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Abstract—Traditional firewalls, Intrusion Detection Sys-
tems(IDS) and network analytics tools extensively use the ‘flow’
connection concept, consisting of five ‘tuples’ of source and
destination IP, ports and protocol type, for classification and
management of network activities. By analysing flows, informa-
tion can be obtained from TCP/IP fields and packet content
to give an understanding of what is being transferred within a
single connection. As networks have evolved to incorporate more
connections and greater bandwidth, particularly from “always
on” IoT devices and video and data streaming, so too have
malicious network threats, whose communication methods have
increased in sophistication. As a result, the concept of the 5 tuple
flow in isolation is unable to detect such threats and malicious
behaviours. This is due to factors such as the length of time and
data required to understand the network traffic behaviour, which
cannot be accomplished by observing a single connection.

To alleviate this issue, this paper proposes the use of additional,
two tuple and single tuple flow types to associate multiple 5
tuple communications, with generated metadata used to profile
individual connnection behaviour. This proposed approach en-
ables advanced linking of different connections and behaviours,
developing a clearer picture as to what network activities have
been taking place over a prolonged period of time.

To demonstrate the capability of this approach, an expert
system rule set has been developed to detect the presence of
a multi-peered ZeuS botnet, which communicates by making
multiple connections with multiple hosts, thus undetectable to
standard IDS systems observing 5 tuple flow types in isolation.
Finally, as the solution is rule based, this implementation operates
in realtime and does not require post-processing and analytics of
other research solutions. This paper aims to demonstrate possible
applications for next generation firewalls and methods to acquire
additional information from network traffic.

Index Terms—5-tuple flow tables, Zeus botnet, Network Be-
havioural detection, Next generation firewall

I. INTRODUCTION

Within established network traffic accounting, analysis tools
and intrusion detection systems(IDSs), the 5 tuple classifica-
tion, consisting of source and destination IP addresses, ports
and protocol, is extensively used for defining and isolating
connections. Accounting methods such as Netflow [1] make
use of the 5 tuples and 2 additional minor parameters (TOS
and interface). The Linux connection tracking mechanism
is an example of how the 5 tuples can be used to allow
inbound traffic from host originated connections, but prevent
new connections on the same ports and IP to the host. Modern
IDS systems such as SNORT make use of the 5-tuple method
to account for connections.

With the advent of greater bandwidth availability, always-
on IoT devices and increased data transmission from mobile
and standard computing devices, the ability to account for
traffic has become more difficult, requiring analysis over
longer periods of time. Network based malicious threats have
become ever more sophisticated with detection having shifted
from port number to application layer Deep packet inspection
(DPI). Malware has been increasing their sophistication to
disguise their activities, using obfuscation, encryption and peer
to peer communication, meaning that more advanced detection
methods are necessary.

This paper proposes an enhancement to IDS methods used
to detect malware by introducing and simultaneously using
5, 2 and single tuple flows to associate different connections
to the same or different hosts, where solely under 5 tuple
flows, they could not be associated. By generating additional
metadata based flow behaviour, better informed decisions can
be made as to the purpose of greater quantities of traffic.

This contribution will study existing research that goes
beyond observing 5 tuple based traits, using methods such
as machine learning and other statistical measurements, to
derive information that would have been inaccessible within
a standard IDS. This work will then demonstrate a proposed
approach which maintains the features and real time nature
of existing IDS systems, but adds ability to extend them to
detect new features spanning multiple connections within an
expert system ruleset approach. The aim of this work is to
indicate possible directions for rule based applications that
provide realtime functionality to the user.

II. RELATED-WORK

The research community has been looking at a number of
novel network based detection and analysis methods. These
methods also go beyond use of the 5 tuple connection classi-
fication in order to gain additional behavioural information.

Narang et al. [2] studied conversational based data between
IP addresses only, thus using a 2-tuple approach rather than
5-tuple. By studying conversations between IP addresses over
longer periods of time, they found it was possible to perform
statistical analysis of conversations based on interarrival times,
packet size and duration of conversation prior to specified
timeout. This work was demonstrated successfully against
peer to peer bots. This approach does not consider other
aspects such as packet content, nor empty packets. Being



a machine learning based approach, this method required
extensive amounts of training data.

Azab et al. [3] studied the application of machine learning
to ZeuS botnet detection. Using their optimised framework and
training with data from ZeuS v1, they were able to achieve a
0.667 recall result using their classifier and 0.556 recall using
a standard machine learning framework against other ZeuS
variants.

Zhuang et al. [4] further studied Peer to peer botnets,
observing community based behaviour and isolating commu-
nications with bot masters within a peered connection envi-
ronment. Botnet based activity was located by analysing for
community activities between different hosts, before analysing
flow statistical features, destination IP diversity, mutual peer
contact and community structure. This research required avail-
ability of multiple connected hosts within a network.

Hjelmvik et al. [5] introduced the concept of protocol finger-
printing by observing statistically measurable attributes within
the connection dialogue. Rather than looking at the packet
payload using signatures, extracted attributes such as packet
length can be statistically analysed to gather information about
the protocol being used, where DPI cannot, due to obfuscation.
This work aimed to assist in locating peer to peer file sharing
protocols such as bittorrent, as well as tunnelling applications,
which may make use of obfuscation to obscure themselves.

Herrmann et al. [6] performed work into website analysis,
finding that by using statistical analysis of packet sizes within a
connection dialogue, it was possible to determine specific web-
sites being visited through encrypted VPNs and anonymising
tools such as Tor.

Gu et al. [7] created the ‘Bothunter’ project with support
from the US Army Research Office. This application observes
various network activities to observe suspicious events such as
inbound port scanning, exploit usage, malware downloading,
outbound command and control server connections and out-
bound attacks. Bothunter builds a trail of evidence by logging
and correlating these suspicious events. While this application
considers detection of command and control activities, this
feature may not be reliable to indicate an infection alone.
Should bothunter be deployed with a host already infected,
or if infected via a separate source, such as a USB pen drive,
bothunter may fail to recognise botnet activity, as it may not
be able to build a trail of suspicious evidence. This issue is
further compounded by the fact that the application is closed
source. It is therefore unclear precisely what detection methods
are in use.

A similar application, created by Bothunters developers, is
‘BotSniffer’ [8]. This application performs group analysis of
network traffic, to attempt to ascertain common events, such as
command and control activity or highly similar network traffic
activity. This research takes advantage of the likely situation
that multiple hosts may exhibit highly similar network activity
if infected by the same malware type. Detection is achieved
by formulating a command and control ”response crowd”,
consisting of multiple similar communications to a host, before
determining whether the activities are malicious. However,

a substantial issue with this application is that it requires
multiple infected hosts. A network with a single infected host
may therefore not flag a detection within this application.

Other studies have focused on protocols which may be used
for malicious command and control communications within
botnets. Strayer et al. [9] observed possibilities in isolating
malicious IRC communications through classification using
machine learning, followed by topological analysis to identify
clusters of flows which can be linked to determine a common
botnet controller. This was performed with the ”Kaiten” IRC
bot variant. While the researchers were successful in isolating
malicious traffic from the majority of available traffic, this
method could not uniquely detect malicious activity, thus
manual analysis was still required. Furthermore, IRC traffic
may more likely be filtered due to being an uncommon
protocol with higher likelihood of abuse. Instead, malware may
make use of more common protocols such at HTTP.

III. PROPOSED APPROACH

This section will detail the approach used to create the
multiple indexes based on 5, 2 and single tuple connections.
This will be followed by an example to highlight a relevant
example which utilises the proposed multiple indexing feature,
by using the ZeuS botnet malware. The ZeuS botnet has been
used as the investigation tool and use case due to availability
of the source code and ease to configure an isolated botnet for
test purposes, as well as its implemented IDS evading features.

1) 5, 2 and single Tuple Implementation: The multi-tuple
implementation is implemented through monitoring of net-
work traffic utilising the PCAP library. A hashtable method
is used maintain the information. When a packet is detected,
firstly, the source and destination IP addresses, source and
destination ports and protocol type will be hashed together
and stored with a 5 tuple index reference generated. A separate
2 tuple index will be held, this time only for the hash of the
source and destination IP pair. Finally, each IP address will be
hashed individually and stored in the single tuple index table.
For 5 and 2 tuple flows, the flow direction will be established
to prevent indexing of packets travelling the opposite direction
to the first packet received. Table I demonstrates the multiple
tuple indexes created from a series of example connections.

The proposed approach involves implementing multiple in-
dexes based on the following connection parameters, or tuples.
This proposed approach allows for the following associations.

• 5-tuple: The standard connection consisting of IP pair,
source and destination ports and protocol type. Multiple
packets from the same connection will be associated

• 2-tuple: These indexes can associate different 5-tuple
connections.

• 1-tuple: Two exist for each packet. These can associate
multiple 5-tuple and 2-tuple connections between differ-
ent peers with same source or destination IP.

2) Metadata: Standard IDS features like regular expression
based packet content analysis were implemented in the test
application as rules. Upon detection of a rule, the application
can log information against any of the 5 tuple, 2 tuple and IP



TABLE I
REPRESENTATION OF GENERATED 5, 2 AND SINGLE TUPLE INDEXES

BASED ON CONNECTIONS MADE

SRC DST SRC DST 5-T 2-T 1-T
IP IP Port Port ID ID IDs
192.168.1.67 192.168.1.1 49152 80 1 1 1,2
192.168.1.1 192.168.1.67 80 49152 1 1 2,1
192.168.1.67 192.168.1.1 49153 80 2 1 1,2
192.168.1.1 192.168.1.67 80 49153 2 1 2,1
192.168.1.67 8.8.8.8 49154 53 3 2 1,3
8.8.8.8 192.168.1.67 53 49154 3 2 3,1
192.168.1.67 192.168.1.2 49156 80 4 3 1,4
192.168.1.2 192.168.1.67 80 49156 4 3 4,1
192.168.1.67 192.168.1.1 49157 80 5 1 1,2
192.168.1.1 192.168.1.67 49152 137 6 1 2,1

address indexes. For example, this may be the occurrence of a
rule particular, or any other packet information, such as packet
size, time, or application layer data. Finally, the application,
when instructed, can check generated meta-data for a pattern.
For example, rule matches on packets of a particular size, at
regular intervals are relevant for detecting ZeuS traffic.

A. ZeuS Botnet Connection Features

The ZeuS malware client makes use of the HTTP protocol
to communicate with the server. Network based malware, such
as ZeuS, will often use known network protocols, like HTTP,
to ease configuration of the server and lower the chance of
the connection being blocked by a firewall. Within the HTTP
connection, other techniques may be employed, such as obfus-
cating the data inside the payload, to thwart signature based
DPI rules. In isolation, detection of obfuscated or encrypted
data within an HTTP packet is insufficient to identify of
a threat. The ZeuS client performs beacon communications
based on a number of configurable settings within the malware
builder application. These are:

1) “timer config” Beaconing: The configuration file bea-
coning pattern consists of the client making a periodic HTTP
GET request to the server, which hosts the configuration file.
The client HTTP header closely resembles that of the Internet
Explorer browser, with specific traits which are common to all
tested Zeus variants. These include;

• The acceptance of any file type in the response (Accept:
*/*)

• Internet Explorer mimicking (User-Agent: Mozilla/4.0
(compatible; MSIE))

• Instruction not to cache the response (Cache-Control or
Pragma: no-cache)

The HTTP response header to this request will contain
‘Content-Type: application/octet-stream’. By default, this com-
munication will occur on an hourly basis, but can be modified
as an integer within the configuration, in minutes.

2) “timer stats” Beaconing: A second form of beaconing
uses HTTP POST requests to report information about the
infected host back to the command and control server. The
HTTP header of the POST request exhibits the same header
traits as the ‘timer config’ GET header. Secondary to this,

Fig. 1. HTTP header from a typical “timer config” GET request

the header definition “Content-Type: text/html” is present, but
the HTTP payload consists of obfuscated or encrypted data.
Furthermore, no encoding setting in present within the header,
which would explain the presence of scrambled data. This
anomaly may be detected by a regular expression through the
lack of parentheses within the HTTP data payload. Within the
‘timer stats’ beaconing pattern, the size of each POST request
to the Zeus command and control server does not change.

Fig. 2. Timer stats POST request header and encrypted payload from Zeus
version 2.

Fig. 3. Timer stats response. Note the “Content-Type” and payload data
mismatch.

B. Building Expert System Ruleset

The detection process for mentioned beacon patterns re-
quires single traits to first be isolated, before their logged
against the index in the form of a timestamp, associated to the
2-tuple flow. Regular expression is used to detect the malware
traits described within the 5-tuple flow. A timestamp to the
associated 2-tuple flow and system will check if a time gap
exists, consistent to ZeuS’s default for the specified option or
for equidistant separation between three most recent instances.
Should either of these results be positive, the trait will be
logged against the 2-tuple index as being potentially ZeuS
traffic. Finally, the 2-tuple index will be logged against the
single tuple index of the source IP which originated the traffic.
Should both elements of ZeuS connectivity, timer config and



timer stats, be detected with the same or another host, from
that same source IP, it is considered, for the purpose of this
expert system, that a positive ZeuS detection has been made.
Algorithms 1 and 2 detail a sample of the method used to
append data to the index upon detection of a suspicious trait.

Algorithm 1 Timer config isolation and logging
Input: in
Output: out

Initialisation :
1: regex step1 = [Accept: */*]&[User-Agent: Mozilla/4.0

(compatible; MSIE]&[Cache-Control|Pragma: no-cache]
Incoming packet

2: while recv packet do
3: if packet(regex step1) = true then
4: logappend(2T index-

>timer config pkt timestamp)
5: end if
6: end while
7: goto timer config patterncheck[2T index]

Algorithm 2 Timer stats detection
Input: in
Output: out

Initialisation :
1: regex step1 = [Accept: */*]&[User-Agent: Mozilla/4.0

(compatible; MSIE]&[Cache-Control|Pragma: no-cache]
2: regex step2 = [Content-Type: text/html]&![Content-

Encoding:]&![.*<.*>.*</.*>]
Incoming packet

3: while recv packet do
4: if packet(regex step1) = true then
5: log(5T index->zeus timer stats step1)
6: break
7: end if
8: if packet(regex step2) = true and (5T index-

>zeus timer stats step1) then
9: logappend(2T index-

>timer stats pkt timestamp)
10: end if
11: end while
12: goto timer stats patterncheck[2T index]

In order to detect each of the beaconing patterns, a number
of factors must be considered, concerning the connectivity of
the infected host within network and the traffic passing through
the network;

• A single beaconing pattern consists of short TCP connec-
tions between 2 IP addresses over a prolonged period of
time.

• ‘timer stats’ and ‘timer config’ beacons may be to dif-
ferent servers from the infected host.

• Legitimate HTTP traffic may exhibit traits similar to Zeus
• In a working environment, a high volume of network

communications may be present

Fig. 4. The beaconing pattern is shown with default settings “timer config
60” and “timer stats 20”

Fig. 5. A beaconing pattern has been detected when time deltas GT1 and
GT2, between three suspicious GET request and responses, are equal, in
combination with three suspicious POST requests and responses, detected
with equidistant time deltas PT1 and PT2.

The traits which have been used to determine the presence
of Zeus traffic have been defined through manual analysis
of the network traffic created by multiple Zeus clients. The
detection process uses regular expression to identify traits
within the packet payload. Other information including 5-tuple
connection information, time, IP address pairing and packet
length are also necessary to locate traits within the traffic.

C. Implementation and Testing

To demonstrate the effectiveness of this proposed approach,
the ZeuS botnet, version 2.0.8.9, configured to use multiple
hosts, was used. The ITACA platform[10], modified to include
2-tuple and 1-tuple indexes along with the 5-tuple index, was
used for the implementation.

The proposed multi-tuple indexing was used to maintain
connection information. Network malware such as Zeus per-
forms a large number TCP connections over an indefinite time
between the client and server. These will appear as separate
5-tuple connections, each of which can trigger detection of
the ‘timer config’ or ‘timer stats’, it is the temporal pattern
between separate TCP connections that can trigger a beacon
detection. For each beacon trait detection, the timestamp will
be recorded. Equidistant time deltas between these trait will
yield a positive beacon detection. The detection can take place
independent of quantity of other connections, as they will be
logged with a different index. This indexing method therefore
allows scaling of the detection application to detect traits
within network environments where many connections may



Fig. 6. 5-tuple connections are grouped using 2-tuple and single tuple indexes.
Temporal analysis determines whether the activity corresponds to Zeus options
before a decision is made on whether a single IP address is exhibiting Zeus
client traffic.

be occurring, such as within an a corporate network gateway
or ISP environment.

The experimental application design relies on measurable
attributes contained within the packet data. Furthermore, the
application itself must analyse packet tuple information to
create three separate indexes, those being each individual IP
address, each IP address pairing and each 5 tuple flow. This
process is performed in conjunction with the isolation of Zeus
HTTP header traits within the traffic. The Zeus beaconing
detection method will make use of the packet content and
index information provided and log any traits found. For each
of the beaconing patterns, information about potential Zeus
activity will be logged within the application’s memory space.
Only when all attributes of the trait detection type are equal
will a second occurrence and its time be logged. For example,
if a Zeus trait occurs on an IP pair index with a different POST
packet size to a previous occurrence, this will be considered a
separate Zeus trait. Such a phenomenon may indicate a change
in Zeus’ client configuration, multiple instances of the Zeus
client running on a host with the same server specified, or two
infected hosts who may be sharing a public IP address through
the use of Network Address Translation (NAT). When three
identical traits occur, temporal analysis can determine whether
the connections are beacons.

IV. CONCLUSION AND FUTURE DEVELOPMENT

This paper has investigated the concept of generating multi-
ple tuple indexes from network traffic. By analysing traffic be-
haviours within these indexes, it is made possible to establish
associations between disparate network connections, which
would not be possible with a traditional IDS. This contribution
has applied this concept, by creating a ruleset which can,
with the generated behavioural metadata, infer the presence

of malicious software within the network traffic, which would
otherwise not be detectable.

This concept has been successfully implemented to detect a
multi-peered ZeuS botnet. This has been performed by creating
a expert system ruleset of packet content filters and temporal
pattern analysis of detectable “atomic events”, which are too
minor in isolation, but when associated through multiple tuple
connections become a strong indicator of malware presence in
the network. The expert system described achieved successful
detection of ZeuS botnet, independent of options specified and
regardless of network size and quantity of traffic present.

The next stage of this research is to refine the algorithm
based methodology to allow definition of “expert system”
rulesets by the user. This may involve creation of a detection
language to locate features, generate metadata to log traf-
fic characteristics across multiple connections, to eventually
detect complex network traffic events. Applications for this
expert system detection method are not confined to malware
threats, but it can be used for analysing many kinds of complex
network behaviours, such as those mentioned in the Related
work section, along with browsing, device usage analytics and
fraud detection. The proposed method also provides a platform
for generating additional data for use in other form of analysis
including machine learning.
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