA}Z%A=hM}R;^^!13^L9r#A8lQ`)6lYXJ-sJ
zm8+10#8>LyQ>iO%fJci9jQ@M83Wb9mOr#~HWTZ6IA?lLS8gLnihNP^ll%~9#v;;&`
zR#H|{P5GYE|96NznYg~YpGVN+dr}Yy^!mnKsw^+s+s96eIpJ&D?pZVI->^vAr6zXA
zr%kTm?85;?gXymP0olPta;>h4>A&UDhcqkKfu=NOHELLpF7=UCN~ui@tft27N)97B
zQJZN~yLn$z)TI<gSQCvJq&6lb0jcuJeSLYozjgU@v_KktT3kRGyY~84k5Kjgn;$EU
z(TEXP0g<YOCxC}uwYi1fECy6VoTk)(rzoPWjFJ5;stv8I!8iLz{oTTbeCL^{ftit+
zmKl*Lj5;LND-++^nBXa++eZMo7iZe!aU3}1)HUMwsbth!nin(XLyrs6o6H$;m$zgh
zle5e?!y>+$llW)3UqW4!LS;X;Mb$dU#30~$J&R=!Y8%x+yA$MRn?A8lTf-LC7VCqw
z$go8!1y!ak;_yC)H`IGTXekpLUSugJMKl0R2<)ekBTVRbmH?zjoA`s+2!{K?U?6`V
zp&Th+KS+*zJVv^dn`7XY4D#U`guv~r#Pd}Dy~koC)tmetW(n4k{jiI@?YGt5h?2(V
zHYab_?za>E>~r@g@)`6JX3>u35g<^6$!o_z=1B|tXeM%tfSM8nVtC30YdNI<*Sr9d
zJJC+W4boW=3$F=T5zY0nSOHnr6y^zK`xx6vTbU^if9<CZ3o4U-?xTu!P`de-hgTNv
z8L^nHBD8H!84OO1onE6rwBzOXNhPWHQI#uHjZ0dJ5j2+)w?s#ll8D9XIZ@R|*TD>i
zaN3~%sGGo`l)1%r$Iuqm!n8*KgyB=f-sPaM0Y2arheiAewK<qOWVvT};sfd#&;FZ+
z)&D-%wFh{v*K^Abecb#5p@OXuC8<yE{^Tl=QLdDJ&_3E`bAaIFH>Z}ppb`$h@z`l3
zOx#wgI)qxBd|;gU@SNk<^P*n?CBt4lOP?LiVCKYIc|V<~?1)E(Ir(hxQeZ;xWDf2N
zF5%1XEiB;Hg9Y?V8gHF|0pS&d&}XNqb~yW{#$4&L;(Omaj=3<qUH<w5CiWQfo>L%n
z=p9GdrA}SM>2pNhx;cVHpFrvNe#<Zehx;Y7o-Y){H~WtTK=m($;tla#O~gzBYhxn@
z$RD(5@UD>;9^%>6`hMatC&zz?ri4|EVw*3bdeBzP+`q)tpQ^Ag%o9G_I}`vhi#T09
z=(TyJIUWO(Nq{8KOO?F_NLfk?iA$~QIeOUr(xVxT=qGC@vrt{0*03V|b|p4Jwg^+4
zr&NIPZvnz#DV06eriUw#On_&!z1kk#BN*d1ykq8H45x7%6XX|t4tm{?*C%g`t;ly^
z(204n(pA&fJyl@@YZBm=TyM(-RX*AjCjS1U%BU_3P^-_xKUFAC<Nq1zc$}af;u@<<
zSp=9~6OjWl!X{1s_Erc<J2Aeg11*@N_JoGMIC1#IXzE>Gw|;L2%m<?O<cG}tDeGf`
zOXJoQVCsg|{RVnK0xzefX3pEU50ugg@BX1aB<AKz>N0+7YH1vpdjI{~of=NZgmi5$
zlC>BDqU7?2D@9g19o@ISmI)6dmKB3Gy+l_I1ECFXk8n9L=304@-}6W9a@^CeEwXxE
zw(X!_nW5O&S)OivE)z~Hw5v1k?WhuZFB-VEiaN3R$!<`+ORPN<Z2i*-{rN<q-r`GF
zPw5d2O#KfYOuLcu9)m0i6(F5z&b6S8W6rxM+pn)VKJl6rpJXtgQ_gGyF_ECoO64o(
zww@WUZb>C6XULTZUUvRM)r+a3Nm3*>&Up!7Go$it56my_tPD%~A{tAcUmP`0nTyLr
zsS8mB$b;4!txgU&&Es>%1E%B&H)cgIYiXhFq>a`gxE@mt98KDi+rXm4`xwGCsdbml
zh`qwr^**nXD-WlRuU%z`7PegLF(&RxMHoZPn?jGCI;qxF0F`J({m%vBy!C59y7=0e
zTG~vPRXOmiZ352*Ry-4Ny%aV<a*)3psZp!Y!MfLM=L~aiIO-{`ArG?hyAp(M5k{6S
zJ@vT3G((+Kw(z^12#;+2{>Yd!<7xHNerX8C`hZenT=SQ@8k!NfHNqEo{C7tdkzt(l
zf2?3U?tVMogFY5;25WaU+@oJpg0!lig5X=JY(HhG-mt-&vDxAGTq#V=&z$LU@h$ki
z@if~0nH9!bs)iNUEI$pE5=v>ib*r#1aaHu;t8^F%L)tBH&no#4`Br!pcv6Sv?0B=6
z=9od9paXuU#|Tsh^=US?+Ae<Jx?%@^m-a-;EKQp=f>W@Z;xeX@Ayw(e0f;JFij_;Y
z#y=^SnXCgI|Dl3~7oF~p%w?v|h&GuDzHg!ME$XW&vffJ$j*WZ5R&;Mug2H<HACDl=
zZG<KMVFg<u7dhw7$yZgD=8JX6HXW@3$=56gE;S10EJSXdu^fR|=2Ixyr0TP*ppq@R
z7u=g-3}lBD%dgeC%Y>76YR`F1ksz$NaD|r{yCbhAvJBn<$8tQ@eV{$*S#v&pQu@cM
zxlMaAuqJPTFKsx#rLXW{9^wgS=58aL=>0COad&&h<$5+hHC7En)zEEaNCtXcDYink
zd1w(Y5eA5SYdoBgTc@7^O#rjBeg9p74x2|8DN2TeG7CX^uAU9F_s*vRFnrNJ^tSqJ
zqHiiWcwG>ZJdSF2u3BcqHi-!kcEAgIWRLd=O+_C7V$K%l(pm!E_0X75Xa1OMWXH=^
zk_GJovz64^0GU4+YEe8!3=hMzyBwy6d7q;X<G?})J)6LW9=Dhuzm;IWKl(i)S$WiN
z5IsT3wZMC?Oiu`%%p+LK&b0ubWs%b1XjowQ0=?Fmv29-b8fh`vJfr-~a1u4s`^;$4
z+}p>>ti|hmj~vx#-Sb+1vT#$pRmi68s(RJD#ra&kw|uK}(^1^A#q)es6Xj=h(_fDf
z^|rZ7re~iB7l+>(xlnMRB!g5wYI~<n0wvRL`9CI8yXemh%XNcsdp4;XA*l<m2VcBr
zb=_x`wD8*<&lu1(1#bui+fHkJ-%v$9ysuB^oK1qzIO85*p`A_g*F*~6r=WFCA`#bk
z#x+2k6%xfp<2kK$m30yx#OYb5b&wVE{DRI?KdxFl>m-Cxd8#!XcK`PliJ+PtZEOmS
zGg5+kkcDfFL{O_nPHl)5kWS-|4B>8J<ys<HfD1fOYoc{Y`&hsIA!A7TD0yb>cD%p%
W3hfyW<|LPrl$Isq<<&HTll>3ur%3ex

delta 25774
zcmV)JK)b)d`C*fbVt|AJgaWh!n79HnIG3To11W!fS51@KHVnP*ukfwZOyr3AvUS{K
z>Nf2q2hVgm-5zL(w%JgmD^gC?{P_X|Wqa3dPLco+B!Kq-Dq9>D+2W_C?9KDT_UZkm
z=8HUA)^%Pjw);iZEUSFIs2dQi^2N4W{K1}g&JUvX$)DR_E^FU!ie|yHWs@}=7iNpJ
zsF#0D&S}jjlcZH%F>jM}#X2$l;7Fj1mqW5<tu;oXuJz&3p}J(9Iw&tR*=k`r*NPMB
zWx_M|4&+VAo)ez4?kr4uyY#ahoN`_oPpe<@oa0VX__+5=R%HoTK7ZaOWy2hNbJECU
z#r`>It3r?%3@?^dMX`WSq5W}6QodfX9Xx+Ba0&q^b9f~?inFo<i7;?{qUW>dBz<+#
z$Doxp5KW$CEQDv>#hFtFqh3JM3Je8BgK}To8^4&x6DXo*BmGwh)(&6X@-~LDp&&3D
z%HfVsl%sU>yE13Yk@M;xyu2FF3#ES8+o7jyqtNd0SzfI^JSVGy{SF@``z_&6oacX}
zF4#7y*vFsAWIu==QxVTN?;W2VM5FdoNC67w0@2rQdK8c_LQntFk}8`|st9kYC24E>
zel)5TnD1yPUUFW@!8rQ<s{Bz!U4Q`~$f=MN5?(V)-`d74JK+W8ns{)ZaPUwR8~`+S
z6TZR@J)jJBnH;G^w1Ao;>VpUa3-y1&1t&$3X=S1}e-xhHAi5ohqpOW@p4M#aI4EFQ
z5O0$_V}mdbi%25m!Dh1!@W<n)kIuhGBo}-QrK4P|*x#cx?UZ)57nrevH?ILr_Lxvo
zijnBw+9CMR;%c=Y&1Fq<WoA;8?Bj-r8O-KWc-6~SJBJDlfhg$%(o)HnNm_re_yzpM
zs%G6761`e6aXR6#tZ0v<g2IpCppFcJb~lE!f|_7T%#23|BV+?=-vUs1B^^+_%+}Nd
z(6J%g(R86au-sVX9^xDNOQ&!f;B#74D<~vz%3=k9851<69!}8;tpl{;CPI(GOA=5h
zN-K%frS@6W0Jg~hbv<$f%@BXaPI^b4WA#8z$vFUVd$H4!)PE_TJ~}Nnb)bJ8Dw%)d
zP|on_2pteh?6!Fci8mc-Z+a;SXgZ|4!bsfJBhS7S*>_z=kfOms8aaqKR^COuw&vhe
z7frys>Zphhf*Gk97a6A<3Y}61&>c$iSIrl#Zd(L?<G7Sqw-WaH6$yWc#hFN{jIp6q
zp}4cG)ng~gdqh${`e2gogq!Ca+5&SQR^UkWK3d(u@iFcOG7Pys35Tg%Ln;Bg8jgO|
zQz<}o$8s&O&8^?EH?C`~)-&+~vJr*oNA-jojF6i1?bv(7)N5-NZ978drr4N|O2-!5
zE2DaKZT5QrhrH?gFg<_cG2HhXa+rF&yct6PHGq;I)NZ8l2U<aLxO(V-e4-94XA&~V
zTNUmY!Nlq@o*&kQW`$xYhL8_Vca89JH~RB@hT&XYGz+5$To5%Zknw*zbT~H#5=(&|
z>X}`2&1?ixs2est)Jk(!VUg(}3dCqp=4><iab{4B?dyVuHllwN#TS&K_n8^km`UwC
z$$F|&I0_g%0xQn9fTV`?(0;>g%hwIlkU6?m<xLj4!C{zZH>fGW@FEOMf{<b`yUT3T
z%(!lDMtX1p<~Wm3^U2~JV>>(SNZV>V#-++UJUd)vAkwjo84D>~ujhH6uZ!#bYMnDd
z_tf|`4;+8FV1R#lJH<XY#MTDW+fTFrZ{Cmu8YOr>3kb{ugQI`)al#8aP6LwC+_m}<
z-7FEuiM>3Gp>KBaVk3rwOcC{WH=lS{5(gN+I1cB_(mBBId?99RLc$Xd@BTOzCFje0
z#o=cGeme3hru6*K_{Z(jf8{uaB?@J3WOH<KWnpa!Wp0NdzypUNzyyaOzy*gPzy^mQ
zzz2sRzzBySzzK&TzzT;Uzzeq_zzk{g0W_B(xe5~lIX5?#p|cG)f0Dts<eQz!Bu?ez
ztgDjB=75nX5j7O45af<$ogbfm0R$i8JPtF28epRV^yBLW)x-5cJ^bMtCC?u|ee>;8
z7C*#le^kf#;nU?IIUM#y5kHjWVXu<>;nVry?@_)_A9uM@(I<1O9(PHuq95C#>K}J;
z9(~ablfHk1f30rbf2^@g=`Q^I`KLc~<0p8#jQ%-RcCe5C`1B_)iF<zglpY@r`(sgL
zD9tWOj{7)GA9iWHPYx-IW7@Mh>7l||k|Y}HN*dijvOu#PZ_gl|icrWTNm&%=U{Rp)
z#aJ^4hyL*pkz}V1n`dgDx$o5swQ0Fs=~K<Ex*Pk){21-wf9D~MJ|{_BdA_4=%vU{_
zt_|6j(HDH`MkYNQJDBz~i0m||JzEyn%{W?E0BjU&&JIs0Kk^pn(_p@s;SFW@2t$uC
z3ChxFepqvD&F4g^lWuXALl&KJmhR5|GzUCsC%Ad)#+Eh(xzO0LJ@ZeMeW#R6b?KU>
zg9W|1eUmZIe{XXEhDx8`cxG5Btx(%a#>g~$deAs)dHYTiUun3tmECV`0PZ-dS(=s6
zU4KsEwCY>_X~*l86pVfiwH~<DRs#y$^)L9lnD&r*9kaU9UrZy!Q`erVcIZLbWSK}k
zkG*NH+!l`hH!6mOZAwdbB1pZN*4$7xNunO)Rq<(Se_5V&B0GbPO7|pCl0~<!Z~cHf
z%2f5HBiTR|^Eh^@h=Xmd`#TS1l|D756`r&yi5x2rryW4Hx*yDGY}~AA)OJJl=+-*a
zPV3Svp<~1$M)=)y|6-Y+mSyz11qDNE*jTVw>EKnVLaofQh|h}KfvIG9bgw~)EccLE
z!!tZvfBZdKeXYJjeL6-T9zht^F6eQm{(*mfR^ZnZ?7^?J6Yw*ZaisV#-G|m(>*4*E
z@wHzQ_cA(!qjKuGv0z(WZ=h1nJ*03HVobQCGy~)6h0c##C+-P5&()w!<82PQ@nC+@
zpkM(<+Lbh8??DvV<{EU{vnPY>tW0}GSCLfge})DgGO)W((N_fS-jdfVq9<mB#%%`;
zmhuR5e4H)%z>8*8F0zPMx(iGXh;uz=+D%hujxL!!0gdWf=^r|N>T&39fq4SyS)X36
zlk=h(dR8Vd0dgs*yvH<pt!XcbpOesz{Z*RiAgRw8ED6+T+6o!4al&G^N7lJCRU80-
ze?`hxNUjO`X&3lx@h6`aj;Gzm-mb;H&Y|<iGn|UKys`1a7?{P%i$ite&FRU-AZ3as
z#7`zPZrnf-0ZF87*y!$X+UBe0&zp{6?f{#%8G}%7aXqAY7#hI+fP%^*i4#O0up~I4
z#?Y?g5VkB8i&<YsV`~{4zvB;}qwRX~f1udLtsGCoNE2H(i*V&74!B)zyk(KVx1!1+
zWvDqCQLw`iBSiMCH42ikr<zr4oQx01BCUov!7D(})AMtonMj&>DdMVI32%gXVD5OI
zJDBr59t6gq8+c@6(YVv}z=sJ>nDY#q;58qHZf+iqWtD^xn)I#Lq~g#q!$~**e_aQ5
zICz9KAC!=jxMgflZW%|-tyqL)cBK>G5GC1;uoJF%=N27o_~{MxtwG<N#!ApZJ~{CZ
z{B!9tkhbm0^Mj}cjF`BQPybK6R-QeLj~?p%cQTQ8uFW$;O(5u2p20!jZ`i0U^}CDb
z0xkxXsS!Apd{h{=lS3{iMaay1e>5B-z$y<GdszEgq}kfX9~iEgSi?&cJ&+U%dyuG$
z^bjJVP&o^giBPy@$J}Ezd}YG!o1Rk(P?gAqbNEm}FjCk|K@o^+ltx%rv=)cUUI0#z
zSPr!LPE7kp5TCe?jj$3EaVsGAQ(?TDW@G4^M;DN{>#c0;=$L6c39_;9e;JBQaz>HZ
zEZBmQ+(i{2^jF>b`~th!g%{Hhj@#JvwQH*dBivdcx!h*Pe{xcUC=bzJXcag{^N0{{
z12w?gBm|t{1_Xc@MZy2g`zCxLPFVUl^>P8}LV9)MA4_0@W3R*kas+*c1EZ)1Bg1ec
zoES#H8?|<k7N}n|V;PC2e?Vbn&@WCDc9774TS;&sIXFBIRL$c67n@V1pPS7?ou@p2
zl_}xM(om&=>h&~p$q*1d=1f@^_6%jcB@s6}4Fbf_F?kLKh-r{o22zNL0c8mefppR`
zYEpd!`<UGiyy4i1;9+Cop@zbwaRG4$umvs>+bAhM1#wjTD~yf!e|v#Hn9B@t2o1dt
zHUQi>UnxgTlhx9w2*MdK+c%m1!p}K4K*|lGIT$erjN1-4?`eCTbJz>{I{2;j3|b7-
zGoNXEa6k>4la@`tf`Ey{Fd2ZKGsJ-1XG|q6`a1S9I6=oxIV!fzfE#a^i0}-ey_z$X
z3gQEUl^E5drj=|ae=Ontq$L;?sPxF^gM@Sf2&EVdH_79`(}fZo8Wt{KcMAy5-#?<2
zpD9HIfn9c)DYOS8ytFSYAs13lVqG<NZjm2@E;9qlWwOA7TR}F&r(k5xYb){EfDZ5G
zrII#RO=6!E$V)zO#O!mh@v8e?N-uGA86k7#poRdSR21OTf7PXJ$g<;S)ynn?xvt#Q
zLv<AldvG}Vuz<H)_9$gIfj?^I;=?N3w@*d<5NG=|D-tZf0iQJ6XUXAzDg*wXCBQ}L
z59Ur_4RIo17`c9xfSyeOT~bu4Foh}VEO0Nf3Fu&Ppy5k@B2j=cvSq%6B+kwe2Am)9
zq`ayTq;P@Jf4$$%(M&eW>;xIWDQ*>l7I{>euM!&|t@4kFCf=OQECsLj!yEV8VLXe-
zrC<gm%SJ-$s_%BjYO#GKCgrVDI-kNKeX*M#MQ;b5%h+%s)|%(WP2O$o!PuU>Hy6X1
z@35#B(r3QZoV<}ZNU5AzDi1;VS7j!%^f@N9-I=Kwe*%r!V*=HV;1y1$8%2`Uw$tJd
zD{nF-jk~QiyOX5)0Il_QA6yZ@7d@eEoq8||JWhq6N=8g|2n-nJd7Q>_TBbZuJg%$<
zY1`=}bgYj#&9HvqCFeIgf=iRE9b%A82YhBE3Br$q!>iiPP%Qx0)(i_Q>!Jc7)gyQ#
zCQlVie_yH0CV(4+68LrD06AKo7tnOe9W(9o$efmbCDwB+Y#of|%4)&M(Pl*L;FXw6
zsQ@o-ElXg6^rcX)oL|HXBS*C=Fj1*oh=3t$F9sZRFu-z652*uF@M7SXaKcrI4{NyO
zG@w(85acxq7m|v2p;|bSEE0#HYHfn1g`%k<Xe>qI&lTcVC9*?*%Rer?cBov5fe{;d
zAM)9rYjp5qJzq)LJ%WxvFS%MkTu2+C(RA(geJ%xY5sk&SNu1c-iQoW4DI1xPLnw$C
z*X622`I2Yj>syJ7_DMXyDN=G%6gz*Fs3pWo4wtUI4Jd!Q>E19=#EM(KDvtrlzFEj#
zs3KRep9La9Gv{U%l>->~V%zygsU8-Lpy(x#PSe&Xj8?ZBI1iUK5ce>yC@y-yW0w0S
zWf}cE!}Ht4Uh8n0K#{psIM^sp&5xIgQekSNx02X$k@pwDKLmR>!=TZ1tRTQdTg0N{
zR2>3-jqQIXVP{oXj@TP(^=Ua_NEa(}A1kpS>Qb;*>kFcDeSD|b`DCsR^WxncLCrJ+
znAJ2Rr90%FGZzk^XA#vhi3*v6GDumOEzq{38oWlB5Jzl;x8mq;^8yk6_6T8br++cR
z8brD``YpH>#ZgW?{ch2->8{{hhx%qtn2u3lm@R*l)bQYoj_Mfw6^o8CCk`cH*+$XH
z3srPctphvul40O9lmDaIJev3yGhKhvP);vZROHO?8PeX5oHYhPh;^{`LzuL>yxA`M
z;S8lB+ki*cR=Y_urkO>a0VGJRt^#9KpqlVQ@x!qt!OPidF}mf6-`0{;SZ2S>gqa^r
z>5hL!1eJ+uA%yxsQp<C8qq+rjZFL#xt|FBLL#6&h0&#BcI|t}_r6a-??twH(ZY0f=
zm*3=T{XL^_3h64PkS=%ZGDSK~;Z_+6<SW7oD`?F~88Oi1=0&a|@4oh-()aubN24;D
zJ|YkTvqkMn9mt?z;TZtINtdAUVnnk1L-T**)KrXpgsX(IGN>8@K3iO+Ci9yX{LSBt
zl#?LyKzVwb4_kt;jnE$eowzuzfDY2wa^rFXkYOoGR2KUeUz*^{>n}}^s`-IQ8~98=
zQ&7f5c9Sua7_~HJH$+IFx>>2#n3Gn-Hs<P{_PskbET{VX#AP9erJ4Um5<;)vT<(7|
zO-Pwi8U1nkJjDlkmkQ9U{dDhYL>|qLps35q3l@Kzc(crEd41**E9h8l4&`&3)(}WY
zHEG0-$0$}aADAvZ`Nvu9ozoL_+|GmfWq!&fbF4P&1X&RzneVbA$4-|cIL23qc^b;C
z{k3+?4i&qC%xT*N64dtJSa3ZqjZ1$I@G}AUa*5S7jVwEhZoE~sZjHUU_m-aqz_^j#
zJR_QrL7mJxeF8T2z2_^pzNZ(N_~M4Q{5=e{O?yEsgjR@Kn9Jv2w)&0lU3k}#YmxXw
zEiK3^-v}@iQqlxkQ(a*{cqvGqeaKX#v+olU$zKXrBrSZA6k4DvpxA))c!Ymu>N6OQ
zd>K@Tzo%&g;nB!N**0+(p<5Xq<v0A{nSircz!^N{G~;}wT--lPsADb~(R1<b0+NLF
zY(Ic;upjZ1?&E={{M{K2GQtEmN2Zv&W6sBszU6{8);%i?6vy!UGW<oyQmSRbhkZeg
zgFm+{vjAlA)CuRs#Y1`o(uIGyYaYQ^wpd(1Bf*-R@gi;<K{+q7kv!w3;}SrOirUZD
z&Q&t(8CwPgG!LgV)2BMgBE->B6rT+6a6YC;0v}T(PHXY=Mw#p~8zrgGzhs=GQgv&<
z7c<EhU`RweNfgsPE>hu0UMIUu-l<TAd1kuKGgDW^QT#QRi~&{H;U9m<Ny&UC(2vU!
zD*9a_-!32!bNl0Cn83InTL;;U;II>3G)h(<2Uu>Zcd-C`t?i+rM+<JW+=gryZxA>O
z;!X2)5r8|X1eRkSi`>PK@&Kh{=lhD0hbl<lQWkToq3;rNU&&>6ol|n1`mb`j0sI0J
zNE@NQ<5Dk@LX*QcS2=&`0=fMl_sBsZER8e&6;_-s92W$ut42HJ&X<+|Ny}Z%;acuw
z*O<-ye4K_?O!O6(@bbn$h_#aG0R5OsuF~n_IG|0HCZw_liZl9rN^e#(W<~9M1LGm_
z;=XX2uC(&?mDc|K@4JJ~%`;W(^Q?T>W#v9gq!y5roA3Vq(>DhH2JJe}ua~hK3lo=I
z!wnPyH8z)VYY!@awUgg((=ZUn-}6`a(H6wBo!GH?1C=2VFQ85WZ9JrH)>>*37N-of
ze;)rz8oF#6Lnu=0+@0@x=lg_!Eg;}sLgM;nnVg;H6i|W{Q4}n%0i_BP&OuQ~Oc)2t
z4Y-6HrJNABDEktnj1%}8*;iBUe;IAix8;X1<LUZ#nNYibA%KpVd6r|z6j;~EO@gyR
z6v{_Tw%$c4;aD+m;5oxm4!*PZwFHYc`DC9{!9gt@<kE?r?>AF({c@V)OvZlC_4d#q
z39Ha8$Jwh#y9Ad$ZlO)z>D8gvZG+NG5ZGSZl`Gimx(XKE^i_va%HfZ4Z-RGazX`1R
z+aOuMDjvUo`1~<!y1{dEs7xP^T@gE!JHbPU@&0w&Y>ahKj8ee}ykd+-<u8ckFfD(E
ziGf^VMTNbm4D(!tzP-$M|29?QbwoZE&+iv+y{-ytVsND!uN=&}2}dSny|fmU!Lr%J
zyt|n8E6P=@%sb4kMFqSyCt=N@jyKf>kG);j37KhsVtQ9@G;Sbnjr{K0ZQ1F5SL<~!
zn02|Ykj;(%7H4MhB3%3%&g$tnPxKzanb{i=G<yK&{24eiJ9URMqaqUFET=>`?<~$P
z*yHRX?vKcN9Z0$f0kv)peKmm0<Os40oPd1H7N|`hL_6|Kg^bm^-D&mCHp6oW4Qs6I
z7)$RsGV)^d`4bj&DtQ3i3+|%c6m<7}1pSY&Dd;nR`zdhpUqK&HNQcW53QI~u1x(H!
zwtvTOf%1lsm$4fQ6PL-&4R--Dw?WPgw_E`-mqD5bFqeNT3pke_O$H6NFAuZ?m)kiG
zcLF#ww^TX~|Ad#b&JJpqA58`gwl5E~1Q|3qI3O?}Z(?c+JUj|7Ol59obZ8(nF*P-p
zp_2zFf5lo`kK{NNe&1iw;)S%-U6a_kiYI1aU=c`&os~c=5AI63Ds(C-;$&tE@#8r+
zJ5DN%_Kk<`^7Z({K9}ztJAODl#1FswCYIlipTGI=DNP=d_)x`F^6>ffK`DL6vizYa
z%0sNOhtKuH-=pl1K0ar09Q~%X)7ZYuQ#<sJf6pq5qv4f*e?QpCa`B_F&Es<s)iOdx
z{?NDonj0zq<&QG>+o7M#agquD`1}XYocsOoNmmc$p~~|V8GKH%>=5Vb;aMjKRchw&
zQ+t}n$1(ysIw_c8o#aq2qMxRwuPt{>=Y~5>Z@Qapr5V2hTc`FS6xx1j#z$Bz`eHg6
zfAs?OIBKS^yigG}Jx_zr;Sr<jfiI=~Aff|z8m@L`JRxaf$FFCPrfVL7{1eo*j=r|j
zS*D+5$X_2-8a<nzfN9vLhiBRo*bg|otm18G%<+u-S~4eB`fr<lYWown8~z#k=K0e0
z^VD#C^|`=;%46QUV{@H&$m=j-LG}<^e>!8O@1^Z!(${nASTLs(t$#98W4Wm|lQ8g#
zUBhK(bs5?XJ#7<~r?ctlo8$H8>IC{#9PyXf1Jp_teSXY!G;ojkg3Giu*Sf*-MnG8(
z(;SE1w+VYVZ{lD6Ru%K9)~CkecdFd&G!kliF4(K->1aND0tH$m7PjS3R=_*)fBd7$
z6CSh@>-13R#EsFhP^49X!`l7|T68RjpyY7O<?4k7neyBw%i#)#Brz(_4y8)go4An_
z*#4x-Wh;`ZSWXHn$QgE{Ok=&0dcY~3LXpCEs-)r0zdfdv2rf;cwJxUZWi7N2*e(lp
z!^w;w{+ISB!~@+>F{+)NM>;ede-6Si@i;!x0Tl;3&h6>^{2Hocf4uF9k?Bc3GFTaQ
z_3Ql{+T1%Kg*GE2aq^eewl7^H9ggJD^xPuyCauHeYWym-h}4fNR=kf>i*nm^x5uoC
zNUSw&Xe;Z^RtS;##r50=1Y3vgymi#q^aj|oi=^!AL|db+06yZQ5gQLSe}@;zqKP;r
zTZ+x*NRnZ#d_Sx_%+kk(4V#Gr)|x81m^V?jENUkq!__N(IPE_!GQQ58P#UPC<5432
zX*BnBGujFE*%Q2)A6258u@@d#FSDp;i#?2Qt4}WZlcy1;#mSL&xrn}RFD+PT)V6}w
zreD%4C@fwBYm3tOW7GvNe+$2XOHw)qm!xqM(s-c;5;L2w{kPj{?HmYn;V+AsCdEJ!
zH46ugF=EM(J2{s1@_v<mzKHC}SHW@a9Q~c^Qk9Mj{VE{_4RWqfTB!q%+Vzh#>)c%2
zEXO{X>olnrxrS~#pH9o_tl3Bz<b4d51;7A1=6H0QjC|g%Ey!DUf8(xWH(TV=>)FnC
zqobugD?wJz!$@DHN-x6Dyw?0Drp*o-yS=A^Nhfo)+`7LR(6QNQ*acl>fS;V`yVD<0
z_h~WK5un}=lVKBs%wF3!&mi}&Nps)NGJsdozQ&BCIyz(mKl{e58UKj46_sv51JPKp
z7HU>!&Fb8MMWBsme{-Z46_v5mYK}ujSat>^U97*j_r(t0uhLF8(R~>J9tqSH0H9kb
zv{_K?y1o4ncnZ48+Ej@Gqzn;kGm$DQC$FN4m6KSUD8KjK6~`Iw1UGOY%}+fZIh!vn
z**F+wXTliJX@nhnJhLRv-C}ZJS!3U<uw>?GxR}Kv!K|6Kf2lTfXgi-v>s2B?r<u(k
z)ScF)E3HGdRpQ^t4M9K2qUG{&n7i5)NB(j)?!7dVS(Wt$h$VWVf(v|Ur<N&+SVQ~8
z^fy`O24{JZg&f-;y<N-x%I<xh9EwT;cdbw|(9d}rEp9kr?%-Es3p~z+XV5MSAt8tq
zep)80jj8yLf1DuBusq<!9N$j-;k_*AP-g<4*B{T+*^5^oB@?&6nrzR){|#zK=UNNg
zjrXj&J5pWB2C~$g!NHIXgLaXt;~RtM(!n<zH@sN)P2pC-tQ{qX)*VS^j|mgZIJHM)
zhfFleczfyvaFCAba-(y|+<+by139h}9)SUMGdZ{fe+szs^%wB2M+PNY-$Q<_6DM;H
zXk}VOe+p;8p$uTNlCL5=5}{>i8o<5Oo{$5dfHq_~!hl!+Hn!7~h^SHk2_rxW00%TO
z(K-x*bno_f=R3DM?sY7S5N1!tX%ZToxo<tVg8|~lq!W04#y{M062y*2{TOF4GXJfD
zQX<M2e@exOa;Ref^TM!m2{4(x_}0E`{VLg&Ec$rcLum|5UvIqK9LQS<<wLR*N{cbV
zzP8^B%(?H*GqS(c8coZ|I29C11muwv%m*jjS_#jM<OaYibY#h}Mlcn7d$1k|kFfC_
z9Qw`~7D|E$C@g}Gb#Pl`52*tkb?f-VCb4z}fBNaudE!QK(hb+<9-IU~9gsMu%+SiK
zA_jvE6!|AEyj4c1k}am8*tl01>xA`r*Uf}ZTF1#dh6Q^9H;q+Jfy9aPzFZMU!vjcL
z<2c$-Bw|9v@Xs6WnQ$QcLZ=1QS65hD7HVP_hM(HffzqmsWhb{l@7UomXJ-!x2@J*s
ze|QYrBzT6Hmf#DtTmT@mV{-V=Z8~(WgS;~JL0&1i2Y)Zj?>MnpEnVmYeY<fc^|*k9
zH5W1PS?GRkYblKe&@NLXJM571UNm_ZF_$hdF7L6bLPJ0I6MLZLi&eP|Ys)39Eh&`d
zowALrA!(4+FbNz>$_g}62DavA%~-{mf0e6|Ft?OAHK5QfQR?1TGtnoB+&UgD2vG|a
z&6pP~&1LX0q6Q<<nf|zVSPduA&|)-}{hki<9N6qpBvS2V;^?ssjPP*Y?QXuHXc*h{
z=euP$ktwWVuI2^2)U+Ex_~e3)Ggh<=!3i@la(xrBV-w|F;a3zK3XKz7R<bOre{a2k
zbGPdW3{BDBtOG(?p4AW{r1|Q!z;4#LPjm?NJ)ONnIU3=i&o+?Hs9fe#2RIYU8%@L}
zHZ$tp%pe4u2$kKqc86G&Hs>g4jh=r44@31Jw~@i;{m_A?f*0t-)$L+s5{fiOR4umZ
zEDdcfU4$m!w{9u)nZXybe5d(4e_?OBctRpYQi_F_uz9tmDlJ4XJ#7iX&~uwhBT5J#
z`%A~N$R`gT-cNA7-uUuiW7Dx|V~evmu=0o1{lte)dGe5?2c6~$Gq|vlP7me(_0D9I
zR0ft*a)`4+!rHY0CZ*;r#X_J)*pRNWX*d9x#@{nDjYXF_Nt~y^#!v={f3OVR=mE|l
zJ)pi2-C=|C(OC8#y*-jy#nkSiIM4fz2PGzlIJ+M(24Hhsqz+NR246uHoTGz*A=g+B
zf<H2ioPI#q|MBKXo9-qA3YXM__IiEX&_c%zLuBW$=_NRB93dl_2n-E#c6&(bm2KZF
z;(=ur4=f=SK{y%3PF_~fe^M!oTr5IE8P32q4l>kOIT-@8g2>3s4hwmnIKa+8n6NgW
z)U`51Q1?+5*ZO)xs%9KA?w+O<SR^|M!RbmQxJ#H9<O0WYJR%~XFTltmE*F<qR$(F+
z=$)JHDjf(9Iswk5I}sRi8SLaJ2jH#pr%FU?9t^YEQTQSwinhvnf8JIWd_N^~b<@7I
zqO1@<A+q57UqU$<l1|asN&p`AT-%;?t(A*EY&?QR!`vv>R$A&pGdmFGWHnQGETCrN
zrR_Ztx>9jog`3b5yYaLE#2YB|?pb;*SGm43zq#6)-(0hljg)rMfX+S<e#-UE1z3&@
zFqyfZ5x{gp1KH-%e>xcsBT1y7!>JOs(RD61-si-jak;sKp@!S=Y`bPJa6Pl!0B;vV
z+!SFjmKVbE$`wMZx4uto5ZtwDUikbP%#rk?5ZWaEpkJg2chte-yx>4D&jVD*?LoE#
zyVp2_(<3@n+W=h-_LY~JtwiXWj2iyR{q<(=X~Zl4dNT%Pe=%c;UTHA5yxjPg?_PDH
zXm_7jFc`UDw{@7xaWGK8GdjBb!{}7jUjx&CwKHS=JxTUjpkwxOI!+hszt~Q_j%MA4
z#OcOLYG)Vysx(OK3oRl(nrrexAWoN?H*8+nMznmHihlhFdsWvhZV73HWIE_|fn(j9
z#Jvjw#(r7Ff7maNVb2~BzlK+Ex$}ZBtn<RvaRciaoPB>Xr{=;L18A4@Q-+R{kBQ?H
zZd<!$L}w?QO7<ql$lkUt`wqRU(J<T8XuB+WD6q5pKtb?U2nVuwV-C5ELOB#HvmiOP
z_!*}7dUNvA*Nou110&;Vxw!V|voSITgJ?LfM5*W(f5fVL-jN*gJiB}4qLK<AX2ylK
z!;7v_-dQBhZ6$YTB$0zi7QclzaB&uY_h&Afy7tkur23LIUP%P6gv+eWYOsnot56mI
zEAt4UU}c3+4);%6O80Jp(*bD~K7@gKx_8HtW-eODHq50GN2l4s9F&o{CoW=!Lt>6B
zu=Y?%e}wYDbdv0eV-2v*U9(y>T|Iih4$DeyH^V69!EKH$KAHb<RjHM?fq2CQ$9@{z
zMV+Lvlf-Qp4%vkB*yM4J<vOPgxg@hL=AQ%mVXTowR386hF|bD}b@m8{_MJ>J{9`Y8
z(MH9efoxHA7kA8o&w-Ka_pCFdh7!Fm=8XLDf7K(WpIod<M3UkOf-xrUfq1+YKJH~;
zah%*tR^@%RWL0<mXmf(Q9b7hhiecHEFLnEvCVn5i&j2qgy9vFrn^bDJ;2ma4VCBHA
zWaWh<A0iaiPB&%1v!;<ar<<zP{XBYzJbjl`BBWIKDRr|8`xc^nhr7D<Sq`uQlip3|
ze_<xLR?@ozXYZiqQ(71mPA!TQHp}&3sTM4*-N6dxRzaSP$P(%*ISU63uP)10Dlcwj
z@H7FM!>j8uc&YIIg=4jG1TJ=9XbZjk>LF%bln`eLs=Q3Xh)}9ZzCMOlQ7bAoQxGCS
zLrvGxd@=CEsd4vWp>n}YwZx>j2H`Cqf26S3QODjlcHl1;7C|*#URX(fLnYgwf-;YZ
zAo%?!Y=vit-rl)acygFRof)H2!wWfzUR71RsH*a*6BP$Hz~GhJH#QGyQ9=I{kTz>C
z(P{0HE=unrQEcKnUnm)AA>utx(f&ab8ILSO+<r!q3$EC^TEmh205jcOT(P0Tf8|zy
z8Cxg`_X6=VUn2lI{7x32`#nS887aT(azZuIvEtOOTHdh6TeA?0g^5*=olrhIp*Re}
zc^j`Sy-rQB;<5r(>Vqs`Loa}SZGCm*uB!;)W^x|Hys$vHa6fV6z#@fRrQEL(jCJ>#
z+$B*|asS=|nwD1z%as_$>XIztf2a|D5VtpE3<@n-qUDtV-MlT2RSNeA3kr)>32x+C
z8MQ%th1zDd*MVtO-QOOA54>E@#`29c*5&<IwaVfVFs|e}z6vq_=&*1_X>stvt(cig
zE~YDbI??fCE2s^#F!R<EOzIuUQ_DGPnJhsU9c{8a1bx>CYh8v<z40*tS*5#lwM4Ak
zPQXZ)cR6|Y%)#X;$Qk2Hir|`*Rtc|3v#jv=iyttoGG+3H0e@F9Ak>4fQdgcS^Zv{D
z;O%}I=Z7pU9-h<UkSci@ud3a-zy18pe*uG_L|>P2xC0ZHf5Z+J0Wg=KvkfYL8QE^+
zxbfXz(T{3iTBDoNzRk`NY>-8ej1wf-$pfvXyNQvgUXkry@7JdeQb)V(ECRz8Su7Uo
zt|Fam4x422r@O>|f4skY|D{MbX%aU{lWy)GH)-0$Nm*`$sN*CnH~0I^FHyPOl}QqP
zl1^@SS(!v1w(!Tu?%8U){m=b>pC^jf-_Q4VDGZWLI#DjmJWk7O)Ao12-o?47L_-*h
zAuXk8QpQb2fU?Nqx(;jaf9lg@^J%#I8~j|K7>?V8^LC2^N#MM>C2*N%u}B&g_=`TA
z$88-c7PpMcAKnym^9$j9($<ao;q3Haw!1v7qu~+1B03J%Sq42w3uHxqwD%Z>G0sN+
zdR7ek$KU^A8QKoU$=30Pc)Kf_GWwQfsYm?RHY=i?{7rjw;`u~>tuo<6cT~vzrl{j4
ztw1w*ToztZbM7CuyEKW^2(nfwahz4j#1F!lAB3*>;l+n%UQ)6>G6aQvhr>LQX3wk0
z11<i0TQq@XT(HMsE24{k<yDV{2c3<ZI704|HRE2RsCI4m>p6f?E1fzFAW>RI&)c$z
z;+y6pUjU_4Re`Rs3ku4MxK8<)PWO5eH&3d_Du)BXrUigE7K~(P2OhO@9JTUbs}Dwh
z%aWv(#_!ersnftD_=!h)L~e0ll)HfahVeVk`@v{8jM^M{D`}K}89}bv^QfH{aaVxi
zeth;v?7;!_<FnsbO<sU{1otn!9(&LuC@oK;NAK|>0>c~Ep<VMNl5MN(<g$o}5~F?d
z64*RQqkj*Q;3`PT8&9JKzMcME@xqE>g7ivSjx)<!NDH{az=0N9<te+P^sLGdoUmsW
zpwr(~=SjQamayJ`)d8gj6geK$?8<e*t_&-^1ncPGY#9s=Ka3Xio7Y8%g?eJAMuH;x
z?SzCBnBBDgfTKPf8NrPb93X8OK5-A@;airb%6PP+hdvIZD%mldNDrC<nl?T1w|x$=
z3*^&Ww%^GvbsgC=gu+q*H7h_O1yMz(qqawK4V>BbsCvbJdvlcjGO-A&`$bkGlq@1M
z!BRW)JvihJe=#-SuA$?#Z%LVKfw_+vjM5n&5(|4iDpat;@-dVDwQgdK1Vc}TJbA;Q
zU}kR%Wfk+*qR)BNy>KMrzj@)dxQ*Nvb|`a{lL>*Y9vMMC=#D+NPW`!AwD%6wI&WIa
zcj!XE#6dcL&l6~OJg`hel(>?PeX4?TngXf4-rW=tc$8g7G5(Iz{5mJ(>^FH*tW3pA
zoTZAX00C%OfDpqlh9{D*O9HMijeIUqNik(TK3qi44CZ9P3#3sT994JX<&cza$tleM
zp2tB4sGfzRe1a_E^BX$E7xF!%WvnAZ0UDY$g=)ipD@V=<B$M=`vsnZwTa1-J31dDF
ztmGN+rH-wJqVcE0tii)|?evP`!+h<W6vYJ3-Ts#3+UzkT$X6g3&-OHDp9-^&e)2gU
z<%AA^qMH{35`Q4RsQM4Ro-=k09~AycxBdua4)QRsS6o5iJ4fJPjMUbKNT@jE;k)N1
z5UHSlLb0xOkluVi7tkht2D?1mbmeYJIt}X+KIn~|Hi~Cl0AOH-v8NbrCVMv5P5~gW
zdDl%11Ylf8Hh?Hr;oA=(slh}6<5@^HPY5SRXcj(7Gq1T7J$5RjC~tc5qK@iC7x{P|
zAy&rFv(TZIvV>2p*uqfqVI9E~B_q5M#AMKavOmE2%QgTwg2tv^G&VF^^Y|fj?|jZ9
zf5BOK@Dc1Ew1a{(&1JK6CG!WWW7u&u;D$%u`<(<y!DA`8;1Y)ej#!O2x{!pdC`9J$
z=!xtZ2TL>WqC}5ql+sXd(Ct{Y(3EFlFl~3XY&XQGd_=TD7l4!fC@&sP=N_o^?O$?#
zZlv>f0yO#VhE6&8gZ8f7bfIA`@h~9n*SCuIU&?Bs;k1q`ffpGO*O{;1pylLh&y}UC
z1g}hl{85e0H=fR)I<fe5-HZX`pIhi2q4C+XumA9d%{?<;hn{+{X6guwG~^}#O7Aw6
z*oe3g8B!2MT)<_^GdQ&N6z}x`64U5^Vn|*$&aBfoYpSs0-Aj^1oaV)f;-MQJpcjX>
z`xTl^64!s2WIJ~Mn_^wXi4ZeMQUxme1#P%)3Ne|eb=|&;*`x9*i3J#X<x>|Z4#UNs
zPhb}HmWs;N;pN<97LX&Y<%Uwrx!(o&MY|)9+ACKniU_i}qZ)+EtAHkw<Vb*jHu#(d
zu&V|iAWySDVfk(nzP#EHL(KR};Pxu>fGY{=q&xU^JPj8C;lnAPF4#DnF9(8)=ak*^
zI`UmQ)R~@T$@$hiK+k0Srb${)kO~NVm9ggq?dfci(qC%$UWi}xYX`~bMuAvq8#Pnp
ze66Q^+=#j6!>o=NT8BP?1!53?9flitiam=qXYL(fPE~Fg9V2letf6edRYFqDhuLJc
zKvk^UbWa)Tl2M&~cS{~lyuM~;FPsTLaG*Mja~FecA-fPP@`FW4;B@T=C|oRd+U!8f
zyI$}2ou`D?il2YNt3!1Ev%gsYc)9?gHq$0NlJMES4)By!mW9R)Ms$3CH-*M4*9`1m
zuO!P8U#vXu{?-<{?;>2*=U~De>tLeQ^WmU;e@=}NqQT7r9A25ZSBI{pKOH4iZR*Pn
zV+MQ9^wuWLxtqP&l3m5x;x%QeRM#DcGEdaj45kNT#c!3c9oM5>TEw*|{*My&S0As^
zO+C@qXX{jdRn9(~rUw;&-^tKMOqy?2GOvZNSM5VtiBQwh8Ulh`h<bvT`8*SGS=NDJ
zpQsPRaOjjgY5PjfPLm`qviyxA1m(Y>_fW0_mrLB+M@Q+gbs&~|m2wj|^|BU`2sew-
zE-$ONDa4hxV@>)ag$G|~vt(I$L^3~bRB3XZvJiyvSEXsl*a%vGM+8FX9)MWG+5vFQ
zdIzB8kzsOSe=043wUuD!*(o4RRHc~85u_8ife#o-mM1|99J}Wez9?V~p`{z;G#9Ba
zr-X5KKx?s>Ezah7&mu!w)wV}RE0Qd_9M$4jW%i4gpBup&o}7rAePA&Y#neLc42l~L
za;^XXSXMGI-Dqfk#P1z|Yw2lf@e<_I84j*0JwQ&<ffX%pUG71-iLyVMGyoREr;jS1
zs~&En_ftgTcvClpUN#6^BMW@v=KP7NA5TKiqAKBZnZ^)}pDJ{C)j<@J4+jhVAS!#D
z^+?k~4OcotsgryYG5PlG?b3yJSpnCFW#e<zN55!!ifryw-*BvZ_Jh&U3v!Y9_hMXI
zC4U4^-lkns&1Hfl91H@}(hCmMFeX=f!`-T=n&><6rcTQf`q$sn7ynxUTgG76&8`rX
z>`2-?xw-fA{oQ{7x&$wfm$4fQ69G7vK$-_Jmwzh@L$@f;4q9>qG%ztam!XpfD1Ut#
zNs{BZ@jkDpo2iJd8j|38?4EXe37<SY;c$3-Kv9&0Xo{4%R9h2%ymP}siZzES0f}T{
z%RLc4ouA^TKm8EP@29Un{P-nHo|5>bj_c&<>**;;>X$grpUSd&iPQY)>+$JdQGR&N
z<2d@PXMK21^Emo=fPcO2?vt4g|9}4aS4VOC`{S1a$Y(DqD^esMKRv7DC9RYYei70?
zFW0Lc56?*+-B$#E{G#fo>ZLA<OumN&R&l}K|C**r3rkXEbmYZBOWTD(uZnKtp^Dn6
z?Pov)G{!MK|IQc2E2HM3Z*x0xXZSUZ({_|0&6JMqtW6hE(Y-X9;mY$|+JAmBZ`k62
z_E1Lu)mPK&*$gu0aAJD%C0P2@&VP{Urg>bNXFLVkF5FFC^LFQjCOIT=^Z{_oDq1F5
za+yZ2aCk8+K);z`Jmj^-;5C*i>f8A{d_9cc_yYqcGU^7`HN7036@2pP&Zx_5I`f<9
z&y1=0=S`2Modtz9fj~1Y8h?=O{$OYx@Q8+PlCOCIDeMc7rr9*QW5jDaUkLX&ec0VD
z9+1j%e>d1MN4QG^7ZkS>LJFP%hnBt>;K1qp$BALz@CxqSzUg1nM73itAI=v&^GH8P
zW9U0UZiapy&FeDDB5+$Y8+YZrnV_Bi2-D8696CB8cd|1H6=Kt!y???yfRMm(b<@Bt
z;wah=Y#BjG#Mh-?yOvQ5aNGGZPux2VBR7WIY_4*F*blEB$=vYJ+Y#`ux^ILQpCUBc
z{sK_<@kAWoETh4@N659+6LTUmPF9v8hdbK}WHBr4nVn59fbV9$V2e%_0jGf{lW}4x
z`2FSYe`7S}e?a-q(tl1f4>rTn&(jC_f+d%EH!CgOrfX5XVDrr&M|@{`#Ku`EvWN=^
zXXu-|P$3=${39?hF@>>9vlQ@v+t*z-9)a!Rq<P`f!?U6T$;;@{b~oFEi|p_+x%>TM
z8a$f3z|9Memc?QFI!uDPUh<6mOUO;rPLoqtK<HIQF7T;P#D5DQU6|W5fQDxmJk-33
zrVEo{zD5*YX}H;nH%rHoCze<ed4bd&%6*<P`wh3H)67$ZcH&=DG6P*dbeP8m;<bjD
zEv@tDm$jG$v!&bn2?ztq)COcjCIT2U5fd>oJ;@U`K=Zfbu0{sU&WliqyE16Xl_`*(
z%dm7uh6?+0=YIzKgzcN(yg^CCEG27Q4OFf}Z{}fiQ;Fe8Ho}PzkZ65wufPa+TvhIE
zWJ)~tY}wJTbXWP(Qpy-~<_Ibq@5&jK+%qB|fW#$9E7;c|7@3x-X+af{x<UY|Q2Zq|
ztebC>kee1dI2<9P0jC3Y85r{{2v^;G59bW8Sy1S%%72(FF7cbJ==0~{=gq7yd;2BZ
zr!vnR&2a9m5d^s9AC-gr%oFo4s~uHtE-Z`m5jg`Eso~lthBdn9@BJYGv?YZ_6VB{8
zbg~kV7uJS)ZiBUXd60z-LZ}y|%#*Nf^DE!ka)bOw)>x&P@T^Mx?IM(okQfXyjR169
zXV2;=AAgbw0R-V!Hw>(pgKPI?8DTLa<Cvay3l70qoChQUUdh1YY%-ydX3rPgGmV44
zVP;ucXw9Kdwl>X0z3uFm*CXtq$v-J-Ko@gRICl!5XldVAr~qyR*YTYbS{T#~ozWyX
zV0y_zLv;^!f%pmuq9qh|Dk{fL_(6MRZW_rkf`383vk&4@T?E&AsfAa|GV!BMt^=K%
z#bWj~v1ko@1wFw7xMVh<sXYRKu02ZnW~L+Tj}}?%qL79o5Ls8a-vOl7u-2|>2pI_6
zbi*XGKKRA}W8b)T$AhGUYo>na7VX|M+I%pyM>?HWc$Z-t7Y#u)CH#KBkjhA`HQD%0
z*ncNBKnI9zFFH+DXr)W%0S#-|X&JMKH&Z_n3mV$Apopv@W$^&Ww>ugUeOmZ}j`r^L
zl4!)JBu&G{Q>DpcK!8FRr_mRS4_??z?jMH}3PKV+-)~kUfN{B*Z{%YWGXHwHKn!x9
z0m|x-w@I#f!*G;aA;8j^Sg{5juJ7Dv*ndLOjON_)?D5*P?HZ_tLIE+>Vne`uYk}|q
z3^PLmvxi=RSoWpY3j`r!V1|(bxlWA1+;_dr?0yu1{|1BM#$}?w;SeP61MfK(p|g$%
z0n_dHSC1wjsfF!`1;F?VXV>ADq1O%iDEP-kTnW4)^a-pkfH4sl;{r3l%GtQMZ+}EU
z>R_#Z5YoU>uMj+v;zV{~fv6us4pNXixB3wxF*Xrk!?wq(lxTUfZ>=D?<Ha6Zm7!zX
z!k;))Qq6)!S`=*38yNzGiNMf~SatOL{n}qdKFBlA2l(mKp3&pt4zDnncAA&totqCP
zXy*u=K~lAI)uCzQb=HCsIkBqb#(&yv&ytm<lz=D>LPjAvY{=|IKwdG6d4SgDRIJuN
zhUCz;tgRaio%L;Z-@E6JrUPhQG0==FFMI%Ie+n9?Y`Mj`fzzFPYgRTW2UW$QU&;Cz
zWj0=m!^mzbrLLWW4@9n7<_NSj^vJw)cRp+!ou;Lg<&uKhvsUgZT9Q^njDLg)qP48A
ztu{2-C|7HbR~V(IJb@gzS7H1CJBBrXsD(A4?=2O4{K6Y`(L=S$tJU68lT6|GR;Fkz
z@{8JTPlwBWIqnQ>7<R?l80Vdcmd_GCHt(hAX23}7e|qCISf&@LksCzPZs;VNb`}7j
zVx;NRGYqr(qs&K_at`C6%zx%cTJUAg-TilXy9fJ*2cq_*$GY;06OL-vsv?}TAp!nX
z!`W*iq?_S-U3%n7NjYXtTR75)1G4&zf0XDVr76?eTcoI6JcqO@qtBi{m}S(vOuZ7J
ziJe%MS7_WilAbb)EW}tH0S?K`AYM@`<AT>}kgjL2G3VAg#&nRx(SJa1#lhq|*Ah|!
z4IxZn6)0E%vmJImHW2X%#wN&Wa>7%&RPXRkKEP#Mk}C6TG-02ERD=)xd7v{yU~`w#
z8eN3SSOPxTKnh{FO3G*Am+b_;8Y&+SH!uhgdBxFnE`+8%@rYOznnSM^%$Q<b5zsGJ
zyE@szi3fngfOYrIK!1`SMdBBW9b_{$Uq!NY;t8ht=VXIK>>#I9k?qkP6p6KA*h#Gk
z1F((WY<{HJBvOifrx;^KXIF}qzXm;*mkai^<Cnqi8ep5zhO$Y;egOQgv#(X?LMN3?
zyH-2VDMGC?fbFB<<R<C**^W=Mpn3-Zdo1$Uaw#=8%POUofqzfSF+oz<nC#X`RIqcs
z(?CvC=JJTxBzveRW6SyT!r!;zG%Wsf;ORO&i+~k-DM_a)&iJCvS7qW8ObDm-6VF>B
zg=FSIQ%+dsF%&>R*Xc2oKcNK%pp(^;pJ|u>Ug#X0Y3j~2<^2HQmDpGxIi~>;c{}qs
zM>~7Rou@7(hkuBjb`=CbKNG#>#yvh%OXYU32~oa$oGvsFScUP)m<r^mZzRUVE=PT(
zPd*_Km03r3zPI_6@MKkBjVTmLIJW@<+o(FT#jUJ*$e34>F?X!Xlzj>%dt`Kk!O>3Z
z?}bIu3|*nK?xhGNSZr;eVcp98iW+N-Y?Y2p3$g}AhJQ9WRv4t59T=;L5k%XlRSK@i
zY*-Hi6l9HN`X(Q^gXCcyd_)P7PA1yPqbabuUR$Z{`4*gK-19T3u!JT|{N<8AhAUgl
zbYa`K?}KCY5Cb=<+qse==Xls#^B;@R7xTL+$e{h~*dxZzB|=}sGD}X?$}oa9XJ2OC
z;tP>|$A1#+Fz6q&;pb)aY?1qdN0wV2%>za!#*U+(hOXP@WUaSX_~aByavT%a6Zs5W
zz}rPn%thf0p@Y*1jQKeCH7^mKToQIUv(4|7lsL8)gX<CjN&T4Ts(sMDiO4WG4^wPO
z&F)s>g1sb2hgxqiW#LcijSrvfhFwYh=n*Co!GF+d-%W09Yc(p#Hh~7Eu3~cUaL^T5
zs47n>0D!LZlL#TBkz}j%9QIw_QqZ_Woa8P|MGLS&ANIn$o2;%EVr*7Hh1@4Nb#A{c
zUH?usiBl)6U-P*1c4AfOO&?0bqVrR#@NtsO2xgES!JgCo>DK2)5Eqc4(TI$35f}&t
zR(~ViDOoUl<$W{g%76=K=jpl|^;>~dsq!iRPah8;+W$l;i2iX%k~I2w0A2U>kVilL
znQ>2}zH%YgraTk`V&E^znibpV44+dViiMsAkPTOGP<GF*-k`*3C#fH9lGbtM1qn=E
z7h=YA{j6eD8`-8U#Ze4jM-(<e1`VnewSQ;6d?aimZx~x9X|MwfUmf3Ak4O<Bet3sb
zVCIF-o*eaQ<rv4C#~8E_@AXQ+j5IFR4-P61apckPvC4iV1P8}jT*{hdx_+M_7Qt6$
z0l_OGdXd6OHW^K}4@)*efEb#8Y_;FNKEXB2OOWP)q3;}pCQ_F4Z&`#`;2cq3UVj+j
zOO|%tFPfrdmE=##WGl5wN~OMp!d+e;V1X3`tuqQ(TnA`Lrb$JT7fsNH(TTv|dEnor
z?}ynm-btwHAXNsl-1x9G=dTpMcfk?%*Rkc_yG)ET3-R6eDi6gKa7(sEM@ceV+29%g
z^45u=^yr1M66~A6_(?aY12wNA{C{#MELX}+z?w}<)!i09S9uoWs-tNTWGeMoiF~KX
zlBQ*7d)Pa*sj`d>B6`}P$HTEgD!%sP8?iKekRpKtV)M4sa+_jL<$c)f9L?0e@k-16
z%q5+Nk&nF?r`2N=POIIG`8q?1-FT%xxlhD}d}UA^z_KpR;)^ft9^8F_#hu^;m*5^G
z0Ty?6cXtR*aCd@B5?lfVcfGuGPrdi^{rIN3x~68PdS<$&yQll;d==QgjDMjlI8ysT
zie;D36x#Efi2%@X(qzP9b7!ii7w0*J*S~CKd-roLf%_g<{kY9@ySx<5^=L1y*>Ypl
z4rk)4RY|n_(>NGtg(l>D&nREwsxvhT8M8koz8-S95L7_O_%m%b0esCN#aHmSxs3RN
z{z2yZMC2ZOq|gjus5rze!%b@$+mxK_tgAaS6gp7<>p&r!!OnPtDgg}P7UXw{Aw#C@
z*OKi1(CF8}x@!pf5rM+x=UM-KG3>MBy{r7VgFXVGv4wA<r+O_VYjaz_cm!&m^*#wU
z-s$A;tAJ-RiOHHE%w!#gjI^rd^jpEy&eWW)hhofdPh{edkEHFcC;5^d;Dc)JSJUGD
z18DYdYIYQPWTCgYzpD1?pcnv<c8&$2k*o4#qLYZ@-eqkJG=MNRM=LY^i9KB!!_^BT
z!x}^5)K*6FLFI|+oH|u$p01$Egx(D9usDqq#I7Xd7s>#e`<B^WLmQH6u)5evaZzCE
zQxg-@f94x$IuOli=Z4x0Q3<DkG_~9e)U>AfE4kAW;rH*$^2Gx(cK^Xa@?129w7D^V
z8-RtwGp|<m`|53?kTKI}gFm&3__aEAUd<USZb`YW*rs$9H;7Q_{5{oyK0gk;!H&{j
zm;NWN(;6X-mBf^G=Y!3hCgX&~0L6%`oPT}v3oEoYw9mkcc<jsFI&|L8auerX;6$Z!
zSLzqsvIi>9pcZ}5$I(uhl}9=D`US}H5<w+Qb}mLh3_76vfr%??<W<J$2m$;ON=TL^
z3DLfnV0f+=<t8p@mOs>Whuf!(CRXnEezpJ~{=i+U2)B_q0Pv8@8TN0JL$83d0zWE5
zQ@@Za2KTmkdBki5FXJLcgHB{jC7<o_<{@<GepzjsA)J`P5yWILZd3qs*0}tgbcU7k
zf>FBwdTS+s&@3F5mn9B>lMrOt0J%Oy$c%@Z;PKe3|7b^q<Y6m+5stfbb^NT2zyVk1
zK>dm$3>!4thlaH7;Bnjpg~tHK-{CIT%j_5jLcGq3z1Jgb!VmhxZDm-6B;t9o$({vI
z0@0VQrsM+8d&TGC&A4nO(-&BJY0ZQAfdV$}q#U@Qqlh64Mlr_HKDohe02f;1!K@Ji
zhG4u4weBG%5gi=C;3O>B3{Cz8`Jq200s(OgY2iK!r)qF1u<hN-p+jOTY@9SIFNv%c
zSBE(0_M?#H(OcAnhZ?tHk_`v(7g^Ryb`^#oL^Q9#qUlAS?*pjgcHxgh!i~NMTDxa1
zcZEx2pqRpQauwybadL7ne$uE%4D4or2W>J6kw?RQPegP=A4E85Xvo{et3#wQQKW7`
ziga}K799H%&hi<$dif{nr1k9;i!Z)75XD~}=Y(ZxVy|orOFX-{nNJSw;S9TnHA?@J
zQRE5hde)yGHw1Mf4uo>+j^{Dntyr*FwZ7-oD9RM`Rz2E#CsIaHED0}<`!%Ct`x~|{
zJ=-JVPHxW}UDFJ!cGbCrHwyK8n>X^eV#X=QwyAZ*XFt)QFWEDM^Ar<K+mUJc!DR6A
z?)t;mC{@ZVO0cdQ@n;;cj(>Ae@GOg@yo6!@VGrC|&xfW42A6tlEf2hUf;{+G<~UjU
z)wECkO4(m;sT+~P_#rWe(3C?Cz*9!}(h)>;nI^qzf*|K_{`m!278FZ)$NLW(QQOC~
zPYu=k-iy`HVlm6N@jsSzb?#TaD^@EijdKt$r87EVr5ZU6i_d3NcJPflF`DAxCuNuB
zOubEK-5+X~wb<m3&h%1udYv`QgM_Rz1Ol1Z1yPTzi*Nq&pnpdT3Q_3p^gH{RJA1}p
zjXg{IZI7*KiP$E$F;kY+a%3ypj^_`#P2uuqn{8DsXnVJ`TA38dWoZ!x8TJ$9$4!7#
zBFz^Dvm#OL!`*66vT3ItpI31^;*VXOTc0ZFzInnsFnr4#%ZD>I79TlrKB*2Ovc46I
zwLis<h-)^|KM(s?E#Hxy7I0!C{5{Nr;Ok(5GpTI+x_pTbyLv3P#()bcis`2$Ktq`P
z3HC-70#sk|cQ{6PGe5jT;6y-uGm1*YJR{%F1?i_>vE78NNkUB#_3ALSw3&Q!qkP-y
zK?q?4OsruL0%=Nyl#4Ql!5Bgubyaz^?-x{Z(+3zt5n`1g0I>}67NK}Dq*~Y;GJUrC
zbh1cXBbp@4GWFSlk??}fk(Hv~Ug*1GiN`&D<j|nL^@bnFOuof4OgSYpPk+p1yFO<9
zrCV>Qb>O$1)>sjFYQb>$#;hqqZ%x<RfE*$vibtKsJ_;oz+{U337<Uq(r?=B8`<Z>R
zxM%qtd~2)CK2H4<|8npm{Q6XzUE{dt<I<JBr^WhtZ|Y99eETY1O<TT*f|9OH<G$pI
z(h$l%F*Cns>tcuwzXxnZ$E!iyTOn81yhGxxN-Z*_9@0}^Gn2fD8O{l)Fq%%gbX1?5
z=v;jC5UaT|?QII;ZbUkTC+dpz5kjaN2X{p;byITPs}Viy%Hv+it-utIeu%l4V?2tj
zMszbwU7qmy+Nq1N;4Ppp*1En;y|*dr4uyX5^z^*6x+%#`kq*c>_R)%?RiupkMNLiR
zW|cquaN3)jvP+_Ey(k*8#_*?9ZPW&1+p5Q;!L9#0AwS&xo92G;L;8G70&9ZUxN>_3
zX)<fVS}4XwOMwGF$zIar)Rh&~C$`;Y-Nk(Ez`<^Pskz4~Z~cpVXRJ$5e*!&S7B1BJ
zz8+9ElN%I=1>b0RtmOH{K-nqPwc`_8>5wtJVd!FF9A#_#2kHRn!4r%KWw$8nT&#$=
zbJO!X1F*^f*Vqj*kKyv3PeW!3ba#<)G}{W{5tgV?H+J`>BuxiOnbgKO-f7w&MOy@C
zCy;aZ>5;f1XRpX(bhaCY(xFMonHg#TL0a2wn>~y=tgY^@bu8m<`zdY6+Kr*+%t7b1
z@Lnc`*p&ogBl-0hBloH8UizXWv-ZeVv`QWIlfNqeyqRCXA>&o^hs#c8V>T=JD~_1+
zpzH&3`zo`805U>@Dtq#0+HM1>-GxzXb=7gafhfuOKk~Oz2KGo_Y8zh)Sj(WtX17m1
z`o4y*f*d;maho&(5b6r-s2rEMfh*i!tc98zO6U*EXAdXG4(*Ic^di&!vXD2J>c#p$
zz502a<c-=rz$&^lU*ZrKXLL<@*T0AXHpxdm3CnOhO?h>Z-{7Tc-F!KPgwU3cCPh2G
zdEZ*CKi;-fA4TysvsJNbqVPk*l2w-EhWGiS^t58BKc^)wjNYE^RpUHgiU*{9w<GJ!
zS-TdBSe0+WN<4N`v7G!FLb4H*m%x8!zkW}SKPq;yZ}t$vrm&S0n~{LTHBdRt;Q7>4
zcD6uXbi=Ih&zC_Tj-cD%5E3QQhp-&61Q$ei1VQ_~2lF^%bdn${q;mjOWkW(0yq>-H
z-Nq$;!{eL~T!|f|r$S)x^yBSe2{RPO(_MMJSB!PrYwRLfOPIJNiFI_{nhC;W_FC57
z&SDoI?l=fnATE!V3g1VKnYnvdX9$LnP>3$qmF1<iUl;v(G8i+?6ddGM&YB1Tw#A0n
zJS4TEA#><Dk$$;T?`)DDzKB6>BD677xF9miDn@J=L5=(Ld=_L)7FSZL_E*v_KJ$J-
zdMXc4+POg|TCipgErzT+8F;wop6Cfd-HRUi&B0n>|9RSk@p)mr1NaW?ci_AO_Z@ie
zz<&opE1wsk;tm|of5RJHy6cW4f;hg*I_JLi6T(plNbs}`NdhjXD)yf_0T!KPcCx8B
z^3#^xeo@LTD;D!Px}7Awr}PGfT480CqcnPUC^Sn<)a}#+2%L#K+1T)@x_03^er)02
zGeI(KbCG~80KX*e&^d|#rGV$KiU3WZqHOS>c(yKeGCqPKAjr%^0|r|gL`~$k?Z4G4
zyHAYlPeJmAzz|sg|HICbK2eYwgE}4^qh=v^X9YIYf*jV2U=4f7g))Rr;XWV<B2UU_
zdA@<=tgNsDwj%`rabxUsX4#00Z|yt*hJr)kZ_CwWX)&KbWY9s|C{vLF{T&z@gP8qc
zkXZ^%INTI=dW!<iTU?zrDdjObp$*+;@20Q@_5fX`xkj{!mD$fZz#Fz1mmC_VGwit8
zhf_e}yDJcAe%`Q$gN$jsFP0})E1eqCT0bi68u^omp%=)#`K{MQaFYkKcM}W*0!XWA
zHY*UTk>lG))0hlFAXt<%Nkb4P7Mxr%@1H9BsO2K5nZwMcv_L};4HTAkoGHRDo-vF!
z0A3}#PyaetC@6|sE*ZX>Y`!I|f09yt8l{*ZLXs^(IY?;>P&JSboo-W0+JNTG7M<l0
zOWqM4Ohm12?*yMtv9V`qeHU<A+BKe=`+HMn)tt-5c6gArSE@H9X5?^K#?;N}#I{rJ
z8@{MKleWD4@$1dYJXGs@zBRvr(d>;+M|UBVzlzR~jkx2Xqd2QdYkqcOZz|Ggx|_#c
z^hsuUim=H>|1N5^un(v3?$Gzq|MaKtBT%m>?k}uwpkPthHIc81@oZW;)njINf$TM_
zuWVd`@z+SrStik<gX=&u;A4W(Pa-zZp|QJ4-QPgAzYLEVwa~*%$3u)4$(}i<YvGqH
zz9_WdNJEFed&oQqq-SnF?0z^okC<K`4lL#+iND^X?Dy8a{m`RiKY1G_^l(-r5XxjH
zTnS4rw(81wxWK#?l-W2_qPRr5HVZ|s{(LM)Iq<ZXI+({WGaI$%BWC#W>sUb+^{riO
zq^6q2Tn^mnbppL=b3L*88vJjKozz`o=6UazG23&=MVcb?;gDVDmFucNU*p;SlzsVi
zn`+kbiAu+P@3S3r^?o9z$LAug?jMP0x1VDHX@p>B#tg{^8F*c|1BXgMlZGj$rRDEK
zQ>tHaGX3nemsgfPU-6Q=6|}qHC~#|?89o}fFutZ`f#sldV%@nz#ja~U-5Jxe3OQn^
zDJprTl4W&|UsO~NnS51ewCAsSGL<`{9UuPD`T@1I?2sSN@_s2=yOFgf|KRm82(EI9
z_1HH+=oh0Q``z>uQ&=bVOLJ|1%e5h6mY@G~md6prB}$jLA^$6`B*mHd*DlZV^(}iB
zXiK)a)+Y++@4P1MZ&QyxyiZMfwa<FNk;lAZc{NK}$U5`*r<%B51!8c2z0zNMc{H@^
z@4%M!cNz+A;S%MNvTm?(2ohpkl(j+K8Oq~MdwM*dC#6KQb9k#T=wDXV5vy1l6c$IA
zAy`!)lRc^GBONnd(Q3ar2}C_fM9$#KGt8TZotG|XSQya)mBxrygyx}Gl>$S#Bh2D^
z#=0@GmZcivb^ax+CSNdW4<_>rDopFKQA2;e?i8@9OL*z!rK_v#NpR^2zur}?I^F^9
z1!orCXc1V|DZG><8%N$HG}=I}S$_npot46Jd~t;IV+~e&>@@b~@1LvB49GpAUM<jV
zW*{>3Tjf8g>m-LWtoEemQ?FQ6;~X*XXs=wdbky8FBLpJLLRlhoG}XvX_^)n0kJnoh
z1Zp9aV)mGRB$UD@`t1YQSEm<!f4h(YhhN_L<<Lcj(d%ijKUFrFN<tF<x3kz>F9F`K
z*Ve*9t3f-V&K?3xe|`vfe>qw8b{p421foOvzx#FTVkIm}K{`nRb(nW|aR!j)U<~FC
zc74sBK4xc+mFtZzQE$KdmXMF~>7XSy8P&J?I(u+R%*)=j`S;ve<O!1K*nRe{{y$CP
zD9!t-p9x=C67x1w2_65*LZY1Q1Q|+mUfQGF$YVL68qJ<mkRQm))b^SX#%?!sY*Q#I
zZZBH6C&^ju-tZe^s~b9z%S5<NB{+-cLU0hYHTj!WW|jaFI*-lkeqP~~9p#19{)Z_v
zvMnXDo5qv5R!ZWT^b|*`;e(7CHRO9e`IN(lN}%Gzy~y>f3TG4QC+ixs5}CZxtdaD$
zA)%)CbTA|LS;oP^Og;%|Aa3k%0|>g^0-|>{TfjP&xed6i9+N!v8r*>jIUdUmX1W_r
zLqP+188@Ix8i|o_K#6}?Q{v8*$_KOr=CYEe*V|S>8ysDRorv3M7hZ*r%JnbG?Ky~L
zj&{NWXTRI%WSZ{6c^kHOBwIq+b*9p8M~+@)h^k|hmrCnBeC>*CmxS~t)S<_KOYbX(
z`PUVr3%W#hzJ0~@Nga$d4+CRj8Q;H?gmn*GV`;=UbdTLlH4lkngmq7mOC45IElcCE
zR%_S3u*YO|C|2b)>5;kyZyeHch)l(`VdxT-LnWGx1R2fi(+0hgpMk>9ux4T6lF63w
zns1HeZ_^Iw8WZ74H|$Z5gwPfzR=Y3sA72y&ZF3fTsuz3S`Fg)~nrf-AE4C3A^ui;?
zs|w%=%2PQMn&oOJ7j(rk#wEu;ShQxgwePLsTaGSp79OUv$pOaf5E(T_oP}+3zC;7@
zjYXQ_md(36&g%Mf@Cj98`lPqexIR@|<uK>AcYKLvWm)>5CBl941q!iCDq)q3u-S3t
zarnTClthyP$HySHf!whe9M8#OD5n*w^fGYyx{8ECWoStO)B2CXnd5y5+#OzH`Uj1o
z?nj1U);5dFp%EXww1+uf<8?<EyW{S{FD0*il8sB|OjD|PwWX2@tsGJcop}#t3SWpc
zO5(k<?1O^ic_m;ypzHK7-dXNvvUcTqLCQ;33mqFgCVEq8D&4!~b+4Q*Xlw~S4IOpX
zhJy5zW1@_^Mt#=wR=rlj_XJj1gN|dZ*L1WofDoBqND=bYHyRotYUTa?LLWoaK8D0=
zQsGtBUzczj^L~=Ymn=X<JF*o5CSnFlA`{q*YHsoMabl27LgPc*cGu_P2WjxOIh|H8
z{Ty@LDa$YR)AW8@$c}pOHaPAwZqkyQYQ6`}ZIUbcR1G8wuv?d4{gi1W=fc&jA)}h)
z3&}+PS;U8$?_U;psQ*I;E72?^{4ZB`Q*UuE5}RuXuoH=$XcjEV=@<mrw$n-*q`=#T
z*7-Bqju_%V)xvws+A~g8afs4b9*xsFz^$X?a>UrEF@Ox2;7qQdV$=e)kP_Zw`2FTc
z)&IlSy&uOjC)3f0R%09v?8wv)p+zi+5A-HhDy^n`iV^BVw>d2S%W5E-7^o)K=MWES
zoI9nLm-r~x2WO`IoI(4lMD;qpXZ3Le!j>dt;?f?Xgkvd}A$i#lpCQA;8)Ka)!?P6o
zXqHi@@RV5$QZ4|sF8xfa)~m8$JzAn_;pIJccp(9;UtoauS*kiPb>*Z885IYhFcZW0
zrD+oQ1h{G6tU#d%obNuFG{ny!ivOh;KZEA~Q=PSy)*1wh2+fRe6Iw=RnE}lGL~@-C
zzC6mV$JjLK7WVAiS30}z>UfhYYkYX1qT}XHSD(Qz$Lx=3z)TaZU9$G1kd%-B6X3H0
z%JBwFDRI>VL!~6>^Ajier-=G0)R{`Ee#L(@47ZXuu?pl^Q2<MTE5<7+^EK(%0gPHq
zs6>{}rF^Y8P@Dn<4T3=R(g6tpT(wdSLWEd^286P&J5MU$60kMmZVWnHfx5R$7vb#5
z*o(#!hs95t#3j-k>PUi$Nrm}B?UHaRi(Axab=ew3GxuL)+Tr8{+$YYN$JqJwv=|C#
zv*(G|U}@%x1VGYgs`u)mR@G!w2XaYcI?qVsrP^IS)V);dqtxd?YZVJRJRYLQr!XSU
zNFiHRU=dSNjDP;6fE-Xi@_Rwb0=t$?3SEs2^%oi&c<jA^;`}1*jI`o?1uLrZ_Cz9f
z+jLDKg~Sf|oNk!+HtC_jaW0+uzauTpmuAeB7SCNWGOKET#7})rt|+{;z|{)za1DSG
zR@drV8ll>xGZz)0j0Ku`PtN*Z%URFQ5tY`9$dmwX(mO=r@!Zvz=L`K7O0g>vT$#Yi
z*u~&O&iNzWQO1|Z4exdpt1pX8S2m;i#ao#=nbIiWjrnI|Ccjc3$fDT~!>>Jrx`t8-
z@AJa6`=mIzSTLQ+g}_)HV+}t1UlyoBRZu)GPj=P<La}A)F^ZgGNjg~q7jwlWmklw8
zDc9NEkF(={co_UJj*%LzMtyiCe!jY8$UG<e*-_GK_2VgN)=Bk+Xt2B(z*^j0Ji17q
zQWC~BCWSQAU&`to+MD%Yk-4!2C$*7=odNs}{4c@ND=?OVOhu@c$sUm!r;gB4#dhJY
z$zQdu|D?B>@zCjE`>}I_(hDI-?}KsWms+1!m07p_=2RSn&r<r9(Ds)}Wq2VtNouH!
zu`4Jgy|77DGs#_&o03^nI%s349cRU2Eo#sZ(92-)3BZxF%Lb(IxVYM5%6NIPD~l>T
z?@tdbuUp$Do=?iknoJtwWrY4|BQB+0A4!r{uh)>qR%R-QqR!MQOwKwspSm3qTyFpU
z55Z6sA623N>fo&o(H@Afp+;>jxN0nK%N8=i3mF3cQkqr9)!ak#kC4$-8}}*SRKbV5
z;JKGFqG~#*<C(P=G7bikpvcs^bsC^#wmtOuASn01N7}x|uKrQbEQK<nYPT?=R!xaW
z5Y`#AbtIVV3bl5o<VSh(h3xeXWo7ldZf?I|v`S;=aCr-&2}xZRrx#sIZA_#3(hSJ8
znCL2TY8B+NmL!jt>nQ4sYs!db0;P%YDRb^4!ikM*BdKjoy<Kuu4yQ3b%X{3+JO0Rs
zJoAkkimF)s4K_=#j)lg)Emf<dZP$<wrV?!52o1iXn<>Ix2@hQ(5B0|}{)E~`Q@MtE
zRUy4NHEiYKy_9v|6iNS`b^-uVj^zYyVSsf6RIl4`p&LK)vVOxu?%o|_UO!P9iu}Dk
zV_n=5MZZX}<lSNgoyqYUQAydWQt=r9p(n5`PE8C$ZffWzG*CT~v0)PR`UY)2oO*Gg
z#t&@VoN6N9B!4Ar?%#6%Ser=V>b3>)<2ffle@Rn15^?l6D=_TE=?%OMapi`=I=(I$
z)xVw0lq1EzWo*6dt`4w&(K(AHc@*wL+W4k+p^DmL*kR}f7(IUrtmlA<elu9T@1a<J
z-P-sp&WL=z{KztPHk~IX>eGHQ1J%4gf0BB-KkOek7#XPpy=}E7i9eHGTKQ1kh)eaX
z692DK)prFMX-IPN%J6dwN^?tdNXhW=N=b4;czHPmc(`~ZIV2$hQeu=M|KBc#|F@<F
z7Z1mOeF9`@Huj%%h(gc!cUZX_M$8#*S1yPdVsivMeh9mq2t?t=<p@NOIYp3-a7wC2
zq2k~huoST2{UiY*!Y)!~`Xf|AW*y3tUG-5a=-^Vy-&5%t<gg0?j5v(XFa@tB?K8sS
z<h~n%ce&qE??exjfC$hhV`>0S0NsWd2uQ@(2&EilRQ9)^mLq5hWTiwLm%wN)$zKWF
zrTJPk7`Sj1*%H*)woO*@ZXGPoLDs`7BU=3N)P}UxFqy$fnt|1b_(cJTS`-ltSIwX+
zEOVb@iRg_<M5{#uvjx@R6~;)H1LFWXVgqv#!m@}S<2c#&`%lq?XG8a=okv=j3%ZxG
zP*w#y3Hb7;iClF((G>|##qdmtB08u@=^Fhksz)GSJ=zJ<KNGA&m>d)K737Xyzgdj0
zy|A-rk6>{SOpplxJqX(wND5c9$pM1j*#xA+$o9!Qqh`afUH~0!0VBOGNTcVX^QRde
zGfht)Ojv!%O!!20Zmw77KdUZ_7+y6&PgH}rO$f3P4|);n3949~C}9)x0eC?;@o+Zv
z_`6{C*<_^vk#r<(e^vT>i@^Uj(?Nn9Scej3upa{H>e01(rJYf#19_c^s)JZe;6EW|
zp@%+Pc@6L2<snGtgYpUE#C?dshepJCO}na&$A%cq6zD-an+WN!XeLnXK??pbb+V5K
z=`1?1T=_T)K_2nQpL;(Dpr!V5seQZ<!1-+;AvhXHS`M$A`qhJyat&jx&*=Y20bE9&
z_f(Vmy!ft<8NTtM8as?3e`ij5{|q1uuA$rbrid@7=y$Fs9V20~c%n=m<W0Kgl00JB
z-Iw^LyWrLa{n@Jf)AP0ZRKYoY+FWSERJ!i&NHF`rC3nP|{J^_<f4%zf+u~OX@vb@2
zcOk)CUcf`#OvvSi7=M~WHteM9YAXZ$STbJQI~q(%*x3-Cc@XT68Y)H-{RS0`+Y0!d
zYet&MmmghNI>kwKSA(Ec1j}E8PZ_FD(wxfC>mGNYCODfmab=>l=Zx#B2DUGCUqN<W
z7_i9q-blJAmAxMEh(z@<va@Z*O$$X7<*?6N7hxk5<WR5w5X63DUu;?VKipJ|Tob>Z
zXK5ldeS$sukn<<T|7tIPQe)Xzs{=8ATZDP~vjl!Q(t59l8vGGBq@?@uTbIFv1^fHv
zLD99rzvdyjNDI%HvoORGxYkIl`S>RYo#3t#$3NOv4m|G%!QW8w1V`H+y&U0)dwSvw
zmMkCl1iq8?W}LS<ETo@V4Wk7%riR2_?`Yarw3PzgpIotvue=dniJD+W)n7vKx33bu
zlnDaqZUR@KlnEXwlDP>fDeTA1@{&IeP<8l`URnVZl>ou`)`f3Q#|bvh#PwCXt6G;Q
z%nxpxA}cUgsb9Seoj$>w2zuXUKclt**aEcjgEqOqQYvMAT8b}s!Ne;~lMKeop(6>K
ziK(@I8aCKP77}EN#|o^5cfwl9dL3>b)z{`!MT^3(1{y@zEdM^bq!fsU)sniML1$B{
z8r`3sDr;J<lN19|-tq;94S&acnr2>OXO^U^#VAK^*7kb}Wd@c?>0rvYBe6iQ<}1O@
zwX4kfo$yunuP>lGBMn4-x5J@k{UMe&^;O5=P!&T8u#_V^Sgsb05`P&U6DAgO*%aT&
zPXfbPq2ncW^{#DB!XHdp79~Xo#dHv8+L{fOBEZxWaNh$4?clkF_hIPn_bT&-fPYE&
zXZ}*}mDrmN6}HT{z!wc``z4azFnN+Wt`;lBj9DQtxThA}X_Ap5{53df+GS1<VOyK^
zN;8AGHZUsn;oPt!e3**3b@~&pnFl;duVw$xxc3j)b!U?l_Gg~@lY{O`XcGdS-rjPa
zwmy1`zed&b{&!~ciNoQ7-xX~qzA0NTj-(qgJDn^wm$wvJ0npCYps#8UDeU3}k;H0t
ztKFO>M;6>GrmI_EON{I82x|uGhLhb)X8k^~S*ulUr*eD36?h>q0|>z|)$p~Dd=*Qk
zH{O!}t)kJC0~J&Mb}e}viW$Jkff?&xv<VWxRPj&R#7l?s=73-7rE?Z=yiO$+#hCU-
z;Xo-R%17$Ltc5WYstr_b5&MIo_alA?Eh!&R&s9M0ve=k+|09=$u1iVNY?b{*!t&xa
zFS=>M%|7f)u?S%!IhD?BI4>3nn5IJCYHh$u!?y;pDX|i{T6RSST4}_2N7Ws@@Ud2M
zi(KQz{{|pTR4G%8;YYz#gx=|2iytkrdx>`&&qYGTUtXV<OoZAl6Y^3_OqUkx9G^^t
z71qn~ml>Od%(mw<lcY8;Dcxe9Cn!3>6%<<S?iHL2&t(zQUsOz*NrgsnbUPzK-1xXf
z`xg#d2%wr^L@9|5HO)<~QWL<il4~aqIiwVk`kHG^kWIJ8hL3t6-)<c8RZ0g(v}~VH
z4qKzV`$Iyd`WK%NJnT^7JvxmW@W)1(NENB6ycXmyI!Rp;k-1Velk_$sEyakbc73Jt
z+~c5jI{(+3T*~di1~ZM)F$FNwU(Q0VeDUGQii@+Axnf)h^x1*$Mb8R0x+?x}2d~PY
z<)k~Jd2_T~#$WbJQ|j8WQUhW|J6@PELQL#Em_+t`_$uVbG$F~sS2MY8f9q-#%7=cS
zIvV&A5zk5(Hjy12_zzAfGQOx8p4Rw~<_IQHWUaXioOlpwW(ZD{JzT<|^_Kn$Nj$**
z_$~2=(fkNq8r3%t3lvS?t)|-|VAlaP-@}}rJJ|94V*AfxP_2H5pQTH2gCr&|#Kzml
z0x&XY<CabWEqe+`8d-H0(+==i^_xX2t;bqk&Ql95t88p_n#`KpXBa!In_qgg-N$SR
z$(i+=*UF5wo2;7oyK4>`7hg|WBbRD!RaIF!%mnSUn@roWpuEGFhn@K5^+5Atf#HHy
zvuM$1P8as!3s1A`XX)r?W3z0>I2S&#Pi}5foCM?%4bK|Ui*X}uTqVNds4Q}(;Z?I%
z?Qy;_k$^HtI&D8K_G|dLY%ni%HTG5{KnDV%?gwHUg`Z0XV^IHl7NDFfjk~A$cXuc@
zryaLT^Y8Lng>DW>)tLI<zYjje4rBq4wV&7;!EMwCgjD?iQ<-pH$zE)YST&d6NE!rE
zs!hN@8EbyY7VO3tHTz&QnnB_i{nH}u3v|(+M9&o6-g$><sXibIG#+k2Zd5utX;m52
F{{aI?1i}CS

diff --git a/Thesis_Docs/Nikkhah_Nasab-Aida-Mastersthesis.tex b/Thesis_Docs/Nikkhah_Nasab-Aida-Mastersthesis.tex
index a6d0fc2..3d18bfb 100644
--- a/Thesis_Docs/Nikkhah_Nasab-Aida-Mastersthesis.tex
+++ b/Thesis_Docs/Nikkhah_Nasab-Aida-Mastersthesis.tex
@@ -102,11 +102,13 @@
 \chapter*{Abstract}
 \addcontentsline{toc}{chapter}{Abstract}
 
-In today’s interconnected digital landscape, Advanced Persistent Threats (APTs) exploit stealthy beaconing behavior to evade detection, posing significant risks to enterprise networks. This thesis investigates the performance of the BAYWATCH framework in identifying APTs by analyzing periodic communication patterns within extensive network log data.
+In today’s interconnected digital landscape, Advanced Persistent Threats (APTs) exploit stealthy beaconing behavior to evade detection, posing significant risks to enterprise networks. These sophisticated cyber threats can infiltrate systems, remain undetected for extended periods, and exfiltrate sensitive data, making them a formidable challenge for cybersecurity professionals. This thesis investigates the performance of the BAYWATCH framework in identifying APTs by analyzing periodic communication patterns within extensive network log data, aiming to enhance early detection and mitigation strategies.
 
-The study employs a signal analysis pipeline that combines Fast Fourier Transform (FFT) for frequency-domain detection with autocorrelation function (ACF) for time-domain verification. This dual approach ensures robust identification of periodicities, even under noisy conditions. To systematically evaluate resilience, synthetic datasets with programmable jitter (2–150 seconds) and beacon intervals (10–300 seconds) are generated, alongside validation using real-world enterprise network traces. Key innovations include permutation-based FFT thresholding, bandpass filtering, and frequency-lag correlation, collectively improving detection accuracy while minimizing false positives.
+This thesis offers a comprehensive examination of the BAYWATCH framework, an advanced system designed for monitoring, detecting, and analyzing data patterns, applied to both real-world and synthetic datasets. The research represents the theoretical underpinnings of BAYWATCH, outlining its algorithmic architecture, essential components, and the innovative methods it utilizes for real-time anomaly detection and data pattern recognition. Through a systematic evaluation, the study assesses the framework’s performance in controlled experimental settings and its effectiveness in complex, real-world scenarios. 
 
-This work contributes a scalable, efficient solution for early APT detection, validated in both controlled and operational environments. Future directions include real-time streaming analysis, machine learning integration for anomaly detection, and extension to IoT and cloud infrastructures. The thesis advances proactive cybersecurity strategies, offering a practical tool to safeguard large-scale networks against evolving threats.
+The study employs a comprehensive signal analysis pipeline that combines Fast Fourier Transform (FFT) for frequency-domain detection with autocorrelation function (ACF) for time-domain verification. This dual approach ensures robust identification of periodicities, even under noisy conditions. To systematically evaluate the resilience and effectiveness of the BAYWATCH framework, synthetic datasets with programmable jitter (ranging from 2 to 150 seconds) and beacon intervals (spanning 10 to 300 seconds) are generated. These synthetic datasets are complemented by validation using real-world enterprise network traces, providing a thorough assessment of the framework's capabilities in diverse operational environments.
+
+The insights gained fromthis research contribute to a deeper understanding of data monitoring systems and offer practical recommendations for future improvements, thereby advancing the application of intelligent data analysis techniques in both academic research and industry practice.
 
 \tableofcontents
 
diff --git a/Thesis_Docs/main.tex b/Thesis_Docs/main.tex
index 684331c..c88398f 100644
--- a/Thesis_Docs/main.tex
+++ b/Thesis_Docs/main.tex
@@ -497,7 +497,13 @@ Analyzing the time intervals between URL requests is important for identifying p
     \label{fig:timeintervallog}
 \end{figure}
 
-Figure \ref{fig:timeintervallog} illustrates the distribution of time intervals between URL requests, with the Y-axis displayed on a logarithmic scale. The X-axis represents time intervals in seconds, divided into 65 bins, where each bin corresponds to a one-second interval ranging from 0 to 65 seconds. The use of a logarithmic scale on the Y-axis is particularly useful for visualizing the wide range of request counts. By compressing the scale for higher values and expanding it for lower values, the logarithmic scale enables a clearer and more detailed comparison of the frequency of requests across different time intervals. The visualization reveals a consistent pattern where the number of requests decreases as the time interval between them increases. However, there is a noticeable spike in the number of requests at every 10-second interval, suggesting periodicity in user behavior. This periodicity could be indicative of regular user activities, such as polling mechanisms, automated updates, or recurring checks for new information. These behaviors are common in legitimate network traffic and can help establish a baseline for normal activity. The identification of such periodic patterns is important in network traffic analysis, as it helps differentiate between regular activity and potential malicious behavior. For instance, if a URL exhibits similar periodic patterns but with irregular or unexpected intervals, it could be a sign of beaconing—a technique often used by malware to maintain communication with a command-and-control (C2) server. In this case, the analysis could reveal anomalies in the intervals that deviate from expected patterns, potentially indicating a botnet or other malicious activity. By comparing these patterns against known baselines of legitimate traffic, it becomes easier to identify and flag suspicious requests for further investigation.
+Figure \ref{fig:timeintervallog} illustrates the distribution of time intervals between URL requests, with the Y-axis displayed on a logarithmic scale. The X-axis represents time intervals in seconds, divided into 65 bins, where each bin corresponds to a one-second interval ranging from 0 to 65 seconds. 
+
+The use of a logarithmic scale on the Y-axis is particularly useful for visualizing the wide range of request counts. By compressing the scale for higher values and expanding it for lower values, the logarithmic scale enables a clearer and more detailed comparison of the frequency of requests across different time intervals. 
+
+The visualization reveals a consistent pattern where the number of requests decreases as the time interval between them increases. However, there is a noticeable spike in the number of requests at every 10-second interval, suggesting periodicity in user behavior. This periodicity could be indicative of regular user activities, such as polling mechanisms, automated updates, or recurring checks for new information. These behaviors are common in legitimate network traffic and can help establish a baseline for normal activity. 
+
+The identification of such periodic patterns is important in network traffic analysis, as it helps differentiate between regular activity and potential malicious behavior. For instance, if a URL exhibits similar periodic patterns but with irregular or unexpected intervals, it could be a sign of beaconing—a technique often used by malware to maintain communication with a command-and-control (C2) server. In this case, the analysis could reveal anomalies in the intervals that deviate from expected patterns, potentially indicating a botnet or other malicious activity. By comparing these patterns against known baselines of legitimate traffic, it becomes easier to identify and flag suspicious requests for further investigation.
 
 \begin{figure}
     \centering
@@ -506,7 +512,13 @@ Figure \ref{fig:timeintervallog} illustrates the distribution of time intervals
     \label{fig:timeintervallogmin}
 \end{figure}
 
-Figure \ref{fig:timeintervallogmin} extends the analysis of time intervals between URL requests to a larger time scale, with the X-axis each representing a one-minute interval, except for the last bin, which aggregates data from intervals longer than 31 minutes. To avoid losing beaconing data at the edges, each bin spans ±30 seconds; for example, the 1-minute bin represents data from 30 to 90 seconds. The Y-axis remains on a logarithmic scale, ensuring that both high-frequency and low-frequency intervals are visible and can be compared effectively. This use of a logarithmic scale enables the identification of trends across various time scales, making it a powerful tool for understanding patterns in network traffic. Similar to the analysis presented in Figure \ref{fig:timeintervallog}, the visualization reveals a decreasing trend in the number of requests as the time interval between them increases. This suggests that user interactions are typically clustered within shorter time intervals, with longer gaps between requests. However, a notable spike in request frequency appears every 5 minutes, indicating a periodic pattern at a larger time scale. This periodicity is consistent across all URLs in the dataset, suggesting that it represents a common behavior such as scheduled tasks, automated updates, or regular user interactions. These spikes could correspond to routine activities in many systems or applications that are configured to perform tasks at fixed intervals—such as background data synchronization, refresh cycles, or regular system health checks. The observed periodic behavior is particularly significant in the context of detecting malicious beaconing activity. Malicious software, including botnets and malware, often utilizes similar periodic behavior to maintain communication with command-and-control (C2) servers, operating at regular intervals. By identifying these regular spikes in request frequency, organizations can establish a baseline for normal network behavior and detect any deviations that might indicate unauthorized or suspicious activities. The consistent periodicity observed across the dataset could thus serve as a key indicator for detecting potential threats and taking proactive security measures. The logarithmic scale is important for effectively visualizing the wide range of time intervals and request counts. The logarithmic scale compresses the scale for higher values and expands it for lower values, allowing for a more balanced view of both common and rare events. This enhanced visualization capability enables a clearer understanding of the temporal dynamics of user interactions and supports the identification of periodic patterns, which are important for detecting stealthy beaconing behavior in network traffic. Ultimately, this approach aids in distinguishing between normal and abnormal patterns, enhancing the framework’s ability to identify potential security threats.
+Figure \ref{fig:timeintervallogmin} extends the analysis of time intervals between URL requests to a larger time scale, with the X-axis each representing a one-minute interval, except for the last bin, which aggregates data from intervals longer than 31 minutes. To avoid losing beaconing data at the edges, each bin spans ±30 seconds; for example, the 1-minute bin represents data from 30 to 90 seconds. The Y-axis remains on a logarithmic scale, ensuring that both high-frequency and low-frequency intervals are visible and can be compared effectively. This use of a logarithmic scale enables the identification of trends across various time scales, making it a powerful tool for understanding patterns in network traffic. 
+
+Similar to the analysis presented in Figure \ref{fig:timeintervallog}, the visualization reveals a decreasing trend in the number of requests as the time interval between them increases. This suggests that user interactions are typically clustered within shorter time intervals, with longer gaps between requests. However, a notable spike in request frequency appears every 5 minutes, indicating a periodic pattern at a larger time scale. This periodicity is consistent across all URLs in the dataset, suggesting that it represents a common behavior such as scheduled tasks, automated updates, or regular user interactions. These spikes could correspond to routine activities in many systems or applications that are configured to perform tasks at fixed intervals—such as background data synchronization, refresh cycles, or regular system health checks. 
+
+The observed periodic behavior is particularly significant in the context of detecting malicious beaconing activity. Malicious software, including botnets and malware, often utilizes similar periodic behavior to maintain communication with command-and-control (C2) servers, operating at regular intervals. By identifying these regular spikes in request frequency, organizations can establish a baseline for normal network behavior and detect any deviations that might indicate unauthorized or suspicious activities. The consistent periodicity observed across the dataset could thus serve as a key indicator for detecting potential threats and taking proactive security measures. 
+
+The logarithmic scale is important for effectively visualizing the wide range of time intervals and request counts. The logarithmic scale compresses the scale for higher values and expands it for lower values, allowing for a more balanced view of both common and rare events. This enhanced visualization capability enables a clearer understanding of the temporal dynamics of user interactions and supports the identification of periodic patterns, which are important for detecting stealthy beaconing behavior in network traffic. Ultimately, this approach aids in distinguishing between normal and abnormal patterns, enhancing the framework’s ability to identify potential security threats.
 
 \section{Distribution of Hosts Based on Unique URLs Contacted}
 Understanding the interaction patterns of hosts within the network is important for identifying key services, detecting anomalies, and optimizing network performance. By analyzing the distribution of hosts based on the number of unique URLs they contacted, insights can be gained into the concentration of network activity and the diversity of services being accessed. This analysis helps highlight the most active hosts and their browsing behaviors, providing valuable information for pinpointing critical network resources, determining high-traffic users, and identifying potential security concerns. For example, an unusually high number of unique URL requests from a single host may indicate an abnormal pattern, which could suggest automated processes or even malicious behavior. By focusing on the number of unique URLs accessed by each host, this section offers a clear understanding of how traffic is distributed across the network and how hosts interact with various services. Additionally, this analysis aids in understanding the level of engagement with different network segments, assisting network administrators in optimizing resource allocation and managing network load during peak times."
@@ -518,7 +530,11 @@ Understanding the interaction patterns of hosts within the network is important
     \label{fig:ip}
 \end{figure}
 
-Figure \ref{fig:ip} illustrates the distribution of hosts (IP addresses) based on the number of unique URLs they contacted. The X-axis represents the number of unique URLs, ranging from 1 to 15, while the Y-axis shows the count of hosts within each category. The visualization highlights that the majority of hosts interact with only a small number of unique URLs. Specifically, approximately 17,500 hosts contacted exactly two unique URLs, while around 15,000 hosts interacted with only one unique URL. As the number of unique URLs increases, the number of hosts decreases significantly, although there are still many hosts contacting more than a few URLs. This pattern suggests that network activity is highly concentrated around a small set of destinations, with most hosts accessing only a limited range of resources. For example, hosts that contact only one or two unique URLs are likely interacting with essential services such as internal tools, authentication servers, or frequently accessed websites. In contrast, hosts contacting a larger number of unique URLs may represent more diverse or specialized activities, such as administrators, developers, or automated systems performing a variety of tasks across the network. This distribution of host behavior emphasizes the importance of leveraging whitelists to filter out known legitimate traffic, ensuring that analysis can focus on detecting potentially suspicious activities. The concentration of network traffic on a limited set of URLs also carries significant implications for network monitoring and security. By identifying the most frequently accessed URLs, organizations can prioritize security measures for resources that are most likely to be targeted by malicious actors. URLs that experience high traffic are often the focal points of cyberattacks, such as phishing schemes, malware distribution, or command-and-control (C2) communication. By directing attention to these critical resources, organizations can enhance their ability to detect and mitigate emerging threats. Additionally, monitoring the distribution of hosts based on the number of unique URLs they access can help identify anomalous behavior. For instance, a host that unexpectedly begins contacting a large number of unique URLs could indicate suspicious activity, such as a compromised device engaged in reconnaissance or data exfiltration. Establishing a baseline for normal host behavior allows organizations to more effectively identify deviations that may require further investigation, enhancing overall network security.
+Figure \ref{fig:ip} illustrates the distribution of hosts (IP addresses) based on the number of unique URLs they contacted. The X-axis represents the number of unique URLs, ranging from 1 to 15, while the Y-axis shows the count of hosts within each category. The visualization highlights that the majority of hosts interact with only a small number of unique URLs. Specifically, approximately 17,500 hosts contacted exactly two unique URLs, while around 15,000 hosts interacted with only one unique URL. As the number of unique URLs increases, the number of hosts decreases significantly, although there are still many hosts contacting more than a few URLs. 
+
+This pattern suggests that network activity is highly concentrated around a small set of destinations, with most hosts accessing only a limited range of resources. For example, hosts that contact only one or two unique URLs are likely interacting with essential services such as internal tools, authentication servers, or frequently accessed websites. In contrast, hosts contacting a larger number of unique URLs may represent more diverse or specialized activities, such as administrators, developers, or automated systems performing a variety of tasks across the network. This distribution of host behavior emphasizes the importance of leveraging whitelists to filter out known legitimate traffic, ensuring that analysis can focus on detecting potentially suspicious activities. The concentration of network traffic on a limited set of URLs also carries significant implications for network monitoring and security. 
+
+By identifying the most frequently accessed URLs, organizations can prioritize security measures for resources that are most likely to be targeted by malicious actors. URLs that experience high traffic are often the focal points of cyberattacks, such as phishing schemes, malware distribution, or command-and-control (C2) communication. By directing attention to these critical resources, organizations can enhance their ability to detect and mitigate emerging threats. Additionally, monitoring the distribution of hosts based on the number of unique URLs they access can help identify anomalous behavior. For instance, a host that unexpectedly begins contacting a large number of unique URLs could indicate suspicious activity, such as a compromised device engaged in reconnaissance or data exfiltration. Establishing a baseline for normal host behavior allows organizations to more effectively identify deviations that may require further investigation, enhancing overall network security.
 
 \textbf{Analysis of URL Connections}
 
@@ -555,7 +571,7 @@ All the hosts in one day are 208,516; however, until now, only 61,207 hosts have
 \end{itemize}
 
 \section{Summary}
-The data analysis presented in this chapter offers a detailed and comprehensive examination of the dataset's structure, user behavior, and network interactions. By utilizing a variety of visualization tools and statistical methods, the chapter identifies and uncovers key patterns that not only contribute to a better understanding of the data but also provide actionable insights for optimizing network performance and enhancing security measures. The analysis begins with a focus on URL request counts, offering a clear view of the frequency and distribution of web traffic. This helps highlight which URLs are most frequently accessed by hosts within the network, shedding light on the overall popularity of various resources. Understanding the distribution of these request counts is for determining which URLs should be prioritized in network monitoring and security management. The high-traffic URLs, in particular, are often more susceptible to attacks, such as phishing, malware distribution, or even DDoS attacks. By recognizing these hotspots, network administrators can more effectively allocate resources to ensure that these critical URLs are properly secured and monitored. Further investigation into the 24-hour visit patterns of hosts reveals how user activity is distributed across time. By analyzing these temporal patterns, the chapter sheds light on peak usage times, user behavior trends, and possible anomalies. A close examination of these patterns provides a deeper understanding of when the network is most active and helps detect deviations that might indicate unusual or malicious behavior. For instance, atypical spikes in activity at specific hours of the day could signal security incidents such as bot traffic or unauthorized access attempts. This aspect of the analysis is for optimizing network resources and managing traffic loads during high-usage periods, ensuring the network's stability and performance. Another aspect of the analysis involves the time intervals between requests. This segment of the study reveals how hosts interact with the network, providing insights into the frequency of user requests and the temporal gaps between them. This can help identify periodic or repetitive behavior, which may indicate underlying issues such as inefficient resource usage or even intentional attempts at evading detection. The analysis of time intervals is for identifying malicious activities, such as beaconing—a pattern in which an infected device sends regular, seemingly benign requests to a specific URL to maintain communication with a command-and-control server. Detecting such behaviors can play an important role in early-stage threat detection, as it allows for the identification of compromised devices or ongoing cyberattacks before they escalate. The distribution of hosts based on the number of unique URLs they contact provides a further layer of insight into user and network behavior. This analysis highlights the concentration of network activity and reveals how different hosts interact with various resources. For example, some hosts may only contact a limited number of URLs, often related to essential services, while others might interact with a broader set of resources. The latter group may represent specialized functions or more complex network activities. By understanding the distribution of hosts across different sets of URLs, organizations can better prioritize their security efforts and ensure that high-risk activities are closely monitored. This distribution can also help distinguish between normal and anomalous behaviors, offering clues about potential security threats or misconfigurations within the network. Collectively, these findings emphasize the importance of focusing on high-traffic URLs and understanding the temporal patterns in user activity. By identifying periodic behaviors or unusual request intervals, it becomes possible to detect anomalies that could indicate malicious intent or system vulnerabilities. The insights provided by this analysis are important for creating more effective detection mechanisms within the BAYWATCH framework, laying a strong foundation for the development of robust network security tools and strategies. The use of advanced visualization techniques and statistical analysis in this chapter is instrumental in uncovering these patterns. These tools provide a clear and intuitive way to visualize complex data sets, helping to identify trends and outliers that may otherwise go unnoticed. This approach not only contributes to a deeper understanding of the dataset but also facilitates the identification of areas that require further investigation or intervention. By offering a comprehensive view of the network's structure and behavior, this chapter provides a solid foundation for enhancing network security, improving performance, and developing more effective detection and mitigation mechanisms for potential threats. In conclusion, the data analysis conducted in this chapter offers a thorough understanding of network dynamics, highlighting key areas for improvement in both security and performance optimization. By examining the dataset's structure, user behavior, and network interactions through various lenses, this chapter delivers valuable insights that can guide future research and the implementation of more sophisticated network management strategies. These findings are for building a proactive security posture, ensuring the network remains resilient against evolving threats while maintaining optimal performance.
+The data analysis presented in this chapter provides a comprehensive understanding of the dataset’s structure, user behavior, andnetworkinteractions. By visualizing URL request counts, analyzing 24-hour visit patterns, examining time intervals between requests, and studying the distribution of hosts, this chapter uncovers key insights that can inform network optimization and security strategies. The findings highlight the importance of focusing on high-traffic URLs, understanding temporal patterns in user activity, and detecting periodic behavior that may indicate malicious beaconing. These insights lay the foundation for further analysis and the development of effective detection mechanisms in the BAYWATCH framework. By leveraging advanced visualization techniques and statistical methods, this chapter offers valuable insights into the dataset’s characteristics and user behavior, providing a solid basis for enhancing network security and performance.
 
 \chapter{Implementation}
 
-- 
GitLab