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A Learning-Based Zero-Trust Architecture for 6G
and Future Networks

Michael A. Enright
Quantum Dimension, Inc.
Huntington Beach, California, USA
menright @qdimension.com

Abstract—6G and Future Networks will require a dynamic,
flexible, learning-based security architecture that will have the
ability to handle both current and future cybersecurity threats.
A distributed learning framework which can establish trust
is needed that will enable technologies to be developed and
integrated to meet security needs; one example of a distributed
learning paradigm is Federated Learning. By integrating ad-
vanced learning with real-time digital forensics, e.g. monitoring
compute and storage resources, it will be possible to develop
a learning-based, real-time Zero-Trust Architecture (ZTA) that
is necessary to achieve the highest level of security. With our
proposed architecture, new techniques and machine learning
techniques can be developed for enhanced real-time, adaptive
and proactive security.

Index Terms—machine learning, distributed machine learning,
federated learning, cybersecurity, privacy, zero trust architecture

I. INTRODUCTION

With the emergence and evolution in virtualization and
softwarization motivated by cloud computing, a new network-
ing paradigm, Software-Defined Networking (SDN) [1], was
developed to address the need for greater network flexibility
and efficiency. SDN fundamentally partitioned network traffic
into three different planes: management, control and data.
Similarly, the Cloud Security Alliance (CSA) developed and
introduced the concept of Software-Defined Perimeter (SDP)
motivated by the need for dynamic security in evolving
network architectures [2]. SDP is an SDN-like architecture
that can be applied to cloud security and other network
architectures, which utilizes a controller to manage the security
processes between hosts and clients similar to how SDN
utilizes a management plane. The main theme is architectural
flexibility, which presents major challenges for traditional
security, further highlighting the critical need for a security
architecture that could address such challenges. Most recently,
the Zero-Trust (ZT) architecture concept emerged to holisti-
cally address the objectives of effective and efficient security
for evolving and dynamic network architectures such as 6G
and future networks.

Significant work has been undertaken by CSA, National
Institute of Standards and Technology (NIST), European
Union Agency for Cybersecurity (ENISA), and others, to
develop secure network architectures. A security architec-

Eman Hammad
Computer Science & Engineering
Texas A&M University - Commerce, RELLIS
College Station, Texas, USA
eman.hammad @rellis.tamus.edu

Ashutosh Dutta
Applied Physics Laboratory
Johns Hopkins University
Laurel, Maryland, USA
Ashutosh.Dutta@jhuapl.edu

ture, considers fundamental security capabilities on a system
level and defines integration requirements, workflows and
performance and reporting metrics. Security capability, that
are similar to capabilities provided in advanced cloud plat-
forms, include Identity and Access Management (IAM), key
management, DevSecOps’ continuous integration/continuous
deployment (CI/CD), anomaly detection, etc. While such
capabilities are crucial for advanced 5G and 6G networks
security, more research is needed to arrive at a security
architecture that focuses on the integration of learning and
autonomy, specifically with Artificial Intelligence and Machine
Learning (AI/ML) elements. Recalling that AI/ML is enabling
6G core functionalities and applications, then successfully
arriving at a security architecture that clearly recognized the
relevant complexities (layers/components/interactions), defines
the guidelines and requirements for integration, and identifies
performance metrics is of the highest priority. If successful,
then a real-time, dynamic cyber-secure network would be more
possible [3].

Federated Learning (FL) is a learning technique whose
objective is to learn across multiple processing nodes in
order to split an AI/ML workload. Essentially, it is a dis-
tributed computing paradigm with objectives that are similar
to split and merge techniques. The promising applications
of distributed autonomous network architectures supporting
FL, where network cooperation extends to sharing modular
duties, further highlights the critical and essential need for
an applicable security architecture framework. In addition
to the FL network processing the use-case application data,
internally, it must attain the highest level of security to ensure
that the learning network is safe and trusted. The objective of
this work is to lay the foundation for a framework that can
address this need by employing and aide in building trusted
ZTA capabilities.

To further illustrate the challenges in scope of this work,
we utilize the use-cases of edge computing and massive ma-
chine type communication (mMTC) in 5G/B5G/6G networks.
These use-cases utilize AI/ML across several layers and parts
of the network. If we further consider a specific critical
application within these use-cases such as a public-safety
application, then it can be understood how critical are dynamic
and real-time security and resilience. Specifically, to enable



an advanced security capability such as predictive security,
then the system architecture should support the capability to
ingest, process and act based on large-scale monitoring data.
The architecture should also support sharing monitoring and
security data across the network to enable real-time continuous
threat modeling and response via AI/ML. Moreover, such
capabilities need to extend to monitoring of AI/ML ecosystems
themselves. In the absence of built-in trust and security in
future networks’ distributed AI/ML models, reliable use-cases
such as edge and mMTC would remain largely infeasible.

AI/ML systems evolution has been intuitively led to be
operated in simplified governance models, thus potentially
creating more challenges and risks. For example, single entities
such as companies, universities and research institutions, tend
to have stove-piped design where the ML models, training
data, and data pipeline platforms are under the control of one
entity and often hosted in one location or service provider and
are vulnerable to attack. While this model catered for earlier
development stages, it does not reflect the practical use-cases
leveraging service-oriented architecture where AI/ML models
and data-science stages could be provided as a service. In the
absence of strong and trusted governance, AI/ML models can
be subject to attack [4]. Hence, security needs to be adaptive
and the models updated securely.

The main objective of this article is to develop a framework
where the security techniques can be integrated and coordi-
nated to enable 5G/6G advanced and trusted dynamic and
predictive cybersecurity, thereby supporting the fundamental
objectives of ZTA. This is a fundamental step for future net-
works, specially given the factors of high-density network data
and complex multi-step attacks. In [5], an attempt was made
to estimate the timing of infected hosts. A comprehensive ML
approach was developed in [6] by working with data from an
enterprise Security Operations Center. A tremendous amount
of data had to be processed which could not be performed
in real-time for their ML model. This paper illustrates the
challenges of developing a real-time security system. However,
with computing capability and network cooperation, secure FL
can be achieved to protect the network.

A. Organization and Contributions

The objective of this work is to propose a learning-based
architecture, using techniques such as FL, to guide secure and
trusted implementations of ZTA across 5G/6G and future net-
work systems. This will support advanced security capabilities
of 5G/6G networks, such as predictive security and security
policy as defined by 3GPP security requirements [7]. The
proposed architecture adopts the ZTA tenants as it unpacks
related elements, layers and interfaces. In essence, this work
is intended to support new and advanced, secure AI/ML
algorithms and technologies across an array of use cases.

In Section II, we introduce future network security. In Sec-
tion III, we address threat modeling and analysis for 5G and
future networks. Section IV describes our secure, federated
architecture. Finally, future development that includes risks
and gaps are presented in Section V.

II. FUTURE NETWORKS’ SECURITY

Network cooperation continues to provide more capabilities
and opportunities to address challenges in comparison with
non-cooperative and autonomous networks particularly in re-
silience and reliability. Benefits of cooperation in networks
have been shown to be advantageous specially consider-
ing examples such as the Internet, mobile ad-hoc networks
(MANETS), cooperative navigation networks [8]. Extending
this cooperative perspective to AI/ML, we can expect the
powerful advantages of distributed computing in FL.

Benefits of FL in future networks are being examined for
a wide array of different applications including improving
communication efficiency [9], resource allocation and cross-
layer optimization and others. However, a critical challenge in
future networks regardless of the application is cybersecurity.
As the connectivity and network aperture expands, so does the
attack surface, and simultaneously threat attackers’ capabilities
and sophistication evolve as well. Consequently, it is most
critical to have a dynamic and proactive security component
as a core element in the cooperative network architecture, one
that has the ability to evolve over time to counter existing
and future threats. Equally as important is the fact that this
security architecture must be able to adapt its operation
mode (autonomous, semi-autonomous, collaborative) in order
to mitigate security threats efficiently and effectively.

AI/ML is generally being increasingly utilized in future
networks’ cybersecurity detection and protection due to their
desirable ability to continuously learn and adapt [10]. This
is motivated by advanced cybersecurity objectives of being
able to successfully address known (past and current) and
unknown (future) threats particularly zero-day attacks. Further,
FL specifically is proving to be a promising tool for advanced
cybersecurity research. A good summary of challenges and
future directions of FL for intrusion detection systems (IDS)
can be found in [11]. Recent attention to security concerns
in AI/ML deployments specifically for future networks aimed
to better understand the security threats and propose solutions
to address challenges via elements of security-by-design as
evident in privacy-preserving algorithms. However, much of
such efforts did not leverage a consistent architecture view
and considered silo-ed elements in their analysis.

In this work, we focus on the future networks’ security as
a use-case driven by the unique differentiating requirements
such as real-time, dynamic, and predictive capabilities. For
example a dynamic predictive security will capitalize on inno-
vative approaches to real-time digital forensics to continuously
train and adapt [12]. It is important here to note that the
proposed architecture can be applied to other use-cases.

An example end-to-end architecture of a 5G network with
the overlay of security threats is illustrated in 1 [13]. As can
be observed from the figure, security threats can target any
part of the network including end devices (e.g. IoT), edge
platforms, radio access networks (RAN), transport, clouds,
core networks, SDN, open systems/interfaces, and several
more logical and physical components. With virtualization and
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open interfaces, the attack surface is expanded to include many
more networked devices and services, hence greatly increasing
the associated security risk. For example, open systems, such
as Open RAN (O-RAN) and Cloud (C-RAN), have exposed
the internal workings of the radio architecture presenting
an opportunity to be exploited by potential attackers. Any
device that connects to the network is a potential source of a
vulnerability, and with such a wide breadth of potential threat
vectors, security intelligence and autonomy are crucial.

5G threat landscape underscores the critical need for se-
curity approaches that are: 1) autonomous, 2) distributed, 3)
dynamic, 4) predictive, 5) integrated by design, 6) widely
applicable, and 7) provide defense-in-depth. And more im-
portantly, an architecture that enables such approaches and
components to operate effectively, securely and efficiently.
Autonomy is critical for secure operation of future networks,
however, autonomy can be exploited in the absence of ad-
equate frameworks and architectures. It is imperative here to
highlight the complexity of addressing security while ensuring
that the infrastructure supporting security is secure and trusted
itself. Hence, the importance of adopting an architecture that
provides provisions across the logical layers to address this
complexity.

The proposed security architecture must be able to both or-
chestrate and monitor security capabilities. This will require a
cooperative system to disseminate, process and update critical
information that include current security threat vectors and lev-
els, changes in AI/ML models and associated parameters and
other inputs. The result will be a dynamic system architecture
where real-time security situational awareness can be achieved,
thereby necessitating real-time management, or orchestration,
in order to operate efficiently and effectively against current

[nmprnmlse nf Netwnrk
Elements

Attack surface of a 5G network [13].

and future threats. Some of the core elements of such a system
are listed below:

o Device and Edge Platform Security Functions — Must
mitigate threats originating from a local area or open
interface reducing the risk of such threats propagating
to the rest of the network.

o Network Security Functions — Must detect and mitigate
threats to the network across the network layers, zones
and applications.

o Supervised and Unsupervised AI/ML Algorithms —
Must provide and facilitate an ecosystem that allows the
use of most if not all AI/ML models as applicable for
security functions.

o Open Interfaces — Interfaces must be specified so that
new technologies can be implemented seamlessly and
will provide real-time situational awareness.

o Threat Vector Sharing — Must allow and facilitate the
sharing of threat vector information in real-time with
other models and system components as needed.

e Online Training and Live Updates — Must allow for
trusted AI/ML online training and model updates.

o Dynamic Model Generation — Must allow for au-
tonomous capabilities such as generating and deploying
new model AI/ML models in response to system context
and threat analysis.

o AI/ML Security Orchestration — Must facilitate coor-
dination between all elements of the AI/ML ecosystem.

o Monitoring - Must allow for collection of monitoring
data and events for security detection and response func-
tions.

The next step is to ensure that the system itself is resilient
against attacks by using a framework that addresses important



security tenets.

A. Zero Trust Architecture

Zero-trust (ZT) was recently promoted [3] as a promising
approach that in principle presents a shift in complex systems
security. ZT acknowledges slowly eroding perimeters and a
wider threat landscape comprising external and internal threat
actors. ZT frameworks adopt three key principles; to always
verify explicitly, grant access to resources on least privilege
basis, and to assume breach. By means of those principles,
ZT puts very little assumptions (if any) that could often cause
gaps in current traditional security approaches. For example,
traditional approaches seek in effect to white-list or black-
list active entities be it a user, application or flow; however
assumptions such as known applications or trusted devices
could lead to bypassing security controls resulting in systems’
vulnerabilities to several threat vectors [14]. ZT highlights
the need to always challenge those assumption as any entity
could be exploited at any point in time. Hence, ZT imple-
mentations need to be thought through carefully to enable
effective remediation and mitigation combining capabilities
for authentication, authorization, access control and active
monitoring [3], [14].

Zero Trust is an architectural concept and philosophy that
does not specifically outlines implementations. Hence, there
will be different ways to implement ZT within a network. We
focus on 6G and future networks to present an architecture
than can create a zero trust implementation through learning
and autonomy. Dynamic trust should rely on situational aware-
ness by continuously evaluating entities within the network
and their associated security state. The goal should be a
learned trust that is gained by continuous monitoring and
learning through AI/ML techniques of today and in the future.

However, security of AI/ML systems presents a unique
challenge because of the complexity, sensitivity and particular
nature of its sub-components as described in [4]. Future
networks are one example of critical systems that will heavily
rely on FL to both 1) operate the systems at a high level of
efficiency, such as through network autonomy, and to 2) enable
its self-adaptive real-time security capabilities limit both the
number and magnitude of threats. This motivates investigating
how a secure-by-design approach can be developed for FL
taking into account ZT principles thereby enabling a unified
and structured approach. Equally important in this endeavor
is establishing the required architectural components essential
to enable this treatment and inform possible implementations.
The intent of this work is not to define a stringent set of
requirements, thereby limiting design choices. Instead, we
propose a dynamic architecture that has the structure to
enable advanced FL capabilities across many types of complex
networks.

III. THREAT MODELING & ANALYSIS

In this section, we expand on the cybersecurity challenges
of distributed AI/ML. This understanding is essential to enable
subsequent discussions in this paper. A distributed AI/ML

algorithm can be viewed as a multi-phase system where data
is used to train a model that’s part of a production architecture
[15]. With this perspective, we can proceed to describe threats
and relevant security controls as it relates to: 1) data, 2) model,
and 3) architecture within the machine learning life-cycle.

A. Threat Taxonomy

Hence, we can summarize the main security challenges in
this context as follows:

o Infrastructure Hardware and Software Security -

Vulnerabilities in hardware, platforms and applications

can be exploited by threat actors to gain access and

manipulate the data and/or models.

Data Integrity - Adversarial threat actors can inject

malicious data in the training stage to affect the inference

capability of Al models or add a small perturbation
to input samples in the inference stage to change the

inference result [15].

« Data Privacy - In applications where users provide their
data, an adversarial threat actor can repeatedly query a
trained model or intercept data exchange between the dis-
tributed learning components to infer private information.

o Model Confidentiality - A knowledgeable adversary may
be able to create a clone model using inferences obtained
through a number of queries against the original model.

o Model Security and Robustness - In a FL network,
model parameters are updated and shared across nodes.
Model updates must be done in a secure manner. In addi-
tion, the model must be secure against adversarial attacks,
such as those current being developed using Generative
Adversarial Learning (GAN) [16], [17] concepts.

Given such challenges, a ZT approach for FL requires a
clear definition of what comprises an entity and a distinction of
applicable threats to each entity type in addition to applicable
mitigation approaches that this paper aims to generalize. Based
on the standard ML life-cycle we can decompose FL into
three entity types 1) data, 2) model and 3) architecture. The
combination of those entities will cater to the different classes
of applications and their requirements. However, this will
remain helpful as we traverse the threat vectors against each
entity.

Data can be targeted through manipulation. This can be
characterized by different attack vectors. In evasion attacks,
carefully designed variations of input data are used to drive
the model outcomes away from the main objective. For ex-
ample, to cause a model to overlook anomalies. In poisoning
attacks, mixing a small percentage of manipulated data with
the rest of the data can be used to significantly impact the
model accuracy. Finally, data can be a target by attack vector
targeting confidentiality and privacy. Current approaches to
mitigate those threats utilize data or algorithms. Data can be
augmented with adversarial data samples to train the model
on detecting and handling evasion attacks. Similarly, filtering
and regression can be utilized to address poisoning attacks, and
finally algorithms such as differential privacy can be leveraged
to defend against data breach threats.



Models can be targeted in inference attacks to extract the
trained model constituting intellectual property theft, and could
further used to generate data that can be leveraged against
the original model. Several references aimed to discuss the
complexity of potential defenses given the blockbox nature
of some of the models. Most recent works have aimed to
tackle this through the developments of enhanced model
security. Model security can be improved through model 1)
detectability, 2) verifiability, and 3) explainability.

Architectures of FL exposes it to a multitude of threat
vectors that can be mapped to threat vectors against distributed
systems. Threat actors would aim towards not only data and
model vulnerabilities by also against the architecture. For
example, if the FL model has a centralized global entity, it
could be targeted to decimate decision making or shed doubts
on the global situational awareness.

B. Example Risk Scenarios

We next discuss a few example risk scenarios based on 5G
use cases with FL implementations. This is will be considered
for two use-cases 1) network security function virtualization
for massive Machine Type Communications (mMTC), and 2)
operational intelligence to support Ultra Reliable Low Latency
Communication (URLLC) applications.

« mMTC Applications - The 5G mMTC model supports
a large number of low data rate sensors that can be
on the order of millions. These can be employed in
manufacturing and warehousing applications, smart city
application such as road sensors, parking meters, etc.
Because they are part of the network, each of these
has the ability to attack the network. These can be
used in distributed denial of service attacks (DDOS) and
others. With these approach described in the following,
these attacks can be mitigated by smart algorithms that
reside on the edge network that communicates with these
sensors or at the Radio Access Network (RAN) if the
devices communicate directly two it.

o« URLLC Applications - This model requires resilient,
assured delivery since these applications include medi-
cal, public services, etc. Disruption of network security
by using jamming, DDOS, man-in-the-middle and other
attacks can have grave circumstances for users of these
services. Hence, recognition of the network security state
is paramount to routing these services around disruption
points.

IV. LEARNED TRUST ARCHITECTURE FOR
CYBERSECURITY

6G and Future Networks will have many different model
types of AI/ML applications that support network management
and optimization, security policy, channel optimization and
more. As described in II-A, a ZTA can be used to support
secure FL for these applications. However, the ZTA that we
describe here is a dynamic one that can learn trust over time
rather than a static one.

Beginning with the distributed aspect of cloud computing
and the management and control aspect of SDN, we propose
an architecture, in terms of layers and components, that is
suitable for learning trust. This may seem counter to ZT,
where one may assume that no one is trusted. In fact, trust is
established through fixed “relationships”, such as shared keys.
However, entities may be compromised, so trust should be
dynamic and determined based upon and operational state or
situational awareness. This is especially true in FL where there
many be many different sources of information that contribute
to the ML model.

A. Layered View

Management Layer

Distribution Layer

Distribution Layer Distripution Layer

Compute Layer Compute Layer Compute Layer Compute Layer Compute Layer Compute Layer

Fig. 2. Layered view of the learning-based architecture.

The architecture is described in terms of layers, as shown
in Fig. 2, and components, as show in Fig. 3. The layers illus-
trated in the figure demonstrate the system-level functionality,
i.e. how the system operates as a whole rather that functions
that are assigned to different entities within the future network.
For example, there is a management component at the control
node but the same component does not exist at client nodes.
In this way, he Management Layer is similar to a control node
in SDN.

The Management Layer is responsible for for network
management and security. Some responsibilities of network
management in a FL. environment include:

¢ Adding and removing nodes from the network

e Maintaining lists and their locations of AI/ML data files,
models etc.

o Manages AI/ML model training and updates

o Coordinating traffic among network nodes

o Ensures “authenticity” and “validity” of model updates

The security aspect of the Management Layer has different
responsibilities that are split across the control and client nodes
which includes:

o Orchestration of security functions throughout the net-
work

o Contains AI/ML models for different security functions,
such as IDS, physical layer security, compute layer secu-
rity, etc.

o Receives status and alerts from nodes in real-time



o Controls and updates security policy based upon network
status

In order to minimize traffic and compute requirements at
the Management Layer, this layer is primarily responsible for
AI/ML and security orchestration. The Management Layer
uses the Distribution Layer to disseminate and receive mes-
sages from the nodes. From the component perspective, this
layer can be seen as implementing the Management Compo-
nent and Security Component, although not in its entirety.

As its name implies, the Distribution Layer is responsible
for the distribution of messages and data between different
network nodes. This is especially important for FL, since
training data may reside at different nodes in the network and
may need to be transferred as such. Hence, the Distribution
Layer can be seen as the freeway that connects the different
elements and manages traffic. This layer also implements
the security policy as defined by the Management Layer.
The Distribution Layer implements functionality from the
Distribution Component and the Security Component.

From Fig. 2, this layer connects Compute Layer, which does
all for the AI/ML processing on its or cluster of nodes. The
figure shows only to Compute Layers, but this is not a limit.

Finally, the Compute Layer is responsible for the computa-
tional processing associated with implementing and training
the models. It is envisioned that there are many AI/ML
models running on a particular node or set of nodes. These
could be NN models, LSTM, unsupervised models, etc. This
layer receives models and data from the Distribution Layer
and provides its results to that layer, which are subsequently
forwarded to the Management Layer.

B. Component View

Inputs Outputs

DC model params Model params to DC, control info to DC,
Management Component (MC) data locations, security regs to SC

MC security inputs ZTA params to DC

Security Component (SC)

Control information from MC, Al/ML
model params from MLC

L . Models, data locations to MLC, results
Distribution Component (DC) IS
MC compute and Al/ML control info,
DC models and data locations

Al/ML models, data and control info to
CC, results and security status to DC

ML Component (MLC)

Security info, AI/ML models and data,
compute requirements from MLC

Updated model parameters and status

Compute Component (CC)

Fig. 3. Component view of the learning-based architecture.

To support learned trust, there are five different components,
as illustrated in Fig. 3: Management Component (MC), Secu-
rity Component (SC), Distribution Component (DC), Machine
Learning Component (MLC) and Compute Component. In this
way, the distributed CC functionality can be partitioned by
functionality. For example, the AI/ML algorithm implementa-
tion and training can be kept separate from the management
and security of the network. Furthermore, these components
do not necessarily need to be resident at the control and client
nodes, which is illustrated in Fig. 4.

The Management Component component is one component
of the Management Layer. It is responsible for operating the

FL network by orchestrating the AI/ML process by collecting
model coefficients and architectures, security parameters, etc.
and using its distribution component to distribute these to
network nodes. It is also responsible for orchestrating security
policy. This layer manages the functions that are implemented
by the SC and DC at the control node.

The Security Component takes security state information
from the MC and creates the security policy and functions.
It may use advanced methods such as ML models derived
from data received from the network elements. As such, this
is the powerful security engine that manages security across
the network.

The Distribution Component has two incarnations. The first
resides on the control node and manages the distribution of
data across the network. The second sits and the client node
and communicates model and training data with other nodes.
While control information is passes from the control node,
communication between nodes is direct to minimize network
traffic.

The Machine Learning Component is responsible for the
model implementation and all AI/ML related functions such as
continuous monitoring, integration of multiple models, model
training, etc. It interfaces with the network through the DC
and processing is performed by the CC.

The Compute Component performs all computations
needed for model processing and training. It runs the models
from the MLC, but it may also gather parameters from the
node’s operating system regarding potential attacks. Thus,
in addition to running models, the CC is responsible for
collecting security, or even sensor data, and passing it up to
the MLC.

A brief summary of each layer is provided in Table I.

TABLE I
COMPONENT DESCRIPTIONS.

Component | Description

Management| AI/ML Network management and control, similar to ITU
MLO

Security Secures models and contains sandboxing for verification
and validation to ensure integrity “accurate, tamper-free”
models are integrated into the ML layer, verification of
data sources/authentication, trust platform, as in multi-
agent platforms

Distribution | Trusted network formation and model parameters, training
data distribution

Machine Hosts AI/ML algorithms of different types (supervised,

Learning unsupervised, etc.), integrates these together, maintains
specified interfaces and contains model implementations

Compute Focuses on distributed computing and virtualization,
Apache Spark is an option

C. Network Topology, Software Architecture and Use Cases

The aforementioned architecture described thus far is not
limited to any particular network topology - centralized, de-
centralized, hierarchical multi-layer, etc. However, as applied
to a 5G/B5G type of network, a centralized topology is in line
with those found in practice, or carrier networks. It is also in
line with the framework set forth by ETSI for MLFO. Thus,



that is the approach that we take in this paper, but obviously,
a decentralized approach such as found in blockchain, with
cryptocurrency being a prime example, is a very interesting
and new area related to FL and it will be an area that we will
focus on in the future.

Training data access, model
parameter updates, compute
availability, security alerts

Client Nodes

Security requirements, network
properties, security alerts

MLC

Fig. 4. Information transfer between control and client nodes.

Control Node

A centralized model is shown pictorially in Fig. 4. The fig-
ure is simple and meant to demonstrate the interaction between
the control node and client nodes and is a mixture of our layer
and component perspectives. The duties of the control node
are centered on management of network operations. This also
includes security policy across the network. For example, the
MC maintains the “objects” and databases that are needed
for FL, security state, and others. In the case of FL, the MC
know the locations of all training data, AI/ML models that are
being used, and the security state at each node. Implementation
of this policy resides with control node’s SC and distribution
takes place via the control node’s DC. Essentially, this is a
client-server architecture with the control node acting as a
server, but the tasks are not trivial.

All intelligence in terms of network operation, security
policy and control, and AI/ML orchestration reside a the client
node. Performing these functions for a large network, as is
the case in 5G/B5G, is no easy task. From a FL perspective,
this is a very interesting problem. Consider the fact that there
are many nodes with different sources of data that can be
used to secure the network, plus the fact that this data is not
sparse. TCP/IP data streams are dense in terms of computing
requirements, but these are not the only sources of data. Real-
time forensic data, e.g. processing load, file access attempts,
and others, paint a picture of the security state of the network.

The client node processing is partitioned into three areas:
distribution and security, AI/ML model implementation and
training, and compute processing. Distribution and security are
linked together due to the fact that secure links are required to
share the data. For example, SSH can be used between nodes
in the network. Additionally, the SC monitors the security state
of the node by receiving security policy information from the
control node. A second function of the SC is to collect security
metrics, i.e. forensics, and send them to the control node.
Essentially, it is monitoring the state of the node to ensure
that there has been no intrusion, and hence, any training data
or metric collected from the node are valid.

The CC is an importance resource in the network architec-
ture. Not only is in critical to host environment; it can also

be used to train models as part of the FL architecture. For
example, consider the case of edge computing in a corporate
or 5G/B5G environment. Depending the computing resources
available, training can be allocated to compute elements in
much the same was as water-filling to maximize channel
throughput subject to an energy constraint as described above.

D. Zero Trust Architecture Support

Our architectural approach can be applied to different net-
work topologies from enterprise to the Internet, the key point
being that cooperation can lead to a ZTA by implementing co-
operative algorithms that can address all levels of the security
stack. Because of the nature of cyber attacks, a distributed,
and federated, systems has the ability to detect cyber attacks
more effectively. For example, if a node has been comprised,
self-detection may not occur since a root-level attack may
turn off all defenses. However, should the attacker attempt
to communicate with other nodes, clearly, its presence will be
detected.

In Table II, we describe how this architecture can be used
to implement ZT using cooperation. The key takeaway from
this table is that for a secure network, the following items, at
a minimum, are required:

1) Network Registry - For a secure FL system, a registry
of all nodes and resources in the network should reside
at the MC. The registry database contains not only
the current state of the network, but also the historical
transactions, such as file access attempts, etc. This
information can be used to set the network security
policy via AI/ML methods.

2) Trusted Implementation - While SSH and encrypted
tunnels can secure communication, they do not guar-
antee trust. It must be assumed that insider attacks
will occur, so methods are needed to detect this by
monitoring security analytics, file operations, network
communication, etc.

3) Real-Time Security Analytics - Knowledge of the current
security state of network nodes is essential to securing
the network. Computing metrics, file access attempts,
state of the key management system are all important
elements in being able to determine whether a node has
been compromised.

V. FUTURE DEVELOPMENT; RISKS AND GAPS

The fundamental view of a secure FL architecture is that
computing capability should be a core component of the
architecture. Rather than simply saying that each node can
compute its own model coefficients, for example, we see the
need to distribute data across that network such that other
nodes can contribute to the compute processing. In doing so,
this will create the possibility of a richer set of algorithms,
not just from a run-time perspective but also from a training
perspective. One such example is with IoT devices that may
collect data but not have sufficient compute capability to
update model coefficients.



TABLE 11

ZERO-TRUST ARCHITECTURE USING LEARNING-BASED ARCHITECTURE.

Tenet

Architecture Support

Notes on Implementation

1. All data sources and com-
puting services are considered
resources.

The Management Layer monitors all resources
in the network. Access to the network is con-
trolled by the MC.

e Registry of nodes and elements of the network at MC
o Knowledge of network node state is required
e Need for AI/ML algorithms for dynamic security policy

2. All communication is secured
regardless of network location.

The SCs within the Control and Client nodes
use encrypted channels such as SSH, tunneling
protocols, etc.

¢ Autonomous management of encryption keys and secure
tunnels is required
o Knowledge of node security state is needed

3. Access to individual enter-
prise resources is granted on a
per-session basis.

The MC knows all resources in the network and
distributes access rules to the client nodes via
the Distribution Layer.

o Smart key management routines

4. Access to resources is de-
termined by a dynamic security
policy and may include other
behavioral and environmental
attributes.

The CC monitors computing performance, such
as memory usage and system performance, and
relays this to the Security Component at the
Control Node for continuous monitoring. Simi-
larly, the SC monitors resource access requests
and reports these to the Control Node.

e Policy is set forth at MC

e Security analytics are needed to derive policy

o AI/ML algorithms are needed to derive security state from
analytics

5. The enterprise monitors and
measures integrity and security
posture of owned and associated
assets.

This is similar to Tenent #4 with real-time
integrity monitoring.

o Security state and real-time analytics are inputs to this
function

6. All resource authentication
and authorization are dynamic

The Management Layer controls access to re-
sources on a per-session basis.

o Must detect insider attack where key is valid but an attack

and strictly enforced before ac-
cess is allowed.

is underway.

o Trust through intelligent key management and state mon-
itoring are required.

e Security analytics and network communication monitor-
ing may be able to detect insider attack.

7. The enterprise collects infor-
mation about the current state
of assets, network infrastructure
and communications.

is employed here.

The same approach with real-time monitoring
and centralized control as in Tenets #3 and #5 .

This is the security analytics and monitoring that was
described earlier.

With the aforementioned architecture and future technology
developments, AI/ML-based security will be a key component
of future networks. By developing the aforementioned techni-

cal

approaches and frameworks into a suite of 5G and Future

Network products, the great potential of AI/ML for security
can be realized.

Ultimately, the goal is to develop the dynamic, predictive
AI/ML system such that it can support advanced capabilities
to secure Future Networks beyond what is capable today.
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