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Abstract—After many research efforts, Network Intru-
sion Detection Systems still have much room for improve-
ment. This paper proposes a novel method for automatic
and timely analysis of traffic generated by large networks,
which is able to identify malicious external hosts even if
their activities do not raise any alert by existing defensive
systems. Our proposal focuses on periodic communications,
since our experimental evaluation shows that they are more
related to malicious activities, and it can be easily integrated
with other detection systems. We highlight that periodic net-
work activities can occur at very different intervals ranging
from seconds to hours, hence a timely analysis of long time-
windows of the traffic generated by large organizations is a
challenging task in itself. Existing work is primarily focused
on identifying botnets, whereas the method proposed in this
paper has a broader target and aims to detect external
hosts that are likely involved in any malicious operation.
Since malware-related network activities can be considered
as rare events in the overall traffic, the output of the
proposed method is a manageable graylist of external hosts
that are characterized by a considerably higher likelihood
of being malicious compared to the entire set of external
hosts contacted by the monitored large network. A thorough
evaluation on a real large network traffic demonstrates
the effectiveness of our proposal, which is capable of
automatically selecting only dozens of suspicious hosts from
hundreds of thousands, thus allowing security operators to
focus their analyses on few likely malicious targets.

Index Terms—beaconing, periodicity, graylist, clustering

I. INTRODUCTION

The defense of large information systems is character-
ized by two major problems. On one hand, attackers are
capable of performing attacks spanning over long periods
of time and employing advanced techniques, allowing
them to avoid detection [1]; on the other hand, security
analysts are overwhelmed by the huge volume of logs
generated daily by network traffic [2]. Furthermore, the
majority of Network Intrusion Detection Systems (NIDS)

are unable to detect novel forms of attacks [1] or tend to
raise several false alarms [3]. Proposals to increase the
efficacy of NIDSs are oriented to improve their ability
to detect attacks [4], or to provide security analysts
with concise information about ongoing attacks [5]–[8].
Other solutions rely on prioritization techniques of likely
infected internal hosts [9].

This paper is focused to support automatic security
analyses by identifying external hosts that are performing
attacks against the monitored network, even if their activ-
ities do not raise any NIDS alert. The proposed method
analyzes network flows and is able to automatically
generate a graylist of few external hosts characterized
by a likelihood of being malicious that is several orders
of magnitude greater with respect to all the external
hosts contacted by the monitored network. The goal is to
identify hosts involved in periodic communications (also
referred to as beaconing) at different time intervals. The
detection of malicious beaconing activities is still an open
research problem [10]–[12], which is further complicated
in large networks due to the difficulty of performing
accurate and timely analyses of huge volumes of network
traffic. Moreover, we have experimentally verified that
external hosts exhibiting periodic connections present
a higher rate of malicious behaviors when compared
to hosts with irregular communication patterns. Our
novel algorithm detects periodic behaviors by analyzing
network flows. It is capable of labeling as periodic even
communications that do not display a strict periodic
pattern, thus allowing the detection of possible evasion
attempts.

Our proposal is evaluated with a thorough set of
experiments performed on a large, real network without
the creation of any synthetic traffic.

This paper is structured as follows. Section II discusses
related literature. Section III describes the proposed
method. Section IV presents an extensive evaluation of978-1-5386-1465-5/17/$31.00 ©2017 European Union



the performance and efficacy of our proposal. Section V
reports conclusions and future work.

II. RELATED WORK

We present a novel method for automatically generat-
ing a graylist of external hosts with a higher probability
of being involved in malicious beaconing activities with
respect to the entire set of external hosts contacted
by the monitored organization. Our proposal leverages
clustering techniques applied to network flows. There are
two main areas of related work: NIDS alarm optimization
and detection of malicious beaconing activities.

Each NIDS generates huge amounts of alerts whose
manual inspection is often unfeasible for human opera-
tors, hence several solutions aim to improve the informa-
tion presented to security analysts by presenting shorter,
comprehensive records. The authors in [6] discuss an
algorithm to reduce the volume of alarms produced by
multiple NIDSs through clustering alerts raised by simi-
lar malicious actions. Other papers, such as [5], propose
to cluster alarms to detect their root-causes. Valeur et
al. [7] transform groups of correlated alarms into intru-
sion reports. More recent works propose prioritization
techniques for internal hosts. Authors of [13] and [8]
focus on multistep attacks. The proposal in [14] leverages
the alarms raised by the most critical assets. In [9]
an architecture that prioritizes internal hosts upon their
likelihood of being involved in several kinds of malicious
cyber-attacks is proposed. All these papers share the
broad goal of supporting security analysts by allowing
them to focus on the most relevant alarms detected by
a NIDS. In contrast, our proposal combines intrusion
alerts together with network flow analyses and clustering
algorithms to identify the most suspicious external hosts
even if their actions do not raise any NIDS alert.

The detection of malicious beaconing activities is a
well known problem in the field of botnet detection.
Gu et al. [15] devise a framework for detecting internal
hosts belonging to botnets through clustering of network
traffic, based on the assumption that bots belonging to
the same botnet have similar network behaviors. Authors
of [16] plan to discover botnet infected hosts through su-
pervised machine learning algorithms applied to network
flows by identifying the key features of Command and
Control communications. A similar solution is proposed
in [12], although its main focus is on detecting Command
and Control servers instead of bots.

Our method is not limited to detecting botnet-related
malware, but extends to any possible external threat that
is performing beaconing activities. Unlike botnet-related
proposals, we do not make any assumption about the
characteristics displayed by the analyzed traffic. Related

work, such as [10], inspects DNS logs to discover ma-
licious beaconing activities performed by internal hosts,
whereas the proposal in [11] relies on the analysis of
both DNS and web-proxy logs. On the other hand,
we aim to detect malicious external hosts, which is
a tougher problem because a large organization may
contact hundreds of thousands of external hosts daily.

Moreover, our proposal is based on the analysys of net-
work flows, which can be easily gathered and stored [17],
leverages an unsupervised machine learning algorithm
(unlike [12], [16]), and its execution time on a large
network is compatible to online traffic analyses.

III. IDENTIFICATION OF MALICIOUS EXTERNAL
HOSTS

This section begins with a high level description of the
proposed approach, and offers details of each processing
module in the other subsections.

A. Overview

The main objective is to provide a graylist of external
hosts involved in periodic communications with a high
likelihood of being malicious. The basic assumption is
that although novel variants of attacks are likely to
evade NIDS detection [18], some features of malware
network behavior persist and can be used to identify
likely malicious activities.

The proposed method works on two inputs that can be
easily obtained in modern infrastructures: network flows
related to communications between internal and external
hosts, and security alerts generated by a signature-based
NIDS. These inputs are processed by the three modules
shown in Figure 1. The Periodicity Detector is respon-
sible for identifying network communications between
internal and external hosts occurring at regular intervals.
The Behavioral Aggregator clusters periodic connections
according to their network behavior. The Graylist Builder
creates the final graylist of suspicious external hosts.

As the number of connected devices in enterprise
networks continues to increase, the detection of periodic
activities is becoming a challenging task, since they can
occur at different degrees of granularity spanning from
few seconds to hours. Instead of looking for periodicities
in raw traffic, we consider network flows which offer ag-
gregated metadata summarizing relevant network traffic
features. Each flow record is defined as an unidirectional
sequence of packets that share specific network prop-
erties, such as source/destination IP address, transport
layer protocol type, and source/destination port. Using
network flows as input source is a popular choice in the
cybersecurity domain [17], as they lower the amount of
storage space required, make analyses faster, and reduce



Fig. 1. Workflow of the proposed method.

privacy concerns due to the absence of packet-specific
payloads.

NIDSs are a valuable asset for detecting malicious
activities, but they are unable to detect novel malware
variants that do not contain any known signature. How-
ever, some characteristics of malware behavior, such
as beaconing, are stable across a wide array of au-
tomatically generated malware variants, thus resulting
in similar communication patterns. Since our approach
clusters network communications that share similar pe-
riodic behaviors, different variants of the same piece of
malware are likely to be clustered together. Our approach
only requires that a single malware variant generates a
NIDS alert to pinpoint as suspicious the entire cluster of
periodic communications containing that variant.

B. Periodicity Detector

The Periodicity Detector module detects periodic com-
munications from network flows in two phases: first,
it generates time series from the network flows; then,
it analyzes these time series through an autocorrelation
algorithm to determine whether they are periodic or not.
The adopted techniques are robust and tolerate possible
pertubations caused by noise or introduced by an attacker
to escape detection.

The sequence of network flows among two hosts
represents an unevenly spaced time series, which cannot
be immediately used to detect periodic communications.
Hence, we initially compute one evenly spaced time
series for each pair of internal and external hosts ex-
changing packets within a time window W . Given a
sampling period P , this time series contains a total of
W/P elements. Each element is built by aggregating all
the network flows between the involved hosts occurring
within the same sampling period. As beaconing activities
require repeated exchanges of some data, to capture
these data transfers we compute each element of the
time series by adding together the amount of bytes
exchanged between the involved hosts within the related
sampling period. This design choice allows us to better
differentiate beaconing activities that exchange different

volumes of data. After this phase, each pair of internal
and external hosts is associated to one time series.

Then, we adopt autocorrelation to detect periodicities
in each time series because this technique can signal
time series exhibiting more than one period [19]. By
computing the autocorrelation on a time series we ob-
tain an autocorrelation function (ACF) containing W/P
elements, each one representing the similarity of the time
series with a delayed copy of itself. The analysis of the
local maxima of the ACF determines whether a time
series exhibits or not periodicities. In particular, looking
for periodicities in the ACF involves determining the
coordinates of local maxima, since strictly periodic time
series tend to have local maxima with high amplitude
at the beginning of the related ACF. Existing works
relying on this technique for detecting periodicities in
time series (e.g., [20]) are only able to identify strictly
periodic time series. The problem is that skilled attackers
may insert some perturbations to avoid detection, either
by delaying or anticipating the communications, or by
changing the volume of data exchanged during each in-
teraction by random amounts. Moreover, network traffic
may be subject to noise induced by inactivity periods,
temporal disconnections, or by the presence of packets
retransmissions and other network-related artifacts. To
address these issues, we propose an innovative algorithm
that is capable of labeling as periodic even time series
that do not display a strictly periodic pattern. The main
intuition is that restricting the analysis of the ACF only
on the first very high local maxima does not allow to
identify noisy periodic time series: time series with noisy
periodicities are characterized by a limited amplitude of
local maxima, hence they cannot be detected by con-
ventional approaches. However, with respect to aperiodic
time series, they present several local maxima with a
similar amplitude, as well as high amplitudes between a
local maximum and its next local minimum. To achieve
a more flexible algorithm to detect noisy periodicities,
we introduce two thresholds in the ACF:

• the local maximum-location threshold τ identifies
the initial set of local maxima, splitting the ACF into



Fig. 2. Example of time series and related ACF generated by two host with a noisy periodic behavior.

two subseries: Y1, containing all the first τ elements
of the ACF and determining the initial set of local
maxima; and Y2, containing all the other elements,
determining the remaining set of local maxima;

• the local maximum-amplitude threshold ρ is used
to determine the amplitude required for an ACF
element to be considered a local maximum: we
consider those elements whose value is greater than
ρ as local maxima, and those elements whose value
is lower than ρ

2 as local minima.
To illustrate the idea, we report in Figure 2 the time series
and its related ACF obtained from the communications
between two hosts. We observe the existence of two
noisy periodic behaviors in the time series, evidenced by
the exchange of about 1.1KB and 180B of data every 30
minutes. For the ACF plot, we represent τ and ρ with
a vertical and horizontal dashed line, respectively. We
note that the amplitude of the local maxima in the ACF
decreases irregularly, caused by the presence of noise
in the original time series; furthermore, the initial local
maxima set has a similar amplitude as the remaining set.

Our algorithm labels as periodic those time series
whose ACF satisify at least one of the following criteria:

• Y2 has at least d elements ≥ ρ and Y1 has at least
2d elements ≤ ρ

2 ;
• Y1 has at least r elements ≥ ρ and Y1 has at least
r elements ≤ ρ

2 .
Where d is the period duration sensitivity and r is the
periodic rate sensitivity that must be chosen manually.
Higher values of d imply that those time series that
are labeled as periodic are characterized by periods of
shorter length; higher values of r result in periodic time
series whose periodicities occur for longer time-frames.
We remark that the first and second criteria are designed
to detect time series with periods of greater and shorter

length, respectively. Upon the completion of this phase,
all those time series that have been labeled as periodic
are forwarded to the Behavioral Aggregator module.

C. Behavioral Aggregator

The Behavioral Aggregator clusters periodic commu-
nications exhibiting similar patterns. Although clustering
techniques have already been employed in the informa-
tion security field, to the best of our knowledge this is
the first paper that proposes the leveraging of clustering
algorithms to detect communications with a similar pe-
riodic behavior. This task is performed in two phases:
we compute the Discrete Fourier Transform (DFT) for
each periodic time series to obtain its spectrogram; then,
these spectrograms are used as input for a hierarchical
clustering algorithm.

By applying the DFT to a periodic time series it is
possible to generate a spectrogram. This representation
is useful to describe the behavior of network communi-
cations, since periodic time series that are out of phase
may look very different, while their spectrograms exhibit
the same profile. The problem is that the shape of
each spectrogram also depends on the amounts of bytes
exchanged between the involved hosts. For example, two
hosts that regularly exchange 1MB of data will have a
spectrogram with a smaller amplitude than a different
pair of hosts that regularly exchange 10MB, although
their frequency components are the same. To address this
issue we normalize the amplitudes of each spectrogram
between 0 and 1.

Then, each spectrogram is used as input for a hier-
archical clustering algorithm, an unsupervised machine
learning algorithm that takes as its input a matrix of
distances. We create this distance matrix by means of the
Pearson correlation coefficient [21], which is computed



among all the normalized spectrograms. The output of
the hierarchical clustering algorithm is a dendrogram. By
cutting the dendrogram at a given height h, it is possible
to create clusters of objects that are similar to each other.
We tune the parameter h as to minimize intra-cluster vari-
ance and maximize the inter-cluster variance. At the end
of this phase we obtain a variable number of clusters of
periodic communications with similar behaviors, which
are used as input for the Graylist Builder module.

D. Graylist Builder

The final graylist of malicious external hosts is pro-
duced by the Graylist Builder module. It initially identi-
fies malicious clusters of periodic communications by
mapping NIDS alerts into clusters of similar periodic
communications. More specifically, those clusters con-
taining at least one communication that has raised a
NIDS alert are labeled as malicious; this process allows
us to detect malicious hosts that are not signaled by the
NIDS. Then, this module extracts all the external hosts
belonging to malicious clusters and uses them to populate
the final graylist.

IV. EXPERIMENTAL EVALUATION

A. Experimental testbed

The proposed method is validated on real traffic
generated by a large network of nearly ten thousand
hosts during an entire week, consisting of about half a
billion of network flows. The outgoing traffic has been
monitored by a NIDS equipped with Suricata [22], used
and configured by security operators with the most recent
rulesets [23]. Table I reports the most meaningful metrics
of the testbed for the different days of the considered
week. The second and third days, marked with an aster-
isk, represent weekend days and are characterized by a
lower activity.

Table I
TRAFFIC INFORMATION OF EACH DAY OF THE DATASET.

Day Distinct external hosts Distinct time series Network flows

1 296 945 1 915 186 109 302 224
2* 105 884 541 844 53 500 389
3* 89 283 393 077 47 789 977
4 298 241 1 835 351 101 314 287
5 314 313 1 935 982 110 875 503
6 249 768 1 667 168 99 359 716
7 258 439 1 789 238 106 304 916

All the experiments discussed in this section refer to
a time window set to one day (W = 1d), while network
flows are sampled every five minutes (P = 300s).
The parameters of the autocorrelation algorithm are
determined through a comprehensive sensitivity analysis
performed through multiple executions of the algorithm,

and the resulting values are summarized in Table II. The
values of the parameters ρ and τ are chosen equal to
those suggested by the literature on periodicity evaluation
in time series [19]. The height at which the dendrogram
is cut to generate the clusters is set to h = 0.95, because
sensitivity analyses show that this value minimizes intra-
cluster variance and maximizes inter-cluster variance for
the monitored environment.

Table II
PARAMETER VALUES USED AS INPUT.

Symbol Description Value
ρ Local maximum-height threshold 0.30

τ Local maximum-location threshold W
5P

d Period duration sensitivity 6

r Periodic rate sensitivity 2

B. Experimental Results

The detection framework is executed every day. The
goal is to demonstrate its capability of producing a
manageable graylist of external hosts with a considerably
higher likelihood of being malicious when compared to
the original set of contacted external hosts. In addition we
show that the rate of malicious external hosts performing
periodic communications is considerably higher with
respect to those involved in aperiodic communications.
Finally, we demonstrate that the graylist includes even
external hosts that did not raise a NIDS alert, and that the
execution time of our method is compatible with online
traffic analyses.

We initially assess the amount of malicious external
hosts in the entire set of external hosts that have been
contacted by the monitored network. Then, we let the
Periodicity Detector module generate time series and
determine which of them are periodic. We remark that
our analyses are executed on the unmodified network
traffic produced by a large organization: we did not inject
synthetic attacks or malicious traffic, but we leverage the
APIs provided by VirusTotal [24] to validate malicious
external hosts. More specifically, we consider an external
host to be malicious if it has been signaled by more than
half of the sources queried by VirusTotal.

To demonstrate that the rate of malicious external
hosts involved in periodic communications is consider-
ably higher than the rate of malicious hosts involved
in aperiodic communications, we present the results of
the validation process performed on these two sets of
hosts in Table III. For each column, the rows with gray
and white background report the number of external
hosts involved in periodic and aperiodic communica-
tions, respectively. We observe that the average ratio of



(a) Communications involving a malicious external host with one periodic behavior.

(b) Communications involving a malicious external host with three periodic behaviors.

Fig. 3. Time series, ACF and normalized spectrogram of two communications involving distinct malicious external hosts.

malicious external hosts exhibiting periodic communi-
cations is 2.7%, whereas the one of hosts involved in
irregular communications is 0.51%. These results show
that periodic communications display a greater rate of
maliciousness with respect to aperiodic communications,
thus supporting our decision to focus on this set of

hosts. Furthermore, these results indicate that malicious
external communications can be considered as rare events
in the overall traffic, and motivates our effort of building
a manageable graylist in which the likelihood of finding
a malicious host is higher.

To illustrate that our method is capable of detect-



Table III
VALIDATION OF EXTERNAL HOSTS INVOLVED IN PERIODIC (GRAY)

AND APERIODIC (WHITE) COMMUNICATIONS.

Day External hosts Malicious external hosts

1 3139 97 (3.09%)
293 806 1224 (0.42%)

2* 2284 59 (2.58%)
103 600 785 (0.76%)

3* 2123 53 (2.49%)
87 160 603 (0.69%)

4 3194 74 (2.31%)
295 047 1198 (0.41%)

5 3288 91 (2.77%)
311 025 1153 (0.37%)

6 3044 80 (2.63%)
246 724 1202 (0.48%)

7 3034 90 (2.97%)
255 405 1283 (0.50%)

ing periodicities, we execute the Behavioral Aggregator
module and we report in Figures 3 the time series,
ACF and normalized DFT pertaining to communications
belonging to the same cluster and involving two distinct
malicious external hosts. The first and second plots in
each figure display the time series and related ACF,
while the third plot displays the normalized spectrogram
of the DFT. We observe that both time series exhibit a
periodic behavior, although some noise is present. More
specifically, the hosts associated to the first time series
exchange about 1KB of data every 30 minutes; whereas
those associated to the second time series present three
periodical behaviors, evidenced by the exchange of about
3KB and 4KB of data every 30 minutes, and of about
5.5KB of data every 4 hours. These results demonstrate
that our algorithm is able to identify even periodic
communications affected by some perturbations. More-
over, we observe that the spectrograms of Figures 3 are
very similar despite featuring different data exchanges,
leading to their inclusion in the same cluster. This result
indicates that our approach based on normalized DFT
provides a good representation of the periodic behavior
of a time series and is robust against alterations in
exchanged data volume.

Table IV
COMPARISON OF THE AMOUNT OF EXTERNAL HOSTS.

Day All external hosts External hosts with External hosts
periodic behavior in graylist

1 296 943 3139 127
2* 105 884 2284 90
3* 89 283 2123 70
4 298 241 3194 31
5 314 313 3288 120
6 249 768 3044 119
7 258 439 3034 115

Finally, we generate the graylists by executing the

Graylist Builder module for each day of the dataset. We
present in Table IV the amount of hosts included in our
graylists alongsisde both the entire set of hosts that have
been contacted and the number of hosts displaying a
periodic behavior. We appreciate that our graylists com-
prise about one hundred of entries down from the initial
set of hundreds of thousands hosts, thus allowing further
security inspections to focus on a restricted amount of
external threats.

Table V
VALIDATION OF THE GRAYLIST AND COMPARISON WITH NIDS.

Day Malicious hosts Malicious hosts
in graylist detected by NIDS

1 19 (14.96%) 3 (2.36%)
2* 17 (18.89%) 3 (3.33%)
3* 6 (8.57%) 3 (4.29%)
4 3 (9.68%) 3 (9.68%)
5 17 (14.17%) 4 (3.33%)
6 7 (5.58%) 3 (2.52%)
7 15 (13.04%) 4 (3.48%)

The evaluation of the graylist produced by our method
is performed by determining the rate of malicious
graylisted hosts, and by showing that the graylist contains
even malicious hosts that do not raise NIDS alarms.
The results are reported in Table V, where the first col-
umn indicates different days while the second and third
columns show the number of malicious hosts included
in the graylist and the number of malicious hosts that
raised a NIDS alarm, respectively.

By correlating the values of Table V with those
presented in Table III, we understand that the ratio of
malicious hosts in our graylist is an order of magnitude
greater than the ratio of malicious host in the entire set of
contacted hosts. Moreover, by comparing the values of
the second and third column of Table V we understand
that our method is capable of graylisting up to six times
as many malicious hosts with respect to those detected
by the NIDS.

These results indicate that our method is able to pro-
duce a manageable graylist consisting of about one hun-
dred of entries, down from the original set of hundreds
of thousands entries, which is characterized by a ratio of
malicious hosts that is an order of magnitude greater and
containing malicious hosts that do not raise any NIDS
alarm. Validating several dozens of IP addresses through
external public APIs only requires few minutes, whereas
the validation of hundreds of thousands of addresses
requires almost one week. Finally, we remark that all
these analyses are performed on real network traffic, as
we did not inject any artificial attack.
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Fig. 4. Average execution time of the main phases of the proposed
method for 24 hours of traffic.

Early detection of ongoing attacks is of paramount
importance for modern organizations. Hence, we evaluate
the execution time of the proposed method for each day
of the dataset by distinguishing business and weekend
days. The results are illustrated in Figure 4, where
each pair of histograms represents the average execution
time (in seconds) for a different phase of the proposed
method, calculated for business days (left rectangle)
and non-business days (right rectangle). For the sake of
completeness, we report that these analyses have been
performed on a COTS server equipped with an Intel
Xeon E5-2609 v2 CPU with 4 physical cores and 4
threads, and 128GB RAM. It is important to observe
that the execution time for the analysis of 24 hours of
traffic is below 20 minutes even for contexts generating
hundreds of millions of network flows daily. In particular,
we note that the longest phase (Hierarchical Clustering)
requires less than 10 minutes. Hence, by pipelining our
algorithms, it is possible to obtain detailed reports once
every ∼10 minutes. These results prove that the proposed
method is applicable to online security analyses.

V. CONCLUSIONS

This paper presents an innovative method for auto-
matically identifying malicious periodic communications
with external hosts. The output is a manageable graylist
of external hosts characterized by a considerably higher
likelihood of being malicious compared to the entire set
of contacted hosts, allowing security analysts to focus
only on a limited amount of targets. Extensive evaluation
on real traffic data of a large organization validated
through external sources demonstrates the efficacy of our
proposal, which is capable of identifying even malicious
hosts that do not raise any NIDS alarm. The proposed
method can be deployed even on very large networks,
can be integrated in any detection system, and can be
easily combined with other detection algorithms. Finally,

its execution time is compatible with online analyses for
timely detection of external threats performing periodic
communications.
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