2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

BAYWATCH: Robust Beaconing Detection to Identify
Infected Hosts in Large-Scale Enterprise Networks

Xin Hu™¥, Jiyong Jang', Marc Ph. Stoecklinf, Ting Wang?, Douglas L. Schales’, Dhilung Kirat, and Josyula R. Raof

YIBM Research, {jjang, mpstoeck, schales, dkirat, jrrao} @us.ibm.com
*Pinterest, huxinsmail @ gmail.com
tLehigh University, ting@cse.lehigh.edu

Abstract—Sophisticated cyber security threats, such as ad-
vanced persistent threats, rely on infecting end points within
a targeted security domain and embedding malware. Typically,
such malware periodically reaches out to the command and
control infrastructures controlled by adversaries. Such callback
behavior, called beaconing, is challenging to detect as (a) detection
requires long-term temporal analysis of communication patterns
at several levels of granularity, (b) malware authors employ
various strategies to hide beaconing behavior, and (c) it is also
employed by legitimate applications (such as updates checks). In
this paper, we develop a comprehensive methodology to identify
stealthy beaconing behavior from network traffic observations.
We use an 8-step filtering approach to iteratively refine and
eliminate legitimate beaconing traffic and pinpoint malicious
beaconing cases for in-depth investigation and takedown. We
provide a systematic evaluation of our core beaconing detection
algorithm and conduct a large-scale evaluation of web proxy data
(more than 30 billion events) collected over a 5-month period at a
corporate network comprising over 130,000 end-user devices. Our
findings indicate that our approach reliably exposes malicious
beaconing behavior, which may be overlooked by traditional
security mechanisms.

I. INTRODUCTION

Sophisticated cyber security attacks and threats, such as
Advanced Persistent Threats (APTs) and targeted attacks, are
amongst the most advanced cyber security threats to date.
The anatomy of such attacks can be described by three main
phases (cf. Fig. 1): (a) the initial compromise of one or
more devices within a target infrastructure, (b) the establish-
ment of a communication channel enabling the threat actor
to remotely control devices within the target infrastructure,
and (c) the execution of the mission of the attack, such as
access to and exfiltration of sensitive data or disturbance
of processes. From a defender’s perspective, many recent
threat reports about high-profile attacks, campaigns, and data
breaches (e.g., BlackPOS [17], Regin [23], Epic Turla [15, 16],
Sony Pictures [27], APT1 [18], Duqu [4], or RSA SecurID
compromise [21]) indicate that in most of these operations
the initial compromise was extremely difficult to detect or
prevent. For example, the threat actors leveraged sophisticated
social engineering methods (to the level of dedicated language
specialists [18]) or exploited zero-day vulnerabilities (e.g., via
drive-by downloads, waterholing attacks) in order to place
malware.

A common pattern in all these operations is that after the
initial infection, the adversary controls the infected machines
by establishing a stealthy communication channel between

§ Both authors contributed equally to this work.
* X. Hu & T. Wang were with IBM Research while carrying out this work.

1 - Initial Compromise

Malware

Processes—=

E o, 0 o Jaformation

10050);

User identities

Drive-by

Internet

Beaconing

2 - Communication Channel 3 - Attack Execution

Fig. 1. Anatomy of advanced cyber security attack

the malware process within the target infrastructure and the
adversary’s command and control (C&C) infrastructure that is
outside the perimeter. However, to the defender’s advantage,
the need for such interaction requires the exchange of net-
work communication, and thus provides an opportunity to the
defender to detect its presence. Due to security mechanisms
(e.g., firewalls, IDS/IPS, NAT), which prevent an outsider from
initiating a connection to a machine inside a security perimeter,
such channels have to be initiated from inside. Typically, the
attacker designs the malware to reach out to the C&C infras-
tructure on a regular basis to announce and confirm its presence
and get further instructions. This behavior is referred to as
“beaconing”. Depending on the sophistication of the attack,
not every infected device within an organization beacons to
the C&C infrastructure; only the systems used as stepping
stones [18], or a dedicated “proxy” machine communicate
with the outside [23]. Another well-known form of beaconing
behavior is observed in botnet C&C usage [6, 22], where up to
hundreds of thousands of infected hosts announce themselves
regularly and establish stealthy channels in order to receive
instructions from their bot master.

Beaconing behavior can be characterized as a regular
(sometimes highly periodic and sometimes not) sequence of
requests or beacons. A beacon is almost like a heartbeat
and consists of a short communication between the infected
machine and one or more destinations on the outside. The
frequency of such beacons depends on the attacker’s strategy,
which can be slow and stealthy or fast and aggressive. For
example, in the wild, we observed beaconing attempts every
2-3 seconds as well as every 2 hours or even longer. In general,
attackers use regular beacons to maintain visibility and control
over the infected machines. HTTP(S) is commonly used as an

978-1-4673-8891-7/16 $31.00 © 2016 IEEE
DOI 10.1109/DSN.2016.50

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.

IEEE
479 computer
psoaety



Ideal Shrs
I0ALLLRACRAYRARRA
\ y, SN S S S —
Reality 7-8s
U [RI
AU | ﬁJLM:gJM w"mww J
Fig. 2. Challenges: Expected patterns vs. real-world activity (left), multiple

periodicities (right).

application protocol due to its nearly universal ability to cross
security controls at network perimeter boundaries.

Detection of beaconing behavior is, however, not a trivial
task but requires that the following four challenges are properly
addressed:

Challenge 1: Beaconing is not an isolated event, but a se-
quence of temporally related events that have to be culled
and analyzed in context. As a consequence, detection of
beaconing is a “big data problem” as the traffic behavior of
all communication pairs' over the network perimeter needs to
be analyzed over an extended period of time for indications of
beaconing behavior. In a large corporate enterprise network
consisting of dozens of sites, it is easy to observe an average
of 53 million distinct communication pairs every day using
the HTTP(S) protocols only.

Challenge 2: While beaconing is characterized as a periodic
communication in a regular interval, the ground reality is
vastly different. There can be random gaps in the collected
observations either because of devices going off-line or
beyond the purview of observation, network down times,
unanticipated issues in the data collection process as well
as noise in the communication channel (left side of Figure 2)
for a real-world activity trace collected at the network level
from a device infected by the TDSS botnet [20]). The same
device may reconnect from different IP addresses and the
destination entity can have multiple IP addresses, making it
difficult to track the context of the communication pair for
constructing beaconing sequences.

Challenge 3: The nature of the beaconing behavior is com-
pletely at the discretion of the attacker, e.g., in terms of the
choice of frequency and strategy employed. For example,
the malware may omit a beacon or inject additional random
beacons to reduce the predictability of the behavior. The right
side of Figure 2 depicts the real-world activity network trace
of a Conficker [6] bot beaconing to its C&C infrastructure.
The malware sends beacons every 7-8 seconds for about two
minutes, before it is dormant for about three hours, and then
it repeats the same high frequency beaconing.

Challenge 4: Regular beaconing behavior does not necessar-
ily indicate malicious activity: many legitimate applications
exhibit network behaviors that resemble beaconing, such as
regular update checks verifying software versions or anti-
virus signatures, license checks, and e-mail or news polling.

Traditional security mechanisms such as firewalls, IDS, and

I¢f. Section II for the definition of a communication pair

web proxies attempting to match signatures are not able to cope
with these challenges and keep the long-term history needed,
and thus suffer from a high false negative rate.

In this paper, we address the problem of detecting large-
scale beaconing behavior indicating malicious activities based
on network monitoring. We introduce BAYWATCH, a compre-
hensive filtering methodology to analyze network interactions
for identifying beaconing behaviors and pinpointing assumed
infected devices and malicious communication channels. At
the heart of BAYWATCH, we have devised a periodicity de-
tection algorithm based on signal processing that is robust to
noise, interrupts, and outages; the algorithm does not rely on
strict periodicity but is able to capture regularity at different
time scales. As an output, BAYWATCH provides a prioritized
list of beaconing cases. We systematically evaluate BAYWATCH
both on synthetic data and real-world data sets: two HTTP(S)
traces (one of which is 5 months long, 30 B events) collected
at the perimeter gateways of a major corporate network. In
our evaluation and experience, about 26 suspicious beaconing
cases were reported every day out of which over 96% of the
top-ranked cases could be confirmed as truly malicious.

The key contributions of this paper are as follows:

e An 8-step filtering methodology (called BAYWATCH) to
reliably identify beaconing behavior and separate legitimate
from malicious beaconing—one of the first indicators of
malware infection—consisting of a novel periodicity detec-
tion algorithm which is robust to real-world perturbations
as well as pre- and post-filter operations.

e A highly scalable implementation of the methodology on
top of the parallel and distributed Map/Reduce programming
model [7] allowing iterative analysis of long time windows
(up to months) for beaconing behavior.

e A systematic evaluation of the properties of the core bea-
coning detection algorithm using synthetic data sets as well
as a comprehensive evaluation of the entire methodology
by means of real-world data sets, which indicates that the
output of BAYWATCH provides a manageable number of
cases every day, in which 96% could be confirmed as truly
malicious.

II. OVERVIEW AND ARCHITECTURE

In order to address the four challenges introduced in the
previous section, we have devised a methodology based on
eight filtering steps. The procedure departs with the assumption
that every event in a given time span (up to weeks or months)
may be relevant and needs to be taken into account and tested
against the filters. Initially, the network events are grouped
together by means of communication pair configurations.
A communication pair is defined as a pair of source and
destination endpoints, where each endpoint is represented by
one or more of its features as listed in Table I.

The overall architecture of the filtering approach in BAY-
WATCH is depicted in Fig. 3. It consists of four main phases: (a)
whitelist analysis, (b) time series analysis, (c) suspicious indi-
cation analysis, and (d) manual verification and investigation.
At each phase, one or more filters are applied to the events.
Figure 3 shows the data flow and the alignment of the filters.

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



Whitelist Time Series Suspicious Indication Verification &
Analysis Analysis Analysis = . Investigation

. y y: ] ¥ Clustering | g

E S (Sect.6)

g _ - —— Result:
"8 Input into Evidence of
‘; § 2 verification: malevolence
E ‘% ;<Z3' * 11,222 pairs in over 96% of
g s % = g * 801 dests. dest. among
o B 2 2 Z 247 devi top 50
B! 2 5 = . evices
2 0 Y g = o
= @ < = =
= = & 3

N o = )

Q 3 "8 =

S / ~ . <
Filter Universal Whitelist Local Whitelist Beaconing Detection URL Token  Novelty Ranking Manual analysis

(Sect. 3.1) (Sect.3.2) (Sect. 4) (Sect.5.1)  (Sect.5.2) (Sect.5.3) of destination

o sl 156.4M 12.8M 4K 197K 26K

eliminated:

Fig. 3.
Web Proxy Log dataset.

The arrows pointing downwards indicate the (proportional)
number of communication pairs filtered out (gray numbers in
the bottom row) in a representative analysis over 1 month’s
worth of web proxy logs in our data set (cf. Sect. VIII for the
description of the data set).

In summary, the four phases consist of:

Whitelist Analysis (Sect. III) Two whitelisting filters iden-
tifying legitimate and trusted destination features, inferred
from global (i.e., universally applicable) and local (i.e.,
environment-specific) dynamic lists.

Time Series Analysis (Sect. IV) From non-whitelisted
events, so-called activity summary (a compressed version
of time series) is constructed for every communication pair
that serves as an input to the frequency analysis and the
periodicity detection algorithm. All communication pairs
that exhibit no regular patterns are removed from the set of
candidates.

Suspicious Indicator Analysis (Sect. V) All remaining can-
didate pairs are now analyzed along with domain-specific
information for indications as to maliciousness to weed out
legitimate beaconing behaviors and identify new types of bea-
coning. Candidates that are not eliminated are rank-ordered
by means of multiple information criteria, and grouped by
similarity using a machine learning based classifier.

Investigation & Verification (Sect. VI) The results are then
presented to a security analyst for deeper analysis, investiga-
tion, and verification. Given that this is a manual step, it is
preferred to minimize the number of individual cases to be
investigated without sacrificing false positive/negative rates.
We propose a bootstrapping process: using a small number
of candidate cases and their investigation results as “training
set,” we train a classifier and apply it to the remaining cases.

III. WHITELIST ANALYSIS

The first phase of BAYWATCH consists of two filters to
eliminate known beaconing and trusted communication pairs

481

Overview of the methodology and filtering approach of BAYWATCH. The numbers reflect a representative analysis of one month (January 2015) in the

TABLE 1. SOURCE AND DESTINATION PAIR FEATURES.

Destination features
IP address
Port number
Full domain name
Top-level domain name
AS number
URL

Source features
IP address
Port number
Source MAC address
Device identifier
User Agent

from the set of candidates. For this purpose, two whitelisting
mechanisms are employed: (a) universal whitelisting, and (b)
local whitelisting. This is important as it critically influences
the workload of the time series analysis at the subsequent
phase, which is data- and computation-intensive; hence, early
reduction of the workload is beneficial for the overall perfor-
mance. The intuition behind leveraging both whitelists is that
popular destinations are not likely candidates for malicious
beaconing (unless a majority of devices are compromised).

A. Universal Whitelisting

The first filtering step builds on top of a universal whitelist
that applies to every environment and comprises trusted or
known destinations such as search engines, software update
checks, web mail/e-mail polling, or news feeds (e.g., RSS
feeds). In this context, a destination may be an IP address or a
domain name. This whitelist is dynamic and can be extended
with new destinations by means of update feeds.

As illustrated in Figure 3, using a public list of popular
domain names as a whitelist, such as the top 1 million
domain names reported by Alexa.com [1], proves useful by
significantly reducing the computational need. One caveat is
that this approach will fail to capture beaconing events to
infected popular domains or covert channel-based beacons
through public webservices. However, malicious usages of
popular domains are more likely to be detected by the security
community at large and exposed publicly [2]. Such threat
intelligence can be promptly integrated into BAYWATCH via
blacklists. When enough computational resources are available,

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



one can also simply disable this filter to perform more thorough
beacon detection in the network.

B. Local Whitelisting

In addition to the universal whitelist, we also measure
popularity of a destination as a ratio of the number of hosts ac-
cessing it and the total number of observed hosts. Destinations
whose popularity exceeds a given (conservative) threshold 7p
are considered locally popular in a specific environment, and
are whitelisted. This local whitelist removes candidates that
are used by a subset of the population in a given environment
(such as a specific anti-virus update server only used in
the environment), which are not eliminated by the universal
whitelist.

IV. TIME SERIES ANALYSIS

A beaconing behavior can be loosely defined as repeating
activities at regular time intervals. It is challenging to mine
periodic patterns from massive and noisy data. In this section,
we will present the design of a multi-stage periodicity detection
algorithm that leverages statistical features from both the time
domain and the frequency domain, to eliminate noises and
potential false positives, and to identify the most feasible
candidate periodicities in the input data.

A. Algorithm Overview

Let T = {t1,t2,---} be the timestamps of connections
between a communication pair. 7" can be transformed into an
integer sequence x(n) = {xg,z1,Z2,%3, -+ ,TN_1} where
n=0,1,...,N — 1, and N is the length of the discrete time
series. x; > 0 means the source has made z; number of
connections to the destination at time interval 7, and z; = 0
means otherwise. Notice that the length of the time intervals
depends on the granularity or quantization (i.e., sampling rate)
of the time series, e.g., second, minute, hour, or day. To detect
periodicity in z(n), we adopt two complementary methods
proposed in [25], i.e., Fourier transformation and circular
autocorrelation.

Specifically, the time series analysis algorithm consists
of three steps in sequence: (a) discovery of the most likely
periodic components, (b) statistical pruning of high frequency
noise, and (c) verification to retain only the most feasible
candidate periods.

B. Step 1: Candidate Discovery

The first step is to discover periodicity candidates from
the time series. To this end, we apply the Discrete Fourier
Transformation (DFT) and convert the sequence x(n) from
the time domain to its corresponding frequency domain.
Mathematically, the DFT converts a finite sequence of N
numbers in z(n) into a sequence of complex numbers X (k) =
ﬁ% Zi\;_ol $(.n)e’2.”k“/N, where k = 0,1,..., N.— }, and
the original signal is represented as a linear combination of
the complex sinusoids s, = e?>77/N /\/N each of whose
frequency is fr = k/N. Essentially, the Fourier transform
projects the original signal z(n) onto these sinusoids and
records their amplitude and phase with the coefficients. Since
each sinusoid is a periodic component of the original signal,

/ Freq: 0.136 Hz
| 1 T ) Period: 7.35 seconds
Freg: 0.00009078 Hz

Period: 3.05 hours

100

01 0.2
Frequency [Hz]

Fig. 4. Periodogram of Conficker botnet traffic

the square length of its coefficient defines the power carried
by that particular frequency, and signifies the dominance of
the periodic component in the original signal. The dominant
periodic component can be discovered by examining this
power spectrum, also known as the periodogram analysis. A
periodogram is computed as P(k) = || X (k)||?, where k =
0,1 [%W Note that according to the Nyquist sampling
theorem, spectral analysis can reliably detect frequencies that
are at most half of the maximum signal frequency so that k&
is at most [2L]. Thus, P(k) gives the power at a specific
frequency index fi. After computing the periodogram, one
straightforward way to find periodicity is to pick the frequency
with maximum power. However, this does not work in practice
for the following reasons.

Limitations of Naive Approach. First of all, DFT can
be applied to any discrete time series (even those random time
series that are not periodic) to decompose it into periodic sinu-
soids. Consequently, blindly extracting the frequency carrying
the largest energy will result in significant false detection.

Second, a time series can consist of multiple periodic
behaviors interleaved with each other. For example, Fig. 2 de-
picting Conficker C&C traffic exhibits two periodic behaviors
at two different time granularities. The corresponding peri-
odogram is shown in Fig. 4; selecting only the top frequency
in the periodogram may lead to an incomplete picture of the
beaconing behavior.

Third, the discrete nature of the DFT yields intrinsic
quantization errors and sampling artifacts. As DFT divides the
spectrum into N buckets or “bins”, each frequency fr = k/N
in the periodogram actually corresponds to a range of periods,
between adjacent frequencies. This means that the coefficient
for frequency component fj actually corresponds to periods
[%, 7—7 ), meaning that the periodogram has very coarse res-
olution and deteriorated accuracy for large periods (i.e., small
k). Related to this, DFT also suffers from a “spectral leakage”
problem, which creates additional periodic components in the
frequency domain. Spectral leakage occurs when a signal
consists of frequencies that are not exact integer multiples of
the DFT frequency bin width. In such cases, the energy of
these frequencies will be dispersed or “leaked” from the main
frequency bin to the surrounding bins across the spectrum.
This results in unwanted side lobes next to the main lobe in
the periodogram (e.g., the lower right plot in Fig. 4).

Our Approach. Despite these limitations, a periodiogram
still proves useful in automatically extracting a set of candidate
frequencies that potentially correspond to the true periodicities.
The challenge is to determine an appropriate power threshold
such that only the dominant frequencies carry energy higher
than the threshold.

To determine this threshold, we apply the permutation-

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



Random

Original Signal m Random Signals DFT max = 182
B Permutation & . WL—JJ_'L\I&L@M‘
\ % E L T
o
3 : ] NN

< L DFT o £ ootV
NS

N 100 ’ max = 120
[THESY PR

060z 0008 o

200! | L

8o0 iy 008 006 ’H || ‘m
Frequency [Hz] Time [s]

. Frequency [Hz]
(m-1)th maximum power |

Fig. 5. Permutation based filtering

based filtering algorithm proposed in [25]. The main idea is
to identify how much of the signal energy can be attributed to
non-periodic or random mechanisms; then the only frequencies
of interest would be those with power higher than ones derived
from random processes. Given a time series sequence x(n),
the algorithm creates the random permutation z’(n) of all N
elements of z(n). This shuffling process would destroy any
periodic patterns in 2(n) while the first order statistics and
characteristics not related to timing persist (e.g., amplitude).
Therefore any structural information exhibited in z’(n) is
likely from random noises and should be discarded.

Based on this observation, we perform the same perido-
gram analysis on the permuted signal z’(n), record the maxi-
mum power in its frequency domain (denoted as pyq. (7))
and use it as the threshold to identify potential candidate
frequencies in the original z(n). In other words, if a frequency
in z(n)’s periodogram carries less power than the threshold,
it is likely due to random noises and thus is eliminated from
the candidate frequency set.

One permutation may not completely destroy all periodic
structures. To provide a reasonable confidence level C' on the
power threshold, we repeat the above permutation process m
times, and use (C' X m)-th highest power frequency (e.g., 19th
when C' = 95% and m = 20) of p,,q.(2') as a good estimator
for the power threshold pr. The process is illustrated in Fig. 5.

The result of this process is a set of most promising
frequencies (denoted as F' = {Fy,Fa,...}) that potentially
correspond to true periodicities of z(n). If the set is empty, i.e.,
none of the frequency exceed the threshold, the original time
series z(n) will be rejected and considered as non-periodic.

C. Step 2: Pruning

After obtaining a set of candidate frequencies F' and their
corresponding periods (denoted as P = {P;,Pa,...}) in the
time domain, the next step is to further filter out less feasible
candidates, and reduce the number of inputs to the more
expensive verification step.

High-Frequency Noise. During our analysis, we observed
that candidate sets often include high-frequency noise com-
ponents. To identify such cases, we convert the timestamps
T into an interval list, i.e., I = {iy,ia,...,in—1}, Where
i, = lr4+1 — t is the time interval between two consecutive
connections (Fig. 6 (a)). Analyzing the statistics of the interval
list often allows us to further prune impossible or unlikely
candidates. For example, any candidate period P, € P that
is smaller than the minimum interval, ie., Pr < min(I),

Interval List (b)

i | [404, 663, 400, 362, 1933, 445,
" interval N .| 407, 423, 372, 395, 362, 400, 369,

| extraction

Timestamps (a)
2013-01-11 00:42:32
2013-01-11 00:49:12
2013-01-11 00:55:14

£ | 822,5512, 196, 1023, 635, 817, o
I/ 919,492, 423,391, 442,759, ...] | ™2
2013-01-11 01:27:27 Candidates

2013-01-11 01:34:52 -
R Freq. Period Power p-value
2013-01-11 01:41:39 N 700327 305473 2459 00016
2013-01-11 01:48:42 || step | DFTY, 04226 236615 2364 00011 =
egoey || analysis £ 00025 387.34 2301 0.0767
2013-01-1101:54:54 | —— /' 154310 8.8351771223.57 0.0012
0.0301 331626 217.7 0.0017

Fig. 6. Pruning using statistical features (TDSS bot)

Interval List GMM Components

[1,180.6,175.5.175.5.174.6,174.6, Wl\:el::l:lts 1854;2 g-; 0831
174,6,174.6.175.5.175.5.175.5.17 . s : : J
4,6,174,6,174,6,175,3,2,1754,176 | i\ e, 2004 Best FitGMM
5,175,5,175,5,184,1,2,168,5,175, || GMM
5,175.5,176,4,175.5,175,5,175.5,1 | | analysis
75.4,176.5,175.1.4,175.5,175.5.17
6.5.175.4,176.5,175,5.175.5,175.5
1175.5,175,5,180,5,170,3,2,82,4]

_ BIC vs. # components

Fig. 7. GMM for detecting multiple periods

is due to high frequency noise and can be removed from
the candidate set. Figure 6 shows an example of the TDSS
botnet traffic and its interval list where the minimum interval
is 196 seconds. Therefore among all the candidate periods from
peridogram analysis in step 1, only 387.34 is larger than the
minimum interval and all others can be safely removed from
the candidate set.

Hypothesis Testing. Extending the threshold-based ap-
proach, we design a hypothesis testing algorithm to determine
the statistical significance of the candidate periods given the
observed intervals. Given candidate period P € P, we con-
struct our null hypothesis Hyp: P is the true period of the
original signal. Due to various noises in the real world scenario
(e.g., network delays, retransmission, context switching, etc.),
the observed intervals may not be exactly P. Instead, we can
model the distribution of the observed intervals as a random
variable N (73,02), i.e., the intervals are generated from an
underlying normal distribution with mean/variance (P, ?).

The goal of hypothesis testing is to decide, given a pre-
defined significance level a and the set of observations,
whether to reject the null hypothesis Hy in favor of the
alternative hypothesis Hi: P is not the true period. In our
case, we applied a one-sample ¢-test on the observed intervals
and calculated the p-value. We reject P and remove it from
the candidate set if the p-value is smaller than the chosen
significance level o = 5%. Take the TDSS botnet case in
Figure 6 as an example. All candidate periods except 387
seconds were pruned since their p-values are all considerably
smaller than 5%.

One of the major benefits of applying hypothesis testing in
the pruning step is its conservativeness, i.e., the null hypothesis
is rejected only when there is significant evidence against it.

Sampling Rate. Another pruning criterion is the sampling
rate. We filter out time series that are under-sampled. This
is particularly important in the rescaling and merging phase
(Sect. VII) where fine-grained time series are aggregated
into coarser granularity for better scalability and periodicity

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



detection over longer time period. According to the Nyquist
Theorem, one can accurately measure the frequency f of a
signal only when the sampling rate is as least 2f (called
Nyquist frequency). Otherwise, false images of the signal may
be created at frequency below f. For example, consider the
beaconing behavior at every 30 seconds. If the sampling rate
is higher than once every 15 seconds (or data aggregation
in buckets of 15 seconds or less), the resulting time series
will consist of both peaks (“1””) and valleys (“0”) that allows
accurate measurement of the true frequency. In contrast, when
the sampling rate is smaller than the Nyquist frequency (e.g.,
data aggregation in 20-second buckets), the resulting time
series may consist of only peaks, leading to incorrect detection
of periodicity. One way to identify a potentially under-sampled
signal is to examining the interval lists  and seeing whether
most of the intervals are equal to 1. If so, that means the signal
has peaks in most time units, indicating the lack of visibility
into the signal’s inherent structure due to coarse grained
sampling (or large aggregation window). In BAYWATCH, we
prune the time series if more than 80% of its intervals are
equal to 1.

Multiple Periods. Another challenge in mining periodic
behavior is that the time series may have multiple periods.
For example, Figure 7 shows the interval lists of the time
series with two interleaved real periodic behaviors. Because the
intervals are separated into two sets (5 seconds and 175 sec-
onds), statistic testing that assumes a single underlying model
will likely reject every candidate period because the observed
distribution cannot be explained by a single distribution. In
BAYWATCH, we address this challenge by using the Gaussian
mixture model (GMM). GMM is a probabilistic model that
assumes all the data points are generated from a mixture
of a finite number of Gaussian distributions with unknown
parameters. It uses the iterative expectation maximization
(EM) algorithm to estimate the parameters of each Gaussian
component. The number of underlying Gaussian components is
selected to be the one that minimizes the Bayesian Information
Criterion (BIC). Figure 7 shows the histogram of the observed
intervals along with the best-fit GMM model. The rightmost
plot shows the BIC value as a function of the number of
components where its minimum is at three components. The
mean (p) and weight (i.e., percentage of data points) of each
Gaussian component are summarized in the table above the
plots. The GMM model successfully identifies the two main
components” indicating that there are likely two interleaved
periodicities in the original time series. For such cases, we
group intervals according to the their Gaussian component and
separately apply statistical testing to each group. We will retain
the candidate period if it is not rejected by any interval groups.

D. Step 3: Verification

After the discovery and pruning steps, the remaining
candidate set contains a small number of potential periods,
likely corresponding to the true periodicity of the original
time series. The final step is to verify these candidates’
validity with the circular autocorrelation function (ACF) in
the time domain. ACF is a useful tool to analyze repeating
patterns by calculating the similarity between a time series
and itself shifted by a certain time 7. ACF is calculated as

2The 3rd component is considered as noise due to its low weight.

. [False
~Ereq: 0.002581 Hz o v
Coctptd i M A Frequency Domain  Freq t‘lg;:
| 1 ‘ 1 ? .
- f .

| LY by, MY
y 4
< EEEEE DD S VLY

[

N

060

Time Domain
(TTRTTTIITTN

Time [s] Period [s)

Auto-coffelation Function yJ

Fig. 8. Verifying candidate periods with ACF

ACF(r) = LM 1 2(n) - 2(n + 7). The intuition is that
if 7 is the true period, the shifting would create a signal
that is off by one period and therefore should largely overlap
with the original signal and would reinforce it. Otherwise, the
shifted signal interleaves with the original signal, rather than
overlapping with it, resulting in a low correlation value.

Essentially ACF provides a more fine-grained periodicity
detector. However, ACF alone may be inefficient to detect
periodicity because without candidate discovery and pruning
steps, the number of possible periods that need to be verified
could become very large (i.e., V). Therefore in BAYWATCH,
ACF is used as a verification tool and applied only on a small
set of most feasible candidate periods (normally less than 5),
thus offering much better scalability when analyzing large data
sets. Figure 8 illustrates an example of candidate verification
using ACF.

V. SUSPICIOUS INDICATOR ANALYSIS

In the third phase, domain knowledge and historical infor-
mation are taken into account in order to distinguish legitimate
beaconing behavior from suspicious behavior. The objective
is to reduce the number of cases for the manual investigation
and verification (the fourth phase) as much as possible by only
reporting cases that have a high confidence of being related to
malicious activities.

A. URL Path Token Filter

At this step, we look into the resource path within a URL
accessed. A resource path often represents the type of the web
resource, e.g., “rss” for RSS feeds and “images” for image
files, or the structure of the web request, e.g., “search?q=N"
for Conficker worms. This analysis is complementary to the
whitelisting mechanism discussed in Section III in that white-
listing focuses on a domain name or an IP address in a URL.

In order to filter out likely benign beaconing cases, BAY-
WATCH measures the popularity of tokens in a resource path,
where tokens are extracted by splitting a resource path using
the delimiter “/”. Similar to whitelists, a web request contain-
ing known and popular tokens is not likely a candidate for
malicious beaconing.

BAYWATCH identifies popular tokens from the request
history of the previous n days (D —n, ..., D — 1) to filter out
likely benign cases on day D. This moving window approach
yields a dynamic list of popular tokens reflecting the latest
trends, which significantly reduces the chances that an attacker
may abuse a static list of well-known tokens to avoid detection.

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



B. Novelty Analysis

The goal of this filter is to eliminate duplicate work by
the analyst. More specifically, it removes source/destination
pair candidates that have been reported for beaconing behavior
already, or at least whose destination has been involved in
pairs already reported, either from another candidate or from
a previous analysis run. The candidate is still logged and
reported, and is kept available for analyst review; however, it
will not be passed into the ranking algorithm for later manual
verification and investigation.

This filter can be considered as “change detection,” consol-
idating cases of the same source/destination pairs and thereby
forwarding cases only when a destination has not been reported
before, or a source has not been reported before as beaconing
to that destination.

C. Language Model Score

A common strategy employed by botnets and malicious
servers to circumvent detection is domain name generation.
Bots algorithmically create a large pool of random names and
attempt to connect to them, hoping that some domains may
have been registered by attackers in advance as a rendezvous
point. To avoid collision with existing domains, randomly
generated names typically exhibit distinct patterns, e.g., combi-
nation of characters that rarely occur in popular domain names.
Such patterns often provide good indication of suspicious
nature.

Motivated by this observation, we train a 3-gram language
model using Alexa top 1 million domain names [1]. An n-
gram model is a probabilistic model that can be used to
predict the next character in the sequence given previous
n — 1 characters. More specifically, given a training cor-
pus of domain names, the algorithm first extracts all the
n-gram substrings cjcs...c,, and compute the transitional
probability, P(cy|cica...cno1) = % This is
the probability of ¢, appearing after cica...c,—1. With the
derived transitional probability from the training corpus, we
compute the score S of domain name D = cica...c¢p
under the n-gram language model as S = log(P (D)), where
P(D) = O, P(ck|ck—n+1Ck—nt2---ck—1)>. A low score
means abnormal or random patterns in a domain name, which
may warrant further investigation. For example, botnets using
domain generation algorithms (DGAs) often yield low scores.
The score of domain skmnikrzhrrzcjcxwfprgt.com is -45.166,
which is significantly lower than -7.406378 of google.com.

D. Weighted Result Ranking

To assist analysts in prioritizing their investigation efforts,
we combine various indicators, e.g., periodicity strength, lan-
guage model score, and destination popularity, into a single
weighted ranking score. The weight of each indicator can be
empirically set based on the quality of the indicator and prefer-
ence of the analysts. For example, in the current implementa-
tion of BAYWATCH, we assign a higher weight to the language
model score for the domains with very low probabilities. We
also awarded a higher score to the connections with strong
periodicity, e.g., high ACF score, low standard deviation in

3Kneser-Ney smoothing is used for previously unseen n-grams.

TABLE II. LIST OF FEATURES USED IN TRAINING CLASSIFIERS

Feature | Definition
series length | # intervals in series
period(s) | most dominant period(s)
power | power of most dominant period(s)

similar source | # sources sharing same destination
n-gram count | hist. of n-grams in symbolized series

entropy | entropy of symbolized series

compressibility | compression ratio of symbolized series

the observed intervals, and periodic over long range of time,
since these regular patterns are of more interest to the analysts.
For the final ranking of suspicious beaconing cases, we apply
a threshold to report only those cases that exceed the n-th
percentile of the score distribution.

VI. INVESTIGATION AND VERIFICATION

In the aforementioned phases, we apply various filtering
mechanisms to triage detected cases. For large networks, it
is highly likely that a large number of suspicious cases pass
through the triage for further manual investigation. Instead
of an exhaustive investigation, we propose the following al-
ternative: (a) sampling a small set of candidate cases and
manually investigating them, (b) using these cases and their
corresponding diagnosis results as “ground truth” to train a
classifier, and (c) applying the trained classifier to classify the
remaining candidate cases. For example, in our evaluation (see
Sect. VIII), we manually investigate a data set collected over
a one-month time interval to train a classifier, and apply it to a
much larger data set spanning over a five-month time period.

Astute readers might ask why this approach is not applied
in earlier phases. The reasons are twofold. First, at this stage,
the candidate cases are much “cleaner” for training a classifier
because many noisy cases have been pruned. Second, as a
desired side effect, the various filtering mechanisms essentially
generate a rich set of features (e.g., dominant periods in
Sect. IV). Next we elaborate the feature set and the classifier
we use in our prototype.

A. Feature Set

Recall that each candidate case is a tuple (s, d, (i1, i2,...))
with s, d, and (41,12, ...) representing the source, destination,
and a series of time intervals, respectively. For each case, we
generate the set of features as defined in Table II. Among them,
the first four features are fairly straightforward. We concentrate
our discussion on the remaining three.

Once we detect the most promising period(s) as in Sec-
tion IV, we “symbolize” the series of time intervals by
applying the following rule for each interval ::

1 — ‘X’ ¢ appears in dominant period(s)
1=y =0
t — ‘2’ otherwise

Since this simplified sequence comprises only three letters, we

can easily measure its entropy, its n-gram histogram (n = 3),
and its compressibility. In particular, the compressibility of
a symbolized series is measured by its compression ratio by
“gzip” under the highest compression level.

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



B. Classifier

In our prototype, we adopt random forest [5] as a classifier.
A random forest is a collection (or ensemble) of decision trees.
When classifying a new case, each decision tree assigns the
case to a single class (e.g., benign or malicious); the output of
the random forest is the mode of the outputs of the decision
trees. The random forest classifier has a number of desired
features for our context: (a) built upon decision trees, it can
handle both numeric and categorical features; (b) it has been
empirically shown to outperform, in terms of accuracy, both
SVM and naive Bayes classifiers across a wide range of data
sets; and (c) it is highly scalable and inherently parallelizable.

VII. IMPLEMENTATION

We implemented BAYWATCH in 4,200 lines of Java on
top of the MapReduce framework [7] to efficiently process
large-scale data. Each phase is designed in a modularized
MapReduce job to avoid reprocessing raw logs.

A. Data Extraction

From raw logs stored in HDFS, e.g., web proxy logs, and
DNS logs, BAYWATCH first extracts request time intervals per
communication pair. By default, time intervals are extracted at
the finest granularity, e.g., a second level.

e MAP: (k,l) — (H(s,d),(s,d,ts)). For each input line [, a
MAP task identifies source s, destination d, and timestamp
ts to extract request information. A hash function H is used
to control the number of REDUCE tasks and output files. For
example, a 5-bit hash results in 32 (= 2°) REDUCE tasks
and output files, helping to minimize the startup overhead
arising from too many REDUCE tasks and too much disk
I/0. MapReduce performs better with a smaller number of
larger files rather than a larger number of smaller files.

REDUCE: (H (s,d),(s,d,ts)) list — (k, AS). As the hash
of s and d is the key, request timestamps of the same source/
destination pair are grouped and sorted to get the list of
request timestamps. From the list, a REDUCE task obtains
request intervals per communication pair. The output value
of REDUCE is ActivitySummary which summarizes request
activities of every source/destination pair. ActivitySummary
AS consists of the following: source/destination pair s : d,
time scale e (1 second at the finest granularity), the first
request timestamp ¢s;, and the list of request intervals int
along with side-channel information (such as full URLs) for
the token filter in Section V-A.

B. Rescaling and Merging

This phase provides BAYWATCH with scalability and flex-
ibility. Instead of reprocessing raw logs, BAYWATCH rescales
ActivitySummary from the previous phase to improve peri-
odicity detection performance over long time ranges, and
aggregates request history to reduce data size.

e MAP: (k,AS) — (H(s,d), ASrescaled)- Given new time
scale €/, a MAP task rescales old intervals int to new inter-
vals int’, and finds new first time stamp ts} corresponding
to the new time scale. Rescaled ActivitySummary AS,cscaied

486

is constructed. Hash function H is used to reduce REDUCE
and disk I/O overhead.

REDUCE: (H (s,d), AS escatea) list — (k, ASmergea). A
REDUCE task merges multiple intervals from AS,cscqied
into one per source/destination pair, and yields rescaled and
merged ActivitySummary ASy,crged-

C. Destination Popularity Statistics

As discussed in Section III-B, BAYWATCH leverages local

whitelists tuned for a specific organization, which is measured
by the number of distinct source features.
e MAP: (k,AS) — (d,s). A MAP task uses the source/
destination pair from the ActivitySummary AS, and yields
outputs by setting destination d as key and source s as value
aggregating sources accessing the same destination.

REDUCE: (d,s) list — (d,R). A REDUCE task measures
popularity » € R of each destination d by calculating the
number of sources making a request to a destination, divided
by the total number of sources.

D. Beaconing Detection

The beaconing detection phase employs the algorithm
described in Section IV to detect periodic requests in an
ActivitySummary produced by the data extraction phase (Sec-
tion VII-A) or the rescaling/merging phase (Section VII-B).
If required, request histories are aggregated per source/
destination pair.

MAP: (k, AS) — (H(s,d), AStittered). A MAP task sepa-
rates communication pairs.

REDUCE: (H(s,d), ASfiterea) — (k,(AS,CP)). A RE-
DUCE task performs the algorithm based on the request
history of every source/destination pair. When periodic
behaviors are identified, BAYWATCH reports such Activity-
Summary AS with a list of CandidatePeriods C P for sub-
sequent ranking and investigation phases. CandidatePeriod
CP consists of the followings: frequency, period, power,
auto-correlation score, and domain name score.

E. Ranking

In order to help analysts to prioritize deep investigation,
detected periodic behaviors are ranked based on its periodicity
and potential maliciousness.

e MAP: (k,(AS,CP)) — (R, (AS,CP)). A MAP task filters
out likely benign beaconing cases based on URL path token
analysis (Section V-A) and novelty analysis (Section V-B).
Then, periodicity score p € R is calculated to rank and
weight beaconing cases based on a language model trained
on Alexa top 1 million domains, popularity score, and

periodicity strength.

REDUCE: (R, (AS,CP)) list — sorted (R, (AS,CP)) list.
A REDUCE task collects periodicity scores, and sorts de-
tected beaconing cases to generate a ranked list.

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



new event = 30%

g OTEEARET ¢ o i L AL

AT

(c) Addmg Events

L]

(b) Missing Events

LU

(a) Gaussian Noise

I

Different types of noises

Fig. 9.

VIII. EVALUATION

In this section, we provide the results of a systematic eval-
uation of the periodicity detection algorithm and an evaluation
of BAYWATCH on real-world data sets.

A. Noise Tolerant Capability of Algorithm

In this section, we evaluate the performance of the beacon-
ing detection algorithm against different types of noise. The
baseline is a periodic time series with frequency f = 0.01Hz
(period P = 100 seconds). We denote the timestamp of each
event as 7'(¢), where i = 1,..., N and N is the total number of
events; we remark that 7'(¢) — T'(i — 1) = P. We apply three
types of noise into the time series (cf. Fig. 9).

The first noise type is the Gaussian noise, where for each
T (i), we apply a noise value drawn from a normal distribution
N(0,0?). We apply a noise value by shifting the request in
time. The standard deviation o controls the magnitude of the
injected noise and we vary it from 0% (no noise) to 100% of
period P. This models the noise introduced by factors, such
as network delay or the adversary to avoid strictly periodic
beaconing. Figure 9(a) shows the time series with 10% and
30% noise level. The second noise type is the missing-event
noise where each event is associated with a probability p of
being dropped. In other words, on average NN xp events will be
removed from the time series to simulate the noise caused by
network failure, system shutdown, etc. The third noise type
is the add-on noise, where we inject new events at random
locations of the time series. The number of injected events
quantifies the noise level and is set to be certain percent of the
total number of events in the time series, i.e., N. Figure 9(c)
shows the time series with 30% and 80% more events injected.

Given a specific noise type and noise level, we ran the
beaconing detection algorithm on the noisy time series gener-
ated according to the noise model, and reported its periodicity
Phroise- We repeated the experiments 100 times (each time a
new time series is generated with the same noise type and
level) and measured the algorithm’s performance using the
following two metrics: detection ratio 7, and average differ-
ence d; between the detected and the true period. Assuming
out of the 100 repetitions, the detection algorithm successfully
identifies periodicity m times, then -4 and d4 can be computed
a8: ¥4 = 195> 0d = = Y.im1 [Proise(i) — P|. Essentially, v
measures how likely the beaconing algorithm can still detect
periodicity under various noise, and §; measures the average
discrepancy between the true and the detected periods.

Figure 10 summarizes the performance of our beaconing
detection algorithm under each of the 3 noise types, as well
as under multiple noises together. From Figure 10(a) shows
that when the noise level was below 15% of P), the algorithm

0.8}

0.6

0.4

(2 omsd

0570.050.10.150.20.250.30.350.4 0.450.5 Q=02 04 06, 08 o
Gaussian Noise Level Missing Event Probability

(a) Guassian Noise
1004400 04000000000¢

(b) Missing Events

_ﬁ\ i {|—4-Y,(mp=0.5))
0.8 08 '—A—Vd(mp 0.75)
-0 \ | —w-y,(ap=0.5)

0.6 : d|: e 08 ; | -e-y@p=075)
R ] : 8,(mp=0.5)
0.4 (10 Wt o f-.—a(mp i
0.2 4 5 2 0.2 - : 3,(ap=0.5)
\ 5(ap-o75)

L o 0 ' "
Bo% 50% " 40%, "60% 80% 100% 120% 140% 6605 01 045 nz 0.2 M

Gaussian Noise Level

(d) Multiple noises

Percentage of new events added
(¢) Adding Events

Fig. 10. Performance against different types of noise. mp: missing-event
probability; ap: adding-event percent

was able to detect the periodicity with 100% detection rate and
very high accuracy (d; < 2%). As the noise level increased,
the detection rate gradually decreased due to the distortion
introduced by stronger noise. However, a salient property of
our algorithm is that even with the decreased detection rate,
the algorithm still detected true period with high precision
(0q < 5%) when it identified periodic events. As the noise
level increased above 30% of P, where the injected noise likely
destroyed the inherent periodic patterns (see Figure 9(a)), the
algorithm did not report any periodicity, or only reported
periodicity with very small probability (1 or 2 out of 100
repetitions).

Figure 10(b) shows that the algorithm performs extremely
well against missing events. It detected the true period with
100% detection rate when the probability of dropping event
is smaller than 0.6. The detection rate gradually decreased
as more events are dropped from the time series. However,
whenever the algorithm was able to identify the periodicity,
it identified very close to the true period (64 < 1%). The
rationale behind the algorithm’s high tolerance against missing
events is that the events were dropped randomly (as opposed
to uniformly) and there would likely remain a few clusters of
periodic events (see Figure 9(b)). When significant amounts of
events were dropped (e.g., 90%), the algorithm did not detect
the periodicity or occasionally detected a large period value
due to the enlarged gaps caused by missing events.

A similar trend can be observed from Figure 10(c), which
shows the robustness of the algorithm against extra events.
Since adding new events typically does not disturb the original
periodic signal, the original periodic component still likely
exists in the frequency domain. The newly added events essen-
tially created noise in the high frequency spectrum, which was
effectively filtered by the pruning step of the algorithm. When
the noise increased and its associated periodic components
started to carry enough power (e.g., when the number of
injected new events dominated the number of original events),
the algorithm rejected the noisy time series as non-periodic.

Finally, we measured the algorithm’s tolerance against

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



TABLE III. DATA VOLUMES OF WEB PROXY LOGS

Month Log Size (gzipped) | # Events
Oct 2013 1.2 TB (0.4 TB) 0.6 B
Nov 2014 | 6.4 TB (0.9 TB) 64 B
Dec 2014 6.4 TB (0.9 TB) 6.3 B
Jan 2015 7.4 TB (1.1 TB) 75 B
Feb 2015 6.5 TB (1.0 TB) 6.3 B
Mar 2015 | 7.7 TB (1.1 TB) 74 B

Total 35.6 TB (5.3 TB) 346 B

multiple noises injected into the baseline time series. Specifi-
cally, we first applied the missing-event or adding-event model
to bring noise into the time series. Then we measured dg4
and 4 against varying levels of Gaussian noise. The results
illustrated in Figure 10(d) generally follow similar pattern as
Figure 10(a). A noticeable difference is that the threshold,
where the algorithm reliably identified periodicities in the
noisy time series, dropped from 30 in Figure 10(a) to around
11 and 7 in Figure 10(d). The algorithm performed the worst
with the combination of the Gaussian noise and the missing-
event noise with probability 0.75.

Nevertheless, the evaluation shows that even with multiple
types of noise, the detection algorithm still achieved high
accuracy (0 < 5%) when the noise level was not strong
enough to significantly distort the periodic pattern.

B. Beaconing in Web Proxy Logs

In order to evaluate the applicability of BAYWATCH in real-
world data sets, we performed beaconing detection analytics
on web proxy logs collected at a large corporate network.
Web proxy logs are good reference data sets to evaluate the
performance and deployment of BAYWATCH since web traffic
is often misused by adversaries to disguise their malicious
payload in a huge amount of legitimate traffic, which crosses
the perimeter. Although organizations typically employ web
traffic monitoring methods, it is not trivial to analyze all events
historically to identify beaconing behaviors due to the size and
combinatorial complexity of the collected data.

1) Environment & Data sets: The web proxy logs from
a BlueCoat ProxySG infrastructure have been collected at
two time intervals: a consecutive 5-month time period from
November 2014 to March 2015, and a 10-day time period
in October 2013. Table IIl provides a detailed breakdown
of the data volumes. The proxy logs were positioned at the
perimeter of a multi-site corporate network; for each log entry,
we correlated the source IP address with the MAC address
obtained via the centralized DHCP server log repository.
Compared to an [P address, a MAC address is more reliable
in device identification because IPs may change over time as
a device can connect from different networks. Overall, we
observed over 240K IP addresses and 130K distinct MAC
addresses.

We evaluated BAYWATCH on a MapReduce framework
consisting of 13 nodes, each equipped with 16-24 cores, 96 GB
memory, and 1 TB disk. Each node is also configured to run
up to 6 map tasks and up to 4 reduce tasks at once. In our
beaconing detection experiments, we defined a connection pair
such that a source MAC/IP was the source feature, and a
destination domain/IP was the destination feature.

TABLE IV. CONFUSION MATRIX OF CASE CLASSIFICATION
classified benign | classified malicious
true benign 2163 0
true malicious 41 \ 148
%40
[2]
e L i
o
230¢ ,
‘Es’ L 4
5
220 b
[0} L 4
»
S 1ol |
5 | i
9]
o 0 L L L
g 0 500 1000 1500 2000 2500
b4 Number of cases to investigate (in order of uncertainty)

Fig. 11. Number of false negative cases

2) Results: Daily analysis (5-month trace): We have run
the complete data-flow depicted in Fig. 3 over the 5-month
trace while choosing a resolution of 1 second for the event
time stamps when building the activity summaries (cf. Sec-
tion VII-A). The time series analysis has been run over daily
intervals to simulate daily operations of BAYWATCH. We chose
a local whitelist threshold 7p = 0.01 (1% of the population),
and the threshold over the score distribution in the ranking
filter has been chosen at the 90th percentile.

BAYWATCH took about 35 hours to process one month
of proxy logs, e.g., March 2015 data set: extracting Activi-
tySummary of every connection pair from raw logs of each
day, detecting periodic events, and generating a ranked list
of CandidatePeriod. Runtime mainly depended on the amount
of data to be analyzed, especially the number of connection
pairs. During weekends, on average, there were 3.3 million
distinct connection pairs, and it took 14 minutes to complete
the entire analytics steps. During weekdays, on average, there
were 26 million distinct connection pairs, and it took 1 hour
and 30 minutes to complete the analytics. It demonstrated that
our implementation was scalable enough to analyze millions of
connections per day to detect surreptitious beaconing activities.

In total, 2,352 distinct destinations were flagged as suspi-
cious. Manually examining all these cases would have been
extremely expensive. We thus applied the bootstrap approach
proposed in Section VI. More specifically, we examined a
much smaller data set collected over January 2015 (see Ta-
ble III). From these cases, we derived the features defined in
Table II, and used these feature vectors as well as their labels
(0 for ‘benign’ and 1 for ‘malicious’) to train a random forest
classifier (consisting of 200 decision trees). We then applied
this classifier to the rest of the cases of the 5-month trace.

To evaluate the effectiveness of this approach, we queried
VirusTotal with all of the involved destinations and used the
returned reports to construct the “ground truth”: specifically,
if any of its anti-virus engine reported the destination as
malicious, we labeled it as malicious. The confusion ma-
trix in Table IV shows the classification results. Among the
2,352 cases, a majority of them were correctly classified. In
particular, the classifier was able to achieve a false positive
rate of O with respect to VirusTotal labels. As we examined
the 41 false negative cases in Table IV, we found indeed many
of them were of low certainty by the classifier. One possible

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



TABLE V. EXAMPLE CASES FOUND IN 5-MONTH TRACE

Domain name | Smallest period | Clients

cdn.5f75b1c5418[..]12d4.com 30 seconds 19
img.ddbd60eeb01]..Jcce.com 901 seconds 1
b117f8da23446a1[..]92a.pl 929 seconds 3
www.iiasdomk1m39J..]4z3.com 165 seconds 2

solution is therefore: (a) ranking candidate cases based on
their uncertainty, and (b) manually examining the set of most
uncertain cases. Figure 11 shows that the number of false
negative cases is reduced quickly as we examine candidate
cases according to their uncertainty order. For example, after
checking around 550 cases, the number of false negative cases
was already below 10.

We manually investigated the 50 top-ranked destinations
classified as malicious. This included a comprehensive search
for any indications on security intelligence platforms or threat
reports, e.g., public portals such as VirusTotal, McAfee Site
Advisor, CleanMX, or IBM X-Force Exchange. For 48 out
of the 50 (96%) top-ranked destinations, we found clear
evidence of using the domains for malicious activity. Most of
them were reported for distributing malware or adware (e.g.,
Trojan-Downloader.Win32.Genome, Trojan.Semnager, etc.) or
Android APK files exploiting vulnerabilities. For some of the
destinations, 20 or more unique source identifiers (i.e., MAC
addresses) were observed—amounting to 93 distinct clients in
the confirmed top 50. Beaconing periods detected in the top 50
varied greatly and ranged between 30 seconds and 929 seconds
(cf. Table V).

While further investigating the top-100 destinations re-
ported as malicious, we found a few false positives: One
destination (api.echoenabled.com) had dozens of clients; ac-
cording to our findings this destination relates to “HTTPS
Everywhere,” a browser plugin from the Electronic Frontier
Foundation (EFF). Some other destinations were related to ad
networks. In addition, we have found some truly legitimate
cases such as sports, news, and music streaming websites (e.g.,
2015.ausopen.com, kdfc.web-playlist.org), which presumably
updated contents on a regular basis and were used by users
over longer time periods—and were not filtered by our initial
whitelisting mechanisms.

TABLE VL TOP 5 CASES REPORTED IN 10-DAY TRACE
Rank | Domain name | Smallest period | Clients
1 | setup.poiio[..Jrew.com 180 seconds 1
2 | setup.ghwr8[..Jlvsh.com 180 seconds 1
3 | cuoxxscrhhv[..Jigp.com 63 seconds 3
4 | akkixiodzmf..]Jasp.com 63 seconds 1
5 | vzsjfnjwchf|..]hxa.com 1242 seconds 1

3) Results: Daily analysis (10-day trace): The same pa-
rameters as in Section VIII-B2 were applied to the 10-day
trace collected in October 2013. In this trace, we were aware
of several confirmed positives (related to botnet infection
due to the ZeuS.Zbot malware [22]). For a total of 828
communication pairs the traffic conditions indicated suspicious
beaconing behavior: they can be broken down into 412 unique
destinations and 696 unique clients. Among the cases, we
manually investigated the 5 top-ranked destinations. Using
public threat intelligence portals, we were able to confirm that
the domains (cf. Table VI) were related to malware activity:

beaconing of Zeus.Zbot (top 1 and 2), and beaconing of
ZeroAccess (top 3, 4, and 5).

IX. RELATED WORK

Botnets and recent advanced threats are often orchestrated
through C&C infrastructures. Many approaches have been
proposed to detect botnets through network traffic analysis. For
example, BotHunter [11] identified a typical bot infection life-
cycle by monitoring network traffic, such as scanning, exploit
download. BotSniffer [12] leveraged the temporal and spatial
correlation, and similarity between multiple infected hosts to
detect botnet activities. JackStraws [14] took advantage of
host-based information to augment network behavior graphs
to provide more complete picture, and captured potential C&C
traffic. A similar idea was leveraged in [26] for botnet detec-
tion. Similar to our work, Giroire et al. [10] proposed to use
temporal persistence to detect covert botnet traffic. Tegeler et
al. [24] developed BotFinder which applied machine learning
algorithm on various temporal features (e.g., interval list, FFT),
and built models on known botnet samples. AsSadhan and
Moura [3] analyzed control plane traffic looking for periodic
behavior that might indicate the presence of botnet. Despite
the similarity of using temporal features to detect suspicious
network activities, the major difference is that our work does
not require known training data set or the models of botnet
behavior. Moreover, our focus is on reducing false positives
and ensuring the practicality of the system, e.g., daily operation
in a large enterprise network. Many of our design choices (e.g.,
filtering, ranking, and investigation) are derived by analysts’
feedbacks.

Periodicity detection has also become a popular topic in the
data mining and database research communities because it can
be used to capture the evolution of data over time. Earlier work
focused on mining frequent patterns in the time series such
as [13]. The goal of the work was to find patterns that appeared
at least min_sup times. Later research addressed the problem
of automatic periodicity detection. For example, Elfeky et
al. [8] proposed an efficient convolution method to detect
periodicity. More recently, Rasheed et al. [19] proposed a
periodicity mining method in time series databases using suffix
tree. The algorithm was noise-resilient and ran in quadratic
time in the worst case. Elfeky et al. [9] used time warping
techniques to accommodate insertion or delete noises in the
time series data, and achieved O(n?) complexity. Vlachos et
al. [25] combined two complementary approaches, such as
frequency analysis and autocorrelation, and designed a non-
parametric method for accurate periodicity detection. Due to its
lower computational cost, i.e., O(nlogn), BAYWATCH adapted
Vlachos’ approach and scaled it to be practical for a massive
amount of network traffic.

X. DISCUSSION

In addition to web proxy logs, BAYWATCH is applicable to
other data sources such as DNS, Netflow, or firewall logs. The
core of the methodology, the time series analysis, relies on the
activity summary of a communication pair, including a source,
a destination, and request time intervals. In our preliminary
experiments on Netflow and DNS, we identified numerous
suspicious beaconing behaviors; however, we omit the results
here due to the space limit. In DNS, challenges with detecting

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



beaconing are that regional DNS servers may see aggregated
behaviors of local DNS servers rather than end hosts, and
may not see every DNS query due to caching. Netflow only
provides connection level information, i.e., no domain names
or additional content information.

We operate BAYWATCH iteratively in intervals at three
time scales (daily, weekly, monthly). This allows BAYWATCH
to detect less-frequent beaconing (e.g., 24-hour periodicity)
as well as highly-frequent beaconing (e.g., minute-level peri-
odicity). Even though BAYWATCH is designed to be greatly
robust against nosies in data sources, adversaries may still
be able to evade detection by employing purely random
behavior. However, this may be impractical since it imposes
substantial maintenance cost on adversaries. For example, it is
unpredictable for adversaries when infected hosts will call back
(soldier without discipline), and there is no guarantee when
their commands or updates will be conveyed to the botnets.

We systematically evaluated the noise tolerance of our bea-
coning detection algorithm with synthetic data sets by injecting
various noises. However, it is not typically straightforward to
measure the detection accuracy (distinction between legitimate
and malicious beaconing) at a large scale on real-world data
due to the lack of ground truth. Since security analysts face the
same challenge, our filtering approach to reduce the workload,
and to output a prioritization list proved to be beneficial.

XI. CONCLUSIONS

In this paper we proposed a robust and scalable methodol-
ogy, BAYWATCH, to identify stealthy beaconing behavior from
passive network traffic monitoring. Our experimental results
with both synthetic data and 35TB of real-world logs demon-
strated robustness against real-world perturbations, scalability
to millions of connections per day, and accuracy in detecting
malicious beaconing.

ACKNOWLEDGMENTS

We would like to thank the anonymous referees and
Doug Kimelman for their valuable suggestions and helpful
comments.

REFERENCES

[1] Alexa Internet, Inc. Does Alexa have a list of its top-ranked web-
sites?  https://support.alexa.com/hc/en-us/articles/200449834-
Does- Alexa-have-a-list-of-its-top-ranked- websites-.

Arbor Networks. Twitter-based botnet command channel, Au-
gust 2009. https://asert.arbornetworks.com/twitter-based-botnet-
command-channel/.

B. AsSadhan and J. M. Moura. An efficient method to detect
periodic behavior in botnet traffic by analyzing control plane
traffic. Journal of Advanced Research, 5(4):435 — 448, 2014.
B. Bencsath, G. Pék, L. Buttydn, and M. Félegyhdzi. Duqu:
A Stuxnet-like malware found in the wild, October 2011. http:
/Iwww.crysys.hu/publications/files/bencsathPBF11duqu.pdf.

L. Breiman. Random forests. Mach. Learn., 45(1):5-32, Oct.
2001.

K. Burton. The Conficker Worm, 2010. https://www.sans.org/
security-resources/malwarefag/conficker-worm.php.

J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM, 51(1):107-113,
Jan. 2008.

(2]

(3]

[4]

[3]
(6]
(7]

490

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Periodicity
detection in time series databases. Knowledge and Data Engi-
neering, IEEE Transactions on, 17(7):875-887, 2005.

M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Warp: time
warping for periodicity detection. In Data Mining, Fifth IEEE
International Conference on, pages 8—pp. IEEE, 2005.

F. Giroire, J. Chandrashekar, N. Taft, E. M. Schooler, and
D. Papagiannaki. Exploiting temporal persistence to detect
covert botnet channels. In Proceedings of Recent Advances in
Intrusion Detection (RAID), 2009.

G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee.
Bothunter: Detecting malware infection through ids-driven di-
alog correlation. In Proceedings of 16th USENIX Security
Symposium, 2007.

G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting botnet com-
mand and control channels in network traffic. In Proceedings
of the 15th Annual Network and Distributed System Security
Symposium (NDSS’08), February 2008.

J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic
patterns in time series database. In Data Engineering, 1999.
Proceedings., 15th International Conference on, pages 106-115.
IEEE, 1999.

G. Jacob, R. Hund, C. Kruegel, and T. Holz. JACKSTRAWS:
Picking Command and Control Connections from Bot Traffic. In
Proceedings of the 20th USENIX Conference on Security (SEC
’11), 2011.

Kaspersky Lab Global Research and Analysis Team. The
Epic Turla Operation: Solving some of the mysteries of
Snake/Uroboros, August 2014. https://securelist.com/files/2014/
08/KL_Epic_Turla_Technical_Appendix_20140806.pdf.
Kaspersky Labs. The Epic Snake: Unraveling the mysteries
of the Turla cyber-espionage campaign, August 2014.
http://www.kaspersky.com/about/news/virus/2014/Unraveling-
mysteries-of-Turla-cyber-espionage-campaign.

B. Krebs. Sources: Target Investigating Data Breach. Krebs on
Security, December 2013. http://krebsonsecurity.com/2013/12/
sources-target-investigating-data-breach/.

Mandiant. APT1 — Exposing One of China’s Cyber Espi-
onage Units, February 2013. http://intelreport.mandiant.com/
Mandiant_APT1_Report.pdf.

F. Rasheed, M. Alshalalfa, and R. Alhajj. Efficient periodicity
mining in time series databases using suffix trees. Knowledge
and Data Engineering, IEEE Transactions on, 23(1):79-94,
2011.

A. Rassokhin and D. Oleksyuk. TDSS botnet: full disclosure,
March 2012. http://nobunkum.ru/analytics/en-tdss-botnet.

RSA FraudAction Research Labs. Anatomy of an Attack, April
2011. https://blogs.rsa.com/anatomy-of-an-attack/.

Symantec. Trojan.Zbot, January 2010. http://www.symantec.
com/security_response/writeup.jsp?docid=2010-011016-3514-
99&tabid=2.

Symantec Security Response. Regin: Top-tier espionage
tool enables stealthy surveillance, November 2014.
http://www.symantec.com/content/en/us/enterprise/media/
security_response/whitepapers/regin-analysis.pdf.

F. Tegeler, X. Fu, G. Vigna, and C. Kruegel. Botfinder: Finding
bots in network traffic without deep packet inspection. In
Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies (CoNEXT), 2012.
M. Vlachos, S. Y. Philip, and V. Castelli. On periodicity
detection and structural periodic similarity. In Proceedings of
SIAM International Conference on Data Mining (SDM), 2005.
Y. Zeng, X. Hu, and K. G. Shin. Detection of botnets using
combined host- and network-level information. In IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), 2010.

K. Zetter. Sony Got Hacked Hard: What We Know and Don’t
Know So Far. Wired, December 2014. http://www.wired.com/
2014/12/sony-hack-what-we-know/.

Authorized licensed use limited to: Technische Hochschule Deggendorf. Downloaded on July 26,2023 at 07:08:02 UTC from IEEE Xplore. Restrictions apply.



