Technische Hochschule Deggendorf
Fakultat Angewandte Informatik

Studiengang Master Angewandte Informatik

ERKENNUNG VON BOSARTIGEM
NETZWERKVERHALTEN IN
ALLIANZ-UNTERNEHMENSNETZWERKDATEN

DETECTION OF MALICIOUS NETWORK BEHAVIOR
IN ALLIANZ COMPANY NETWORK DATA

Masterarbeit zur Erlangung des akademischen Grades:
Master of Engineering (M.Eng.)
an der Technischen Hochschule Deggendorf

Vorgelegt von: Priifungsleitung:
Aida Nikkhah Nasab Prof. Dr. Fischer
Matrikelnummer: 22208964

Erganzende Priifende:
Am: 01. Sep 2024 Zineddine Bettouche

Erklirung
Name des Studierenden: Aida Nikkhah Nasab

Name des Betreuenden: Prof. Dr. Fischer

Thema der Abschlussarbeit:
Erkennung von bosartigem Netzwerkverhalten in Allianz-Unternehmensnetzwerkdaten. . .

1. Ich erklire hiermit, dass ich die Abschlussarbeit gemaf} § 35 Abs. 7 RaPO (Rahmenpriif-
ungsordnung fiir die Fachhochschulen in Bayern, BayRS 2210-4-1-4-1-WFK) selbsténdig
verfasst, noch nicht anderweitig fiir Prifungszwecke vorgelegt, keine anderen als die
angegebenen Quellen oder Hilfsmittel benutzt sowie wortliche und sinngeméfie Zitate
als solche gekennzeichnet habe.

Deggendorf, ...

Datum Unterschrift des Studierenden

2. Ich bin damit einverstanden, dass die von mir angefertigte Abschlussarbeit tiber die Bib-
liothek der Hochschule einer breiteren Offentlichkeit zuginglich gemacht wird:

(O Nein
(O Ja, nach Abschluss des Priifungsverfahrens
(O Ja, nach Ablauf einer Sperrfrist von ...Jahren.

Deggendorf, ...

Datum Unterschrift des Studierenden

Bei Einverstandnis des Verfassenden vom Betreuenden auszufiillen:

Eine Aufnahme eines Exemplars der Abschlussarbeit in den Bestand der Bibliothek und die
Ausleihe des Exemplars wird:

(O Befiurwortet
(O Nicht befurwortet

Deggendorf,

Datum Unterschrift des Betreuenden

Abstract

In today’s rapidly evolving cybersecurity landscape, Allianz Company faces significant threats
from advanced persistent threats (APTs), which are sophisticated, stealthy attacks that target
large organizations over extended periods. This master thesis focuses on the critical need to
strengthen Allianz Company’s network security by developing a proactive defense mechanism
against these persistent threats. Central to this research is the analysis of the Allianz company
user log dataset, which includes essential data such as URLs, hostnames, timestamps, and IP
addresses. Currently, threat detection occurs once daily, highlighting the urgency for a more
adaptive and responsive defense strategy to keep pace with the evolving nature of APTs.

The research builds on key references that delve into APT characteristics, particularly bea-
coning behavior, a crucial aspect of APT operations that allows attackers to maintain covert
communication. The thesis addresses the challenges faced by large-scale enterprise networks
in detecting and mitigating APTs, emphasizing the need for periodicity detection and behavior
analysis. These strategies are vital for identifying patterns that indicate APT activity, which
often blends in with normal network traffic.

The proposed methodology involves several critical steps: data extraction and preparation,
time interval analysis, average power calculation, band-pass filtering, and behavior detection.
These components are designed to work together to identify and respond effectively to po-
tential threats within Allianz Company’s network. To ensure the accuracy and reliability of
this approach, the methodology is validated using simulated datasets and historical data with
known security incidents.

This research draws upon six key references that provide a strong foundation for detecting
malicious network behavior. These references cover beaconing detection, peer-based tracking,
systematic reviews, large-scale DNS log mining, and advanced techniques involving artificial
intelligence. The integration of these insights into the proposed framework aims to enhance
network security by offering a real-time defense mechanism capable of countering persistent
and evolving cybersecurity threats.

In summary, this master thesis presents a comprehensive and systematic exploration of
methods to detect and mitigate APTs within Allianz Company’s network. By developing a
structured and validated methodology informed by foundational research and diverse per-
spectives, the thesis seeks to significantly improve the organization’s ability to defend against
sophisticated and persistent cyber threats. This work contributes not only to the academic un-
derstanding of APT detection but also offers practical solutions to enhance the security of large
enterprises in an increasingly complex threat environment.

Contents

Abstract

1. Topical Overview

1.1. Problem Statement L
1.2. Research Objectives

1.2.1. ResearchQuestions
1.3. Structureof Thesis

2. Background

2.1. Cybersecurity Landscape
2.1.1. Emerging Trends and Challenges
2.2. Advanced Persistent Threats (APTs) and Covert Tactics
2.2.1. Case Studies of APT Attacks
2.3. Enterprise Networks
2.3.1. Key Aspects of Enterprise Networks
2.3.2. Vulnerabilities in Enterprise Networks
2.4. Periodicity in Network Communication
2.4.1. Importance in Cybersecurity
2.5. Time Series Databases
2.5.1. Characteristics of Time Series Databases
252, InfluxDB
2.6. Summary e

3. Related Work

4. Methodology

4.1. Design of the proposed method
4.2. Data Extraction and Preparation
43. DataPreprocessing
4.4. Time Interval Analysis
4.5. DataEnhancement,
4.6. Band-PassFiltering
4.7. Evaluation Criteria

5. Implementation

5.1. Experimental Setup
5.2. Whitelisting Mechanism for URL Filtering
5.3. Average Power Calculation o000

R = = b

O O O o 0 N 1 Gl

I o S Gy ey
-0 O O O

13

17
17
20
26
27
28
29
30

33
33
34
35

vii

Contents

viii

5.4. Band-PassFiltering
5.5. Function to Calculate Autocorrelation
5.6. Function to Calculate Fourier Transform
5.7. Behavior Detection
5.8. Algorithm Output
59. Summaryo
5.10. Next Steps

Experiments
6.1. Validationand Testing
6.1.1. In-Depth Analysis of Algorithm Output

Results and Discussions

7.1. Detection of Beaconing Behavior
7.1.1. Algorithm Development and Implementation
7.1.2. Data Collection and Preprocessing
7.1.3. Validationand Testing

7.2. Impact of Periodicity in Network Communication
7.2.1. Identification of Regular Intervals
7.2.2. Differentiation Between Benign and Malicious Periodicity
7.2.3. Impact on False Positives and Negatives
7.24. Case Studies and Empirical Evidence

Conclusion and Future Work
8.1. Conclusion
8.2. Future Work

Appendix
A.1. Algorithm Implementation
A.2. Data Analysis Implementation L.

36
37
38
38
39
40
41

43
43
44

49
49
49
49
50
50
50
50
50
51

53
53
53

55
55
58

1. Topical Overview

1.1. Problem Statement

In today’s digital age, protecting sensitive data and ensuring the integrity of network systems
are top priorities for organizations. Like many others, Allianz Company produces vast user log
data daily. This data contains critical information and is continuously monitored to detect any
potential security threats. The increasing complexity and sophistication of cyber-attacks, es-
pecially advanced persistent threats (APTs), highlight the need for strong and proactive cyber-
security measures. The main challenge is effectively sifting through this extensive log data to
identify signs of malicious behavior and ensure that threats are detected and mitigated quickly.
This research aims to improve the company’s cybersecurity framework, focusing on early de-
tection of APTs and other potential threats to protect the network infrastructure.

1.2. Research Objectives

The main goal of this research is to improve the network security of Allianz Company by
finding and using better ways to spot and respond to possible cyber threats. The focus is mainly
on advanced persistent threats (APTs), which are known for being sneaky and long-lasting. To
do this, the research aims to:

1. Develop Advanced Detection Techniques: Create methods to identify potential threats
early, focusing on the unique behaviors of APTs.

2. Implement Proactive Security Measures: Establish protocols that enable quicker re-
sponses to detected threats, reducing the risk of data breaches.

3. Educate and Train Staff: Provide training for employees to recognize and respond to
potential security threats effectively.

4. Evaluate and Update Security Policies: Continuously assess and refine the company’s
security policies to adapt to new and evolving cyber threats.

1.2.1. Research Questions
The research is guided by the following key questions:
« How can beaconing behavior be effectively detected within Allianz Company’s network?

« What is the impact of periodicity in network communication on the detection of mali-
cious behavior?

1. Topical Overview

1.3. Structure of Thesis

This section outlines the organization of the chapters in this thesis. The structure is designed to
systematically address the research objectives and questions outlined above, ensuring a com-
prehensive understanding of the problem and the proposed solutions.

Chapter 2 provides the essential background necessary for understanding the context of this
research. It begins with an introduction that sets the stage for the subsequent discussions. This
chapter delves into the cybersecurity landscape, highlighting the current state of cybersecu-
rity and the challenges enterprises face. It then explores advanced persistent threats (APTs)
and their covert tactics, providing a detailed examination of how these threats operate and
the sophisticated methods they employ. Additionally, this chapter discusses enterprise net-
works, focusing on their structure, functionality, and the inherent vulnerabilities that make
them targets for cyberattacks. Finally, it introduces the concept of periodicity in network com-
munication, explaining its relevance to detecting malicious activities.

Chapter 3 is dedicated to a review of related work. It begins with an overview of the BAY-
WATCH framework, then an exploration of various methods for APT beaconing detection. The
chapter then discusses peer-based tracking techniques and presents a systematic review of the
literature on APT beaconing detection. Further, it examines the use of DNS logs for malware
beaconing detection and the application of Al-driven approaches to identify malicious bea-
coning. The chapter concludes with a discussion on local periodic communication behavior,
providing a comprehensive overview of existing research and highlighting gaps that this thesis
aims to address.

Chapter 4 focuses on the methodology adopted for this research. It begins with the design
of the proposed method, outlining the theoretical foundation and the rationale behind the cho-
sen approach. This is followed by a detailed description of data extraction and preparation
processes, ensuring the data used is both relevant and reliable. The chapter also covers data
preprocessing techniques, time interval analysis, and data enhancement methods. Band-pass
filtering is introduced as an important step in the methodology, followed by a discussion on
the evaluation criteria used to assess the effectiveness of the proposed solution.

Chapter 5 details the implementation of the proposed method. It starts with an explanation of
the experimental setup, describing the environment and tools used for the experiments. This
chapter also introduces a whitelisting mechanism for URL filtering, aimed at reducing false
positives. It then describes the process of average power calculation and the application of
band-pass filtering to the data. The chapter concludes with a discussion on behavior detection,
explaining how the proposed method identifies malicious activities.

Chapter 6 presents the experiments conducted to validate the proposed method. It includes
sections on validation and testing, detailing the procedures and metrics used to assess the per-
formance of the method. An in-depth analysis of the algorithm’s output is provided, focusing
on the detection of malicious behavior. This chapter aims to demonstrate the efficacy of the
proposed method through empirical evidence.

Chapter 7 covers the results and discussions, summarizing the key findings of the research. It
provides a critical analysis of the results, discussing their implications and relevance to the field
of cybersecurity. This chapter also highlights the contributions of the research, emphasizing
how it advances the current state of knowledge.

1.3. Structure of Thesis

Chapter 8 concludes the thesis by summarizing the main findings and providing insights into
future work. It outlines potential avenues for further research, suggesting how the proposed
method can be refined and extended. This chapter aims to provide a comprehensive conclu-
sion to the thesis, tying together the various elements and emphasizing the significance of the
research. In summary, the structure of this thesis is designed to provide a logical and coherent
progression from background information and related work to methodology, implementation,
experiments, and results, culminating in a comprehensive conclusion and suggestions for fu-
ture research.

2. Background

This chapter provides the essential background necessary for understanding the context of this
research. It begins with an overview of the cybersecurity landscape, emphasizing the current
state, emerging trends, and persistent challenges faced by organizations. It then explores Ad-
vanced Persistent Threats (APTs) and their sophisticated, covert tactics that pose significant
risks to enterprise networks. The discussion also covers the concept of periodicity in network
communication, crucial for detecting anomalies in cybersecurity contexts. Finally, the chapter
delves into the role of time series databases, with a specific focus on InfluxDB, in managing
and analyzing the vast amounts of data generated in cybersecurity operations.

The field of cybersecurity is continually evolving, with new threats emerging as technology
advances. Understanding these threats and the strategies to counter them is crucial for protect-
ing sensitive information, ensuring the continuity of operations, and maintaining the integrity
of enterprise networks. This chapter lays the foundation for the research by discussing key
concepts and technologies relevant to cybersecurity, setting the stage for the detailed analysis
and solutions proposed in subsequent chapters.

2.1. Cybersecurity Landscape

The cybersecurity landscape is characterized by a dynamic and increasingly complex environ-
ment where various types of cyber threats continually evolve. Organizations across the globe
face numerous challenges in protecting their networks, data, and systems from these threats,
which range from malware and ransomware to sophisticated nation-state attacks.

Cybersecurity encompasses a wide range of practices, technologies, and strategies aimed
at safeguarding information and systems from unauthorized access, damage, or disruption.
It involves both proactive measures, such as implementing robust security architectures and
practices, and reactive measures, such as incident response and recovery strategies.

Figure 2.1 presents a global map of cybersecurity threats, illustrating the widespread nature
of these challenges. This visualization highlights regions most affected by various types of
cyber attacks, underscoring the global reach and impact of cyber threats.

2.1.1. Emerging Trends and Challenges

The rapid digitization of industries, the increasing reliance on cloud services, and the prolif-
eration of Internet of Things (IoT) devices have significantly expanded the attack surface for
cyber threats. These developments, while beneficial, have introduced new vulnerabilities that
attackers are quick to exploit. Additionally, the rise of ransomware as a service (RaaS) and the
growing sophistication of phishing attacks reflect the evolving threat landscape.

2. Background

LEGEND LOCATIONS

UNITED STATES
ROMANIA
CANADA
GERMANY

ATTACKS

(®) 1nFECTIONS

UNITED KINGDOM
BRAZIL

INDIA

FRANCE

SPAM

SQoRpESan

LIVE ATTACKS

Figure 2.1.: Global cybersecurity threat map [1]

Another significant challenge is the shortage of skilled cybersecurity professionals, which
hampers the ability of organizations to effectively defend against these threats. This gap is
exacerbated by the complexity of modern networks and the need for advanced tools and tech-
niques to detect and mitigate sophisticated attacks.

2.2. Advanced Persistent Threats (APTs) and Covert Tactics

Advanced Persistent Threats (APTs) represent one of the most sophisticated and dangerous
forms of cyber attacks. APTs involve prolonged, targeted efforts by attackers, typically state-
sponsored or highly organized criminal groups, aimed at stealing sensitive information, dis-
rupting operations, or compromising critical infrastructure. Unlike traditional cyber attacks,
which may be opportunistic and short-lived, APTs are characterized by their stealth, persis-
tence, and the significant resources devoted to them.

Figure 2.2 illustrates the lifecycle of an APT attack, highlighting the various stages involved,
from initial reconnaissance to exfiltration of data. Understanding these stages is crucial for
developing effective detection and mitigation strategies.

APT actors employ various covert tactics to remain undetected and achieve their objectives.
Some of these tactics include:

« Spear Phishing: Crafting highly personalized email messages that appear legitimate to
the recipient. These emails are designed to trick recipients into clicking on malicious
links or attachments, leading to the compromise of their credentials or systems.

+ Zero-Day Exploits: Exploiting previously unknown vulnerabilities in software or hard-
ware, which have not yet been patched by the vendor. This allows attackers to gain
unauthorized access to systems without triggering existing security defenses.

2.2. Advanced Persistent Threats (APTs) and Covert Tactics

Reconnaissance

Clearing Tracks e :
Initial Compromise

Data Exfiltration
Establishing Foothold

Lateral Movement

Internal Reconnissance

Figure 2.2.: APT attack lifecycle [?]

2. Background

Network
Performance
Monitoring

Network Enterprise
Security Network
Monitoring Monitoring

WAN and LAN
Monitoring

Hardware
Monitoring

Figure 2.3.: Enterprise network diagram

« Lateral Movement: After gaining initial access, attackers move within the compro-
mised network, exploring and compromising additional systems to find and exfiltrate
valuable data. This tactic often involves the use of legitimate administrative tools to
avoid detection.

« Command and Control (C2): Establishing a secure communication channel with the
compromised systems to remotely control them, issue commands, and exfiltrate data.

2.2.1. Case Studies of APT Attacks

Prominent examples of APT attacks include the Stuxnet worm, which targeted Iran’s nuclear
program, and the SolarWinds breach, which compromised numerous U.S. government agencies
and corporations. These cases underscore the potential impact of APTs on national security and
global business operations.

2.3. Enterprise Networks

Enterprise networks are the backbone of modern organizations, providing the necessary infras-
tructure for communication, data sharing, and operational efficiency. However, their complex-
ity and scale make them attractive targets for cyber attackers. Understanding the architecture,
components, and vulnerabilities of enterprise networks is essential for developing effective
cybersecurity strategies.

Figure 2.3 provides a visual representation of an enterprise network, illustrating the vari-
ous components such as servers, workstations, routers, and communication links, as well as

2.4. Periodicity in Network Communication

potential points of vulnerability.

2.3.1. Key Aspects of Enterprise Networks

Enterprise networks typically consist of multiple interconnected subsystems, including:

Network Architecture: The physical and logical design of the network, including the
layout and interconnection of routers, switches, firewalls, and other network devices. A
well-designed architecture enhances security by segmenting the network and controlling
traffic flow.

Security Protocols: Protocols such as TLS (Transport Layer Security) and IPSec (In-
ternet Protocol Security) protect data in transit. Additionally, firewalls, intrusion detec-
tion/prevention systems (IDS/IPS), and encryption mechanisms are employed to safe-
guard data and systems.

Access Controls: Policies and technologies that regulate who can access specific data
and resources within the network. This includes user authentication, role-based access
control (RBAC), and multi-factor authentication (MFA) to ensure that only authorized
personnel can access sensitive information.

Network Monitoring and Management: Tools and practices for monitoring network
traffic, identifying anomalies, and managing network resources to maintain performance
and security.

2.3.2. Vulnerabilities in Enterprise Networks

Despite the implementation of robust security measures, enterprise networks remain vulnera-
ble to a variety of threats, including:

2.4.

Insider Threats: Employees or contractors with legitimate access who misuse their priv-
ileges, either maliciously or negligently.

Advanced Malware: Malware is designed to bypass traditional security measures, often
delivered through phishing attacks or drive-by downloads.

Misconfigurations: Incorrectly configured devices or systems that leave the network
open to exploitation.

Supply Chain Attacks: Attacks that target the software or hardware supply chain,
introducing vulnerabilities that can be exploited after deployment.

Periodicity in Network Communication

Periodicity in network communication refers to the recurring patterns observed in network

traffic over time. Detecting and analyzing these patterns can provide valuable insights into

2. Background

normal and anomalous behavior within the network. In cybersecurity, periodicity analysis is
particularly useful for identifying stealthy activities, such as those conducted by APTs, which
may generate periodic communication to maintain control over compromised systems.

2.4.1. Importance in Cybersecurity

Understanding periodicity is crucial for the following reasons:

« Anomaly Detection: Deviations from established periodic patterns can indicate the
presence of malware or other malicious activities.

+ Traffic Analysis: Analyzing periodic traffic can help in identifying command and con-
trol (C2) communications used by attackers.

+ Resource Optimization: Periodicity analysis can be used to optimize network resources
by predicting traffic loads and adjusting resources accordingly.

2.5. Time Series Databases

Time series databases are specialized databases designed to handle time-stamped or time-series
data efficiently. This type of data is common in network activity logs, sensor readings, finan-
cial transactions, and many other applications where the sequence and timing of data points
are critical. Time series databases are optimized for high-frequency data writes and efficient
queries over time intervals, making them ideal for use in monitoring, alerting, and anomaly
detection in cybersecurity contexts.

2.5.1. Characteristics of Time Series Databases

Time series databases differ from traditional relational databases in several key ways:

« Time-Optimized Storage: Data is stored in a way that optimizes retrieval by time,
enabling fast queries across large datasets.

« Efficient Data Compression: Given the often high volume of data, time series databases
employ advanced compression techniques to reduce storage requirements.

« High Throughput: They are optimized to handle high-frequency data writes and queries,
ensuring efficient data handling even under heavy load.

« Querying Capabilities: Time series databases support complex querying over time
intervals, which is essential for trend analysis and anomaly detection.

2.5.2. InfluxDB

InfluxDB is a popular time series database known for its high performance and ease of use. It is
optimized for handling large-scale time-series data, providing powerful querying capabilities
and efficient storage.

10

2.6. Summary

Key Features of InfluxDB

« Time-Optimized Storage: InfluxDB uses a custom storage engine that efficiently writes
and reads time-series data.

« High Throughput: It can handle high write and query loads, making it suitable for
large-scale monitoring applications.

+ SQL-like Query Language (Flux): InfluxDB offers a powerful query language that is
both easy to learn and capable of complex data manipulations.

« Retention Policies: Users can define retention policies to manage data lifecycle, auto-
matically deleting old data to save storage.

« Integrations: InfluxDB integrates well with other tools and platforms, supporting var-
ious data inputs and outputs.

Applications in Cybersecurity

InfluxDB can be employed in cybersecurity for:

« Real-Time Monitoring: Capturing and analyzing live data to detect anomalies and
potential threats.

+ Historical Analysis: Storing historical data for trend analysis and forensic investiga-
tions.

+ Alerting: Setting up alerts based on specific criteria to notify administrators of suspi-
cious activities.

» Visualization: Integrating with visualization tools like Grafana to create dashboards
that display network metrics and security insights.

Figure 2.4 illustrates the architecture of InfluxDB and how data flows through the system,
from ingestion to querying and visualization.

2.6. Summary

This chapter has provided a comprehensive overview of the cybersecurity landscape, APTs and
their covert tactics, enterprise networks, periodicity in network communication, and time se-
ries databases, with a detailed focus on InfluxDB. These foundational topics are essential for
understanding the subsequent chapters, which will delve deeper into related work, methodol-
ogy, implementation, experiments, and results. The knowledge gained from this background
will inform the development and evaluation of advanced techniques for detecting and mitigat-
ing cyber threats in enterprise networks.

11

2. Background

Users Users
Ingest Query
Router Router
sand dala b send quuwlto get result back
an Ingester a Querier
pde - .
pLommmmmee
get :
not-yet-persisied data !
xg?a 'l: CataloQ mer;a:ati :
Ingester1 Querier1 |||

Object Storage

i
|
'
|
'
i
|
'
"
'
;
|
|
)
|
}
i
i
' save
'
i
'
|
]
-

readsave read/save read/save delete
meta data data files meta data data files
Compactor1 Garbage Collector

Figure 2.4.: InfluxDB Architecture [2]

12

3. Related Work

Hu et al. (2016) proposed BAYWATCH, a robust beaconing detection method designed to iden-
tify infected hosts in large-scale enterprise networks [3]. The method focuses on detecting
beaconing behavior, which is commonly exhibited by compromised hosts communicating with
external command and control servers. By analyzing network traffic patterns, BAYWATCH
can efficiently detect infected devices while minimizing false positives. The system is specif-
ically designed to scale in large enterprise environments, making it suitable for real-world
deployment. The authors validate BAYWATCH through extensive evaluation using real-world
network traffic, demonstrating its effectiveness in identifying infected hosts and improving
network security.

Zhang et al. (2023) introduced a global analysis approach for aggregation-based beaconing
detection across large campus networks [4]. Their method focuses on detecting beaconing be-
havior in network traffic by aggregating data from multiple sources within a campus network,
which enhances detection accuracy. The approach is designed to scale across large networks
and aims to minimize false positives by leveraging aggregation techniques. The authors val-
idate their method through extensive experiments on real-world campus networks, demon-
strating its effectiveness in identifying compromised hosts and improving network security in
large-scale environments.

Apruzzese et al. (2017) proposed a method for identifying malicious hosts involved in peri-
odic communications [5]. Their approach focuses on detecting abnormal periodic communica-
tion patterns in network traffic, which are often indicative of compromised hosts communicat-
ing with external servers. The authors introduce a novel technique for identifying such hosts
by analyzing the timing and frequency of communication sessions. The proposed method is
evaluated through experiments, demonstrating its effectiveness in identifying malicious hosts
and enhancing network security by targeting irregular communication patterns.

Seo and Lee (2018) proposed an abnormal behavior detection method to identify infected
systems using the APChain algorithm and behavioral profiling [6]. Their approach focuses on
analyzing system behavior to detect deviations from normal activity, which may indicate the
presence of malware or compromised systems. The APChain algorithm is used to model and
track the behavior of systems, allowing for the identification of anomalous patterns associated
with infected hosts. The authors validate their method through experiments, demonstrating
its effectiveness in detecting abnormal behaviors and enhancing system security in real-world
environments.

Huynh et al. (2016) focused on uncovering periodic network signals of cyber attacks [7].
The paper explores how periodic network traffic patterns can indicate cyber attacks, particu-
larly in the context of detecting covert channels used by attackers for command and control.
The authors propose a method to identify such periodic signals by analyzing network traffic
over time. Their approach highlights the importance of periodicity in revealing malicious ac-

13

3. Related Work

tivity and introduces a visualization technique to facilitate the detection of these patterns. The
study contributes to improving network security by enabling better detection of stealthy attack
signals.

Jang et al. (2021) proposed a method for detecting malicious beaconing communities us-
ing lockstep detection and co-occurrence graphs [8]. The paper introduces an innovative ap-
proach to identifying groups of compromised hosts involved in coordinated beaconing behav-
ior, a common indicator of malicious activity. By using lockstep detection and analyzing the
co-occurrence of network events, the method can effectively pinpoint these malicious commu-
nities. The authors present this approach as part of a patent (US Patent 10,887,323), contribut-
ing to the detection of advanced persistent threats (APTs) and enhancing network security by
identifying coordinated attacks.

Talib et al. (2022) conducted a systematic review on APT beaconing detection techniques [9].
The paper provides an extensive analysis of various methods used to detect Advanced Persis-
tent Threats (APT) based on beaconing behavior, which is a common communication pattern
in APT attacks. The authors review different detection techniques, including signature-based,
anomaly-based, and machine learning methods, highlighting their strengths and limitations in
identifying beaconing activities in network traffic. This review serves as a valuable resource for
researchers and practitioners aiming to enhance APT detection and improve network security
against sophisticated cyber threats.

Charan et al. (2021) explored the use of data mining and machine learning techniques for
Advanced Persistent Threat (APT) attribution and detection in their study on DMAPT [10].
The paper focuses on the application of various data mining and machine learning methods to
improve the identification and attribution of APTs, which are often difficult to detect due to
their stealthy nature. The authors discuss the effectiveness of different approaches in detecting
APTs and their potential for enhancing threat detection capabilities in network security. The
study provides valuable insights into the role of advanced analytics in tackling sophisticated
cyber threats.

Hagan et al. (2018) proposed a peer-based tracking method using multi-tuple indexing for
network traffic analysis and malware detection [11]. The approach aims to improve malware
detection by analyzing network traffic patterns using multi-tuple indexing, which allows for
more efficient tracking of peer interactions in the network. By examining the flow of traffic
between different peers, the method identifies suspicious activities that may indicate the pres-
ence of malware. The authors validate their technique through experiments, demonstrating
its effectiveness in detecting malicious traffic and enhancing network security by providing a
more granular analysis of peer behavior.

Shalaginov et al. (2016) focused on malware beaconing detection by mining large-scale DNS
logs for targeted attack identification [12]. The paper explores the use of DNS logs to detect bea-
coning behavior, which is commonly associated with malware communicating with external
command and control servers. By analyzing large-scale DNS traffic data, the authors propose
a method to identify targeted attacks based on the periodic patterns of beaconing. Their ap-
proach highlights the importance of leveraging DNS traffic for identifying malware infections,
contributing to enhanced detection capabilities in large-scale network environments.

Yeh et al. (2018) investigated a malware beacon of botnet by analyzing local periodic com-
munication behavior [13]. The paper focuses on identifying malware beaconing behavior in

14

botnets by studying the periodic communication patterns between infected hosts and their
command and control servers. The authors propose a method to detect these periodic behav-
iors, which are typically used by botnets to maintain control over compromised systems. Their
approach highlights the importance of analyzing local traffic patterns for detecting botnet in-
fections and contributes to improving malware detection techniques through the identification
of communication anomalies.

Borchani (2020) proposed an advanced approach to malicious beaconing detection using Ar-
tificial Intelligence (AI) [14]. The paper explores the application of Al techniques, particularly
machine learning algorithms, to enhance the detection of beaconing behavior associated with
malicious activity. By leveraging Al, the author aims to improve the accuracy and efficiency
of detecting beaconing patterns that indicate compromised hosts within a network. The study
demonstrates the potential of Al to significantly improve the detection and mitigation of threats
posed by beaconing malware, contributing to more effective network security solutions.

Enright et al. (2022) introduced a learning-based zero-trust architecture for 6G and future
networks [15]. The paper explores the integration of machine learning with zero-trust security
models to address the evolving security challenges in next-generation networks, particularly
6G. The authors propose a framework that combines learning-based techniques with zero-trust
principles to enhance the detection of malicious activity and improve overall network security.
The study contributes to the development of more adaptive and robust security architectures
for future networks, offering a promising solution to the emerging threats in 6G environments.

Van Ede et al. (2022) introduced Deepcase, a semi-supervised contextual analysis method
for security events [16]. The paper presents a novel approach that combines semi-supervised
learning techniques with contextual analysis to enhance the detection of security events. By
leveraging contextual information, Deepcase can identify complex patterns and relationships
in security data, improving the accuracy of event classification and anomaly detection. The
authors demonstrate the effectiveness of their approach in real-world security environments,
showing its potential to enhance the detection and response capabilities of security systems in
large-scale networks.

Ongun et al. (2021) introduced PORTFILER, a port-level network profiling approach for
detecting self-propagating malware [17]. The paper presents a novel method that profiles
network traffic at the port level to identify self-propagating malware, which often uses spe-
cific ports for communication and propagation. PORTFILER analyzes network behavior to
detect irregularities and patterns associated with malware activity. By focusing on port-level
communication, the approach improves malware detection, providing more accurate identifi-
cation of self-propagating threats in real-time. The authors demonstrate the effectiveness of
their method through experiments, showing its potential to enhance network security against
rapidly spreading malware.

Niu et al. (2020) proposed a method for detecting malware on the Internet of Unmanned
Aerial Vehicles (IoUAVs) by combining string matching and Fourier transformation techniques
[18]. The paper addresses the growing concern of malware targeting UAV networks and in-
troduces a hybrid approach that leverages string matching for identifying suspicious patterns
in network traffic and Fourier transformation for analyzing periodic behaviors associated with
malware. By combining these techniques, the authors enhance the detection accuracy of ma-
licious activities, offering a more robust solution to securing UAV-based networks. The study

15

3. Related Work

contributes to the advancement of IoT security, particularly in the context of UAV systems,
which are increasingly vulnerable to cyberattacks.

Duan et al. (2018) presented an approach for the automated generation and selection of in-
terpretable features for enterprise security [19]. The paper focuses on improving enterprise
security by developing methods for automatically generating and selecting meaningful, inter-
pretable features from large datasets. These features can be used in security models to detect
anomalies and potential threats more efficiently. The authors propose a framework that inte-
grates automated feature engineering with machine learning techniques to enhance security
monitoring systems. Their work contributes to the field by improving the interpretability and
performance of security analytics, making it easier for security teams to understand and re-
spond to potential threats.

Haffey et al. (2018) focused on modeling, analyzing, and characterizing periodic traffic on
a campus edge network [20]. The paper explores the behavior of periodic traffic patterns in
campus networks, which are often indicative of scheduled communications, including those
used by malware. The authors propose models to better understand and quantify these traffic
patterns, helping to distinguish between legitimate and potentially malicious activities. Their
work provides insights into how periodic traffic can be leveraged to enhance network security,
particularly in the detection of botnets and other forms of malware that use regular communi-
cation intervals.

16

4. Methodology

This chapter initiates a comprehensive exploration of the dataset, providing a detailed introduc-
tion to its various aspects and components. By thoroughly examining the dataset, the chapter
aims to establish a solid foundation for the subsequent analyses. It begins by describing the
origins and nature of the dataset, including its structure, the types of data included, and the
context in which it was collected. This includes an overview of the dataset’s dimensions, vari-
ables, and any relevant metadata that is critical for understanding its scope and limitations.

Following this introduction, the process of data generation is elaborated upon. The data gen-
eration process is central to the research, ensuring the reliability and validity of the findings.
Each step involved in generating the data is outlined, starting from the initial conceptualiza-
tion to the final implementation. This section covers the design choices made, the tools and
technologies used, and the protocols followed to collect and process the data. By providing a
step-by-step explanation, the methodology is made transparent and reproducible.

Additionally, the specific functions and algorithms employed at each stage of the data gen-
eration process are detailed. This includes a discussion of the rationale behind selecting certain
methods over others, as well as the practical considerations that influenced these decisions. In-
sights are offered into how these functions contribute to the overall data generation process and
how they impact the quality and integrity of the dataset. Examples of code snippets, flowcharts,
and diagrams may be included to illustrate the implementation process more clearly.

This thorough examination of both the dataset and the data generation process sets the stage
for the subsequent analyses and findings presented in the following chapters. By laying this
groundwork, the chapter ensures that readers have a comprehensive understanding of the data
and the methodology, which is key for interpreting the results and conclusions of the research.
This foundational knowledge will facilitate a deeper appreciation of the analyses conducted and
the insights derived from them, ultimately contributing to the overall robustness and credibility
of the thesis.

4.1. Design of the proposed method

The proposed methodology for beaconing detection encompasses a multifaceted approach de-
signed to effectively identify and mitigate malicious beaconing activities within behavior detec-
tion frameworks. This strategy integrates a variety of advanced techniques and algorithms to
bolster the system’s detection capabilities. Among these techniques are sophisticated anomaly
detection methods, and pattern recognition tools, all of which contribute to a robust framework
for identifying suspicious activities. By leveraging these advanced technologies, the system is
equipped to adapt and respond to new and evolving threats, ensuring that detection remains
effective even as malicious actors continuously modify their tactics. A key component of this
methodology is its emphasis on real-time detection and response. Continuous monitoring of

17

4. Methodology

BAYWATCH Algorithm Steps

Whitelist Analysis Time Series Analysis Suspicious Indication Analysis Verification and Investigation

Input candidate

Power Threshold

High-frequency
Noise

Auto-correlation

Universal Local Beaconing Detection * Novelty Detection Investigation Workflow
Whitelist Whitelist * URL Token
* Result Ranking

Filter:

Figure 4.1.: Algorithm steps

network traffic and behavior patterns enables the system to quickly identify and flag potential
beaconing activities, allowing for rapid threat mitigation before significant harm can occur.
This real-time capability is complemented by automated response mechanisms that swiftly
neutralize detected threats, thus enhancing the overall security posture of the network. In ad-
dition to real-time capabilities, the methodology incorporates a layer of resilience against false
positives and negatives. By refining detection algorithms and employing sophisticated filtering
techniques, the system aims to minimize incorrect detections that could lead to unnecessary
alerts or overlooked threats. This balance is key for maintaining both the efficiency and reli-
ability of the detection system, ensuring that resources are focused on genuine threats. Fur-
thermore, the methodology integrates advanced analytics and continuous learning processes,
which are pivotal for maintaining and enhancing detection accuracy over time. By leveraging
data analytics and feedback loops, the system can learn from past detections and iteratively
improve its performance. This continuous learning process ensures that the detection capabil-
ities are consistently refined and enhanced, keeping pace with the dynamic and ever-evolving
nature of cyber threats. Overall, this robust and adaptive methodology significantly strength-
ens network defenses against beaconing attacks. Adopting a comprehensive and multifaceted
approach, enhances both the detection and mitigation processes, providing a resilient and ro-
bust defense mechanism against sophisticated and evolving threats. This strategy is poised to
play a critical role in safeguarding network security, ensuring the integrity and reliability of
the system in the face of malicious beaconing activities.

Figure 4.1 provides a detailed overview of the algorithm’s processing steps, which occur
in four distinct phases. In Phase 1, the input data undergoes whitelist analysis, where it is
categorized into two separate whitelists. The Universal Whitelist contains common, globally
trusted URLs such as major search engines (e.g., Google, Yahoo) and other widely recognized
platforms. The Local Whitelist, on the other hand, includes URLs that are specifically trusted
within the organization, such as internal Allianz resolution URLs. This step helps to filter out
trusted sources, ensuring that only potentially suspicious or unknown URLs are subjected to
further analysis in subsequent phases.

18

4.1. Design of the proposed method

Band Pass Filtering
I

1
1s 500 1 1
Data 2s 200 1 I
—

L e N ! !

1
4s 5 /_ /LL

| 1

it % 1s 1h

5000s

Interval | Power
Interval | Power
— Average Power ___, . 5 el —% |z 300
180s 50

Figure 4.2.: Steps of the proposed method

Interval | Power

=)

Phase 2 focuses on time series analysis, where the algorithm processes the data to detect
beaconing activity. Beaconing refers to the repeated communication of data to external servers,
which can indicate malicious activity or unauthorized data exfiltration.

In Phase 3, the Suspicious Indication Analysis takes place. This phase is composed of several
sub-processes aimed at identifying and ranking suspicious URLs. It includes Novelty Detection,
which focuses on recognizing previously unseen or unusual patterns in the data; URL Token
analysis, which breaks down and examines specific elements of URLs for signs of malicious
intent; and Result Ranking, where URLs are ranked based on their likelihood of being malicious,
helping to prioritize further investigation. This step refines the list of suspicious indicators to
ensure that only the most relevant ones are brought forward for verification.

Finally, in Phase 4, the algorithm enters the Verification and Investigation phase. This is the
concluding step where the flagged URLs and potential threats are thoroughly investigated and
verified. This phase ensures that any suspicious activities are properly validated, confirming
whether they are legitimate threats or false alarms. The outcome of this phase directly informs
decision-making processes regarding the necessary actions to mitigate or resolve any identified
risks.

Figure 4.2 visually represents the methodology for beaconing detection as proposed in the
master thesis. The process begins with the collection of data, a first step that will be elaborated
upon in detail later in the thesis. Following data collection, the methodology involves exact data
cleaning and processing to ensure the accuracy and quality of the dataset. This stage addresses
any inconsistencies or errors in the data, preparing it for more sophisticated analysis.

To enhance security and simplify data management for large organizations with diverse
URL hostnames, a whitelist is implemented. This whitelist restricts user activity to domains
containing "Allianz resolution” By comparing this whitelist against all user data, entries asso-
ciated with whitelisted domains are removed. This focused approach significantly reduces the
volume of data to be processed, which is given that the dataset exceeds 500,000 entries per day.

19

4. Methodology

URLs included in the whitelist are deemed non-malicious and therefore do not require further
behavior checks, streamlining the analysis.

Subsequently, the methodology calculates the time intervals for each domain and their oc-
currences within these intervals. This step is essential for identifying patterns and trends in
beaconing activities, providing insight into the frequency and timing of these activities.

The next phase involves bandpass filtering to eliminate noise, retaining only the data within
the time range of 1 second to 1 hour for further analysis. This filtering step focuses on relevant
signals while minimizing interference from irrelevant data, ensuring that the analysis is both
efficient and accurate.

Following filtering, the methodology includes the calculation of average power for each do-
main and subsequent normalization by adjusting all powers accordingly. In this context, the
“power” metric indicates how frequently a particular website is visited within a given day. This
metric relies on the assumption that each access to the website represents a distinct user in-
teraction, with multiple accesses from the same user counted separately. The accuracy of the
“power” measure depends on the consistency and reliability of the data collection methods used
to track website visits. Domains exhibiting a negative decrease in power are disregarded, as
they do not conform to expected patterns and are unlikely to be indicative of malicious activity.

Finally, the analysis phase involves a thorough examination of the data over time. Significant
peaks observed during this analysis are indicative of potential malicious beaconing activity,
marking the culmination of the beaconing detection process. This comprehensive methodol-
ogy ensures that the detection system is robust, accurate, and capable of adapting to evolving
threats, thereby enhancing the overall security and integrity of the network.

4.2. Data Extraction and Preparation

The dataset documents the activities of users as they navigate through different URLs during
each workday, encompassing a variety of information such as the URLs visited, the date and
time of each visit, and potentially other relevant details regarding user behavior or system in-
teractions. This comprehensive collection of data provides a detailed view of user activities
and interactions, allowing for an in-depth analysis of browsing patterns and behaviors. Orga-
nized within a JSON file, the dataset facilitates efficient storage and retrieval of data, thanks to
JSON’s flexibility and readability, which make it easier to manage and manipulate large vol-
umes of information. Each entry logs a specific user interaction, including the precise time
and date, allowing for a chronological reconstruction of user activities essential for identify-
ing patterns and trends over time, such as peak usage periods or frequent transitions between
specific URLs. The dataset may also include other relevant details that provide further context
to user behavior, such as system interactions like login times or error messages, offering addi-
tional insights into the user experience and system performance. Overall, the dataset serves as
a foundational resource for analyzing user behavior, enabling the identification of significant
patterns and trends, and supporting efficient data processing and analysis, which is key for de-
veloping effective strategies for beaconing detection and enhancing overall network security.
Figure 4.3 displays a visual representation of the JSON file, providing a comprehensive overview
of the specific user’s browsing activity.

20

10

11

12

13

14

15

16

17

{"logdate™: "2023-08-01T00:
{"logdate": "2023-08-01T00:
{"logdate": "2023-08-01T00:
{"logdate": "2023-08-01T00:
{"logdate": "2023-08-01T00:
{"logdate": "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: "2023-08-01T00:
{"logdate™: ™

{"logdate"

{"logdate"

154,
154,
106.
116.
154,
154,
154,
154,
155,
155,
120.
125,
130,
131,
135,
140,
145,

o0ez"
0e0z"
0e0z"
0e0z"
0e0z"
0e0z"
007"
007"
007"
007"
007"
000z"
000z"
000z"
000z"
000z"
000z"
.000Z"
.000Z"
.000Z"

e e e e T e T T T T T T T T T T T T T

"url_hostname":
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname":
"url_hostname":
"url_hostname":
"url_hostname":
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"
"url_hostname"

4.2. Data Extraction and Preparation

"account.nonprod.allyz.
"account.nonprod.allyz.
"infra-api.eu.newrelic.
"infra-api.eu.newrelic.

"account
"account.
"account.
"account
"account.
"account.

.nonprod.

nonprod.
nonprod.

.nonprod.

nonprod.
nonprod.

allyz.
allyz.
allyz.
allyz.
allyz.
allyz.

"infra-api.
"infra-api.eu.
"infra-api.eu.
"infra-api.eu.
"infra-api.eu.
"infra-api.eu.
"infra-api.eu.
"infra-api.eu.

infra-api.eu.

eu.newrelic.
newrelic.
newrelic.
newrelic.
newrelic.
newrelic.
newrelic.
newrelic.
newrelic.
newrelic.

infra-api.eu.

Figure 4.3.: Steps of the proposed method

com”
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"
com"

e e e e T e T T T T T T T T T T T T T

“user”: "
"user"
"user"
"user"

"user"
"user"
"user"
"user"
"user"
"user"

"user"
"user"
"user"
"user"
"user"
"user"
"user"
"user"
"user"
"user"

TP L P e e e e L e e e L S e e o e

Each JSON file acts as a comprehensive record, including important information such as
”logdate” (date and time) and ”url _hostname”. The company prioritizes security;
usernames are deliberately omitted during the import process for added protection. The fol-
lowing section outlines the Document Type Definition (DTD) for the JSON files.

The provided DTD serves as a specification for the structure and constraints of the dataset
entries. It defines the expected format and mandatory fields for each log entry. Specifically:

« ”logdate” : Specifies the date and time format for the log entry.

« ”url_hostname” : Identifies the hostname of the accessed URLs.

. Yuser”:

Optional field denoting the user identifier.

21

4. Methodology

This thesis proposes a sophisticated system for managing website connection data, designed
to handle and analyze extensive logs of IP address connections to various domains. The sys-
tem begins by utilizing InfluxDB, a highly specialized database optimized for managing time-
series data. InfluxDB’s architecture is particularly well-suited for this application because it
is engineered to efficiently handle high volumes of data with temporal components, such as
timestamps associated with user interactions.

The methodology for managing the data involves importing the dataset into InfluxDB, start-
ing with a strategic focus on a single day’s worth of data. This approach allows for an initial,
manageable dataset to be processed, which is key for validating the system’s functionality and
performance before scaling up to larger volumes of data. The dataset itself is composed of
JSON files, each containing detailed logs of connections made from various IP addresses to
specific domains. These logs include timestamps, IP addresses, and domain names, forming a
comprehensive record of user activity.

The success of this methodology relies on establishing a well-structured data environment
within InfluxDB. To achieve this, a predefined schema is implemented, which dictates how
the data is organized and stored within the database. This schema is designed to ensure data
integrity and consistency by enforcing a uniform set of rules across all entries. Consistency in
data structure is important as it facilitates smoother data processing and analysis, reducing the
likelihood of errors and discrepancies.

The implementation of this schema supports reliable data management by ensuring that each
piece of information adheres to the same format and standards. This uniformity is important
for maintaining the quality of the data, which in turn impacts the reliability of subsequent
analyses and research findings. Clean and reliable data is the cornerstone of trustworthy and
effective research, and thus, establishing a well-defined schema is another step in the proposed
method. By prioritizing data integrity and consistency, the system lays a solid foundation for
accurate and insightful analysis, ultimately contributing to the overall success of the proposed
research methodology.

After establishing a well-structured data environment, the next step involves importing the
data itself. This process follows a defined sequence, facilitated by custom Python scripts. These
scripts automate the creation of a dedicated “bucket” within InfluxDB.

This method establishes a solid foundation for in-depth analysis by transforming raw, un-
structured data into a well-organized format that is highly conducive to detailed examination.
The strategic decision to import data for a specific day allows for a focused analysis of temporal
patterns and variations, which are essential for uncovering trends and anomalies within a de-
fined timeframe. This approach simplifies the analysis, making the data more manageable and
representative of specific time-based behaviors. The JSON file structure, with its predefined
key criteria and integrated security measures. It provides a clear and consistent framework
for storing and accessing data, ensuring that each piece of information adheres to the same
standards and is safeguarded against unauthorized access. This structured format supports
efficient data processing and retrieval, which is vital for conducting thorough and accurate
analyses of network interactions. By utilizing this organized data structure, the methodology
enables a comprehensive exploration of user behavior, connection patterns, and potential se-
curity threats. This detailed examination is essential for identifying vulnerabilities, detecting
suspicious activities, and enhancing overall network security. The systematic approach not

22

4.2. Data Extraction and Preparation

Request Count

104 4

Request Counts (Log Scale)
o
5

URL Hostname Index

Figure 4.4.: Request counts of URLs (log scale)

only facilitates a deeper understanding of the dataset but also sets the stage for generating
actionable insights and implementing effective security measures.

The data is collected over exactly one day, which represents a typical working day on Tues-
day. The total volume of data generated during this single day amounts to almost 73 gigabytes.
To gain meaningful insights from this data, it is crucial to understand its behavior. Therefore,
as an initial step, the data’s behavior was thoroughly examined. This analysis was conducted
in several stages: By observing the overall data behavior within one day, identifying which
data sets were most frequently accessed or visited during the day, and analyzing the time in-
tervals between each request, this approach enables a deeper understanding of usage patterns
and helps in identifying any anomalies or trends that may be present in the data.

Figure 4.4 provides a visual representation of the request counts for different URLs within
the dataset. The logarithmic scale on the Y-axis allows for a clearer comparison of the visit
frequencies across URLs with varying levels of activity. This visualization highlights the distri-
bution of request counts, showcasing the range of visit frequencies observed within the dataset.
By examining this distribution, it is possible to identify URLs with high visit counts, which may
indicate critical resources or frequently accessed services. Conversely, URLs with lower visit
counts may represent less frequently accessed or less critical components of the network. This
analysis provides valuable insights into user behavior and resource utilization, enabling orga-
nizations to optimize their network infrastructure and prioritize security measures effectively.

Figure 4.5 provides a linear scale representation of the request counts for different URLs
within the dataset. This visualization offers a more detailed view of the visit frequencies across
URLs, highlighting the distribution of request counts with greater granularity. By examin-
ing this distribution, it is possible to identify URLs with varying levels of activity, ranging
from high-visit counts to low-visit counts. This analysis enables organizations to gain insights
into user behavior and resource utilization, facilitating informed decision-making and strategic

23

4. Methodology

Request Count

80000

70000

60000

50000

40000

Request Counts

30000

20000

10000

URL Hostname Index

Figure 4.5.: Request counts of URLs (linear scale)

planning.

Figure 4.6 illustrates the number of visits to different URLs over a 24-hour period. The x-axis
represents the hours of the day, while the y-axis indicates the number of visits to each URL.
This visualization provides a clear overview of the distribution of visits throughout the day,
highlighting peak usage times and periods of lower activity. By examining this data, it is pos-
sible to identify trends and patterns in user behavior, which can be instrumental in detecting
anomalies or suspicious activities. This analysis serves as a foundational step in understanding
the dataset’s behavior and establishing a baseline for further investigations. As shown, the dis-
tribution of visits predominantly falls within the range of 0-500, which is significantly higher
compared to the range of 500-3,500.

From the figure, it is evident that some URLs exhibit high activity levels initially but expe-
rience a steep decline, with their visit counts approaching zero around 04:00. Based on this
observation, the URL activity was categorized into two distinct periods: day activity and night
activity, each represented by separate charts for better analysis.

Figure 4.7 illustrates the distribution of time intervals between requests for different URLs
within the dataset. The logarithmic scale on the Y-axis allows for a clearer comparison of the
time intervals across URLs with varying patterns of activity. The X-axis demonstrates the bins,
which are divided into 90 bins. These bins are structured as follows: from 0 to 60 seconds, each
second has its own bin; from 1 to 30 minutes, each minute has its own bin. The calculation
within this period is such that if the bin is 1 minute, the interval is £30 seconds, meaning it
calculates from 30 seconds to 90 seconds. This approach helps ensure that the analysis does
not miss any potential malicious behavior within the specified time limits. This visualization
highlights the variability in time intervals between requests, showcasing the range of dura-
tions observed within the dataset. By examining this distribution, it is possible to identify
URLs with distinct time interval patterns, which may indicate specific usage behaviors or in-

24

Number of Visits

Count of Intervals (Logarithmic Scale)

3500 1

3000 4

2007 SRS ST S
4) =S <

1000 4

100

10°

AN

,_ N /4% _<,~\a~_\\\

m’ \"é =l '[P \'\-‘, AT \‘\'\'-“; ﬁ‘\\\\\
\\ / =

4.2. Data Extraction and Preparation

Number of Visits by Hour (All Data)

A —‘} N
< SO N

o S s S o T N S . S S SR $ S
A v i “ S RS P RO R A A A
Hour of the Day

Figure 4.6.: Number of visit by hour (24 hours)

Time Interval Histogram (Logarithmic Scale)

NI I 008 TN I m S IR R 2 NI TS 22 N O I8 58 A 2002 AN N T A0 oA 205 58 A 20077 e TS R R KSRy

B R e N N Y G N L L L S S D e S D T T U S U RO S

MR e A3 NS SR S G S e b s S R SRR R S R A
Time Interval

Figure 4.7.: Time interval (log scale)

25

4. Methodology

Dataset (Influx Data Analysis Whitelist
Database) and Sorting Creating

Cleaned Data

Figure 4.8.: Dataset

teraction trends. This analysis provides valuable insights into the frequency and timing of user
interactions, enabling organizations to optimize their network resources and enhance security
measures effectively.

4.3. Data Preprocessing

The initial step in the data cleaning process involves separating all URL hostnames from one
another. Once these hostnames are isolated, they are systematically sorted by date. This sort-
ing step serves several important purposes. Firstly, it organizes the data chronologically, which
facilitates the identification of trends or patterns that emerge over time. For instance, if there
is a need to investigate a specific security incident that occurred on a certain day, sorting the
data by date allows for a more focused and efficient search, thereby reducing the time and ef-
fort required to locate the relevant information. Secondly, sorting by date prepares the data for
subsequent stages in the data management workflow. Many data analysis techniques depend
on the data being arranged in a specific sequence, and organizing the data chronologically
ensures that it is ready for these advanced analytical processes. This stage of the cleaning pro-
cess effectively transforms raw data into a structured and coherent format, which is necessary
for performing in-depth analyses of network interactions and identifying potential security
threats. Additionally, this preprocessing step includes the creation of a whitelist from all URL
hostnames. Since the company frequently accesses a variety of trusted URLs multiple times
throughout the day, establishing a whitelist helps to streamline the algorithm’s operations.
By compiling a list of these consistently trusted URLs, the algorithm’s efficiency is enhanced,
allowing it to operate more quickly and effectively. This improved efficiency supports the al-
gorithm’s ability to detect potentially suspicious activities within network interactions more
accurately. Through this cleaning process, raw data is organized into a format that is both
structured and easily analyzable, setting the stage for comprehensive insights into network
behaviors and security risks.

In the figure 4.8 the various steps undertaken to process the data are illustrated, beginning
with the initial stages of data collection and extending through to the final preparation required
before the algorithmic process can commence. This visual representation outlines how the raw
data is first gathered and then cleaned to ensure accuracy and consistency. The process includes
several key stages, Each step is designed to transform the raw, unprocessed data into a well-
organized dataset that is ready for detailed algorithmic examination.

26

4.4. Time Interval Analysis

4.4. Time Interval Analysis

The concept of a “time interval” in this context pertains to the duration between occurrences of
a specific URL hostname within a given day. This analysis focuses on the time elapsed between
visits to each unique website (URL hostname) during a single day. Visualize this as tracking the
gaps between entries in a log for a particular website; each visit to the site is recorded as a new
entry. By examining these time intervals, the method aims to decipher how frequently and
consistently users access each website throughout the day. This approach effectively captures
the “rhythm” of website activity, revealing patterns such as peak usage times and periods of
lower activity.

Calculating these time intervals produces a numerical value that represents the time gaps
between visits to the same website. This value serves as a foundational metric for understand-
ing typical website usage patterns. By focusing on daily data, the method ensures that the time
intervals reflect a representative snapshot of user behavior, allowing for a nuanced exploration
of how web traffic fluctuates throughout the day. This in-depth analysis helps to identify the
typical patterns of website access, creating a baseline for what is considered normal activity.

This focus on time intervals is key for setting a robust baseline of regular website traffic. Un-
derstanding these regular patterns establishes a benchmark against which unusual or atypical
activities can be measured. For instance, if a website that typically has long intervals between
visits suddenly experiences a surge in frequent accesses, this deviation from the established
norm may indicate suspicious behavior or potential security threats. Therefore, the analysis of
time intervals facilitates the identification of normal traffic patterns and enhances the ability
to detect anomalies effectively.

Moreover, analyzing time intervals provides a framework for differentiating between rou-
tine user behavior and potential malicious activities. By establishing clear patterns of typical
website usage, the methodology can more accurately pinpoint deviations that may warrant
further investigation. This thorough examination lays the groundwork for subsequent analyti-
cal steps, where patterns that deviate from the norm can be scrutinized for signs of anomalous
or harmful activities. Ultimately, this focus on time intervals strengthens the overall detection
process, ensuring that the system can distinguish between expected and unexpected behavior
with greater precision, leading to more reliable and actionable insights into network security.

Figure 4.9 is a series of histograms depicting the distribution of time intervals between suc-
cessive network requests for different URLs within a specified timeframe. Each histogram rep-
resents a unique URL, with the x-axis consistently ranging from 0 to 400 seconds. This range
captures the variability in time intervals between requests.

The histograms are constructed using data that records the duration between consecutive
requests. Each bar in the histogram illustrates the frequency, or "power,” (that refers to the
frequency of network requests that occur within specific time interval bins) of requests that
fall within specific time interval bins. This visualization helps to understand how often requests
occur within different time gaps for each URL.

For each URL, the histogram reveals the frequency of requests within various time intervals.
Taller bars indicate higher request frequencies within those intervals, while shorter bars sug-
gest less frequent requests. The uniform x-axis range across all plots enables straightforward
comparison between different URLs, highlighting differences in request timing patterns.

27

4. Methodology

acroipm2.adobe.com

£ 101 —l—,—‘

bam.nr-data.net

| 4 [I i t : T : 1

cri3.digicert.com

104
o ‘ m ‘ o

yt3.ggpht.com

[[
0
0 50 100 150 200 250 300 350 400

Time Interval (seconds)

Figure 4.9.: Time Intervals

URLs with concentrated request bursts will show taller bars in certain intervals, reflecting
periods of higher request activity. Conversely, URLs with more sporadic or irregular request
patterns will exhibit shorter bars, indicating lower or more inconsistent request frequencies.
By analyzing these histograms, one can discern patterns such as periodic bursts, irregular in-
tervals, or consistent frequencies. These insights can be indicative of the operational behavior,
performance, and load of the respective URLs.

Overall, the histograms provide a visual summary of how request timings are distributed
over the observed period, facilitating an understanding of request dynamics and potentially
revealing insights into the performance and usage patterns of the monitored web services.

4.5. Data Enhancement

Once the "power” for all URLs in the dataset is calculated, representing the frequency of vis-
its to each unique website, the next step involves computing the average power. The "power”
metric serves as a quantitative measure of how often each website is accessed within a given
timeframe, providing valuable insight into user behavior patterns. The average power acts as a
reference point or baseline against which the individual powers are compared, allowing for the
identification of significant deviations from typical visit frequencies. To determine the average
power, the total power across all URLs is summed and then divided by the number of URLs in
the dataset. This average power serves as a benchmark, providing a context for evaluating the
frequency of visits to each specific URL. By establishing this baseline, the methodology can dif-
ferentiate between normal and abnormal activity levels, thereby facilitating the identification
of URLs that exhibit unusual patterns of access. After determining the average power, each
calculated power is assessed relative to this baseline. The evaluation process involves compar-
ing the power of each URL to the average power to identify significant deviations. Specifically,

28

4.6. Band-Pass Filtering

the power of each URL is subtracted from the average power. If the resulting value is negative,
indicating that the URL’s visit frequency is below the baseline, it is omitted from further anal-
ysis. This step ensures that the focus remains on URLs with visit frequencies that significantly
exceed the norm, which are more likely to represent meaningful patterns or anomalies. The
rationale behind omitting negative deviations is based on the premise that these values do not
provide meaningful insights into unusual behavior or potential security threats. By filtering
out these less significant data points, the methodology enhances the quality and relevance of
the dataset. This focused approach allows for a more efficient examination of the data, con-
centrating on positive deviations that indicate higher-than-average visit frequencies. Focusing
on significant deviations from the average power refines the dataset, making it more manage-
able and pertinent for further analysis. This step not only improves the efficiency of the data
processing but also enhances the ability to detect anomalies that could signify security threats
or other irregularities. By concentrating on URLs with visit frequencies that stand out from
the baseline, the methodology increases the likelihood of identifying genuinely noteworthy
patterns. In summary, the calculation of average power and the subsequent evaluation of indi-
vidual powers against this baseline are critical components of the data enhancement process.
By omitting powers that result in negative values, the methodology ensures that the dataset
is refined to include only significant deviations. This targeted focus on relevant patterns and
anomalies lays the groundwork for a more detailed and accurate analysis of network inter-
actions and potential threats, ultimately contributing to a more robust and reliable security
framework.

4.6. Band-Pass Filtering

In network processing, bandpass filtering is a technique employed to dissect time-series data,
allowing the extraction of specific frequency components within a predefined range. This tech-
nique is particularly useful in analyzing patterns in HTTP requests. Bandpass filtering involves
the application of a filter that selectively passes signals whose frequencies fall within a certain
range, known as the “bandpass” range. By isolating these specific frequencies, the technique
enables a focused examination of data that is most relevant to the analysis, effectively filtering
out noise and irrelevant information. This selective process enhances the clarity and preci-
sion of the data, making it easier to identify significant patterns and trends in HTTP requests.
For instance, in a dataset containing web traffic data, bandpass filtering can help highlight the
intervals and frequencies at which certain URLs are accessed, providing insights into user be-
havior and potential security threats. The ability to concentrate on a specific frequency range
allows analysts to zero in on the most pertinent signals, thereby improving the accuracy and
effectiveness of the analysis.

Furthermore, bandpass filtering aids in detecting anomalies and irregularities within the
network. By focusing on the relevant frequency components, it becomes easier to spot de-
viations from the norm, which could indicate unusual or suspicious activity. This method is
instrumental in the context of network security, where identifying and understanding these
anomalies is key for protecting against potential threats. In addition to its application in secu-
rity, bandpass filtering is also valuable for optimizing network performance. By understanding

29

4. Methodology

the regular patterns of data flow and identifying any irregular spikes or drops, network admin-
istrators can make informed decisions to enhance the efficiency and reliability of the network.
This comprehensive approach ensures that only the most significant data is analyzed, leading
to more accurate and actionable insights. Overall, bandpass filtering is a powerful technique
in-network processing, enabling the extraction of meaningful information from large datasets.
By focusing on specific frequency components, it facilitates a detailed and precise analysis of
network interactions, helping to uncover important patterns and trends. This technique not
only improves the understanding of user behavior and network performance but also plays a
vital role in enhancing security by detecting potential threats and anomalies.
The bandpass filter formula can be expressed as:

1 1
- 1 + J(w—wiow) ‘ 1 4 j(whigh_‘*})

H(w)

We We

Where:
« H(w) is the frequency response of the bandpass filter,
+ w is the angular frequency,
* Wiow 18 the low cut-off frequency,
* Whigh is the high cut-off frequency,
* w, is the critical frequency.

The bandpass filter selectively passes frequencies between the low cut-off frequency (wiow)
and the high cut-off frequency (whign), While attenuating frequencies outside this range. This
formula provides a mathematical representation of how the bandpass filter operates to isolate
specific frequency components within the defined range.

4.7. Evaluation Criteria

The Python-implemented data evaluation process reveals instances of beaconing behavior within
the dataset, providing valuable insights for experts to identify potential malicious activity. This
task extends beyond simply visualizing the algorithm’s output; it relies heavily on the exper-
tise of professionals who navigate vast amounts of data to detect subtle indicators of malicious
behavior. The evaluation involves an examination of user behavior patterns to identify any
anomalies or suspicious activities that suggest beaconing. Beaconing, a technique used by
malicious actors, involves repetitive signal transmissions that allow compromised systems to
communicate with external servers. Identifying such behavior requires sophisticated analysis
techniques and a deep understanding of network traffic patterns.

Leveraging Python’s powerful data analysis and processing capabilities, the evaluation pro-
cess begins with the systematic analysis of large volumes of network data. Python’s libraries
and tools enable the handling and manipulation of complex datasets, facilitating the detection
of beaconing signals embedded within regular network traffic. The process involves applying

30

4.7. Evaluation Criteria

various algorithms and analytical methods to sift through the data, identifying patterns that
deviate from normal user behavior. This initial algorithmic analysis provides a foundation, but
the true strength of the evaluation lies in the subsequent expert review.

Experts play a critical role in this process, as they interpret the algorithmic findings within
the broader context of network activity. They scrutinize the identified patterns, cross-referencing
them with known threat indicators and leveraging their experience to assess the likelihood of
malicious intent. This human expertise is essential for distinguishing between benign anoma-
lies and genuine threats. Upon detection of suspicious behavior, experts are tasked with making
informed decisions on how to address the implicated users and domains. This involves a risk
assessment to determine the severity and potential impact of the detected activity.

Decisions on handling identified threats may include a range of actions, from monitoring the
suspect activity more closely to implementing immediate mitigation measures such as blocking
the suspicious domains or isolating affected systems. The evaluation process also involves
documenting the findings and actions taken, ensuring a comprehensive record that can be
used for future reference and continuous improvement of the detection system.

The integration of Python’s technical capabilities with the nuanced understanding of skilled
analysts results in a robust and dynamic approach to network security. This comprehensive
approach not only enhances the accuracy of detecting beaconing behavior but also ensures
that potential threats are thoroughly understood and effectively mitigated. By combining au-
tomated data processing with expert analysis, the methodology provides a reliable framework
for maintaining network security and proactively addressing emerging threats. The continuous
evaluation and refinement of this process are vital for staying ahead of increasingly sophisti-
cated cyber threats, ultimately safeguarding the integrity and security of network environ-
ments.

31

5. Implementation

This chapter introduces the implementation of the proposed methodology within Allianz Com-
pany’s network infrastructure, delving into the intricate process of adapting the system to in-
tegrate seamlessly with the company’s extensive log data. It begins by exploring the necessary
adjustments made to align the methodology with Allianz’s specific log data formats and struc-
tures, highlighting the critical decisions in parameter selection and the strategic use of various
analytical tools. The chapter aims to provide a comprehensive evaluation of the performance
metrics derived from this implementation, offering a detailed analysis of the methodology’s ef-
ficacy. Supported by visualizations such as graphs and charts, this analysis facilitates a clearer
understanding of complex data and key findings.

Furthermore, the chapter rigorously assesses the methodology’s effectiveness in detecting
malicious behavior, providing an in-depth examination of detected anomalies, their correlation
with potential security threats, and the system’s responsiveness. This assessment underscores
the practical value of the methodology, demonstrating its significant impact on enhancing net-
work security. By presenting concrete evidence of the methodology’s success in identifying
and mitigating threats, the chapter establishes a foundation for discussing advanced security
strategies.

The insights gained from this implementation are important for Allianz, as they pave the way
for continuous improvement initiatives and the development of more robust security measures.
This chapter sets the stage for broader discussions on enhancing network security, offering a
clear pathway for future chapters to explore advanced techniques and strategies aimed at for-
tifying Allianz’s network infrastructure against the ever-evolving landscape of cyber threats.
Through this comprehensive examination, the chapter not only highlights the immediate ben-
efits of the methodology but also its long-term potential to significantly bolster Allianz’s cy-
bersecurity framework.

5.1. Experimental Setup

This section details the adaptation process to integrate the methodology within Allianz Com-
pany’s network infrastructure. Initially, adjustments were made to ensure compatibility with
the company’s log data, involving comprehensive data mapping and transformation to align
with the methodology’s requirements. This step was key to guarantee that the raw data could
be accurately interpreted and utilized by the detection algorithms. Stringent measures were
taken to address any discrepancies or inconsistencies encountered during the integration pro-
cess. These measures included validating data integrity, standardizing log formats, and resolv-
ing any anomalies to ensure seamless integration.

For testing purposes, an experimental framework was established. This framework was de-
signed to cover a wide range of scenarios, from routine network operations to sophisticated

33

5. Implementation

simulated cyber-attacks. These scenarios were crafted to assess the methodology’s perfor-
mance under diverse conditions, providing a realistic and thorough evaluation. The scenarios
mimicked real-world network behaviors, encompassing various types of user activities, net-
work loads, and potential threat vectors. This comprehensive testing ensured that the method-
ology was robust and applicable in practical settings, capable of handling the dynamic nature
of real-world network environments.

Additionally, real data sourced from Allianz Company was utilized to validate the methodol-
ogy’s efficacy under authentic operational conditions. This real-world validation was a critical
component of the adaptation process, as it provided invaluable insights into the methodol-
ogy’s performance in a live environment. The use of genuine operational data bolstered the
credibility and relevance of the methodology, demonstrating its practical utility in addressing
real-world cybersecurity challenges. By evaluating the methodology against actual network
traffic and user behavior, the team could identify and address any limitations, fine-tuning the
system to enhance its effectiveness.

Throughout the testing phase, data collection was conducted rigorously, capturing a com-
prehensive array of network activities and events. This extensive data collection ensured a rich
dataset for analysis, encompassing a wide variety of normal and abnormal behaviors. The col-
lected data served as the foundation for subsequent analyses, enabling a thorough and detailed
evaluation of the methodology’s effectiveness in detecting and mitigating malicious behavior
within Allianz Company’s network infrastructure. The analysis focused on identifying pat-
terns and anomalies indicative of malicious activity and assessing the accuracy and reliability
of the detection algorithms.

The comprehensive approach to adaptation and testing detailed in this section underscores
the methodology’s readiness for real-world deployment. By ensuring data compatibility, rig-
orously testing under diverse scenarios, and validating with real-world data, the methodology
is demonstrated to be not only theoretically sound but also practically effective. This robust
process lays a solid foundation for enhancing Allianz’s network security, providing a reliable
tool to tackle the complex cybersecurity issues faced by the organization. The insights and
results garnered from this extensive testing phase set the stage for further refinement and op-
timization, ensuring that the methodology remains effective against evolving cyber threats.

5.2. Whitelisting Mechanism for URL Filtering

In the heart of Allianz Company’s expansive network infrastructure, a pivotal decision was
made to bolster its security framework: the establishment of a robust URL whitelist. This action
was driven by the need to strengthen monitoring and enhance the safety of the company’s
online activities. The idea was simple yet profound—by creating a safe space within the system
where only trusted URLs would be allowed to flourish, potential risks could be minimized, and
network security maximized.

The process of curating this whitelist involved a meticulous selection of URLs. These were
determined by several criteria, each designed to ensure that only the most legitimate and use-
ful links were included. URLs that employees visited regularly, those associated with company
resolutions, and other trusted websites made it onto the list. On the other hand, URLs that did

34

5.3. Average Power Calculation

not meet these predefined conditions were excluded from the whitelist. These exclusionary
decisions were not arbitrary; instead, they stemmed from a deep understanding of what con-
stituted a potential threat to the network. Suspicious IP addresses, known malicious domains,
and unauthorized access points all triggered exclusion, thereby preserving the integrity of the
company’s digital infrastructure.

The function at the core of this process was designed to filter and process URLs with pre-
cision. It carefully examined each one against the exclusion criteria and sifted out those that
posed a threat. What remained was a curated list of URLs that were deemed safe and, more
importantly, relevant. This refined subset of URLs, free from the noise of irrelevant or danger-
ous data, allowed for more focused analysis, enabling security teams to zoom in on genuine
threats. It also made the data easier to interpret, fostering clearer and more actionable insights.

By ensuring that only safe URLs entered the system, the whitelist function served as a key
tool in the network’s defense. It reduced the amount of data to be analyzed, cutting through the
clutter and allowing for faster and more accurate detection of potential security breaches. This
streamlined approach, which prioritized clarity and relevance, empowered analysts to identify
anomalies in the network more effectively, making it easier to pinpoint suspicious activity and
prevent breaches before they escalated.

As the team at Allianz worked tirelessly to perfect this methodology, it became clear that the
whitelist was more than just a protective measure—it was a vital cog in the larger machine of
network security. Its careful design and implementation underscored a strategic approach to
safeguarding digital assets, ensuring that every step taken was one toward a more secure and
resilient system. The precision with which the whitelist function was crafted, and the clarity
it brought to network analysis, was a testament to the team’s commitment to protecting the
company’s online environment. Through this careful curation of data, the organization could
focus on what mattered most—securing the network while minimizing the risk of potential
cyber threats.

5.3. Average Power Calculation

The process of calculating the power of requests is a critical component of analyzing network
activity and discerning meaningful patterns within large datasets. This methodology unfolds
as a sequential progression, beginning with the preliminary task of filtering URLs based on a
predefined whitelist. Once this filtration is complete, the focus shifts to the intricate process of
determining the power associated with each URL.

At the heart of this approach lies the notion of request power, a concept that quantitatively
captures the frequency dynamics of network interactions. Specifically, this metric is derived by
analyzing the temporal intervals between successive requests made to the same URL hostname.
Each interval represents the duration elapsed between two consecutive requests, effectively
capturing the rhythm and regularity of access patterns. By measuring these intervals across
the dataset, the power of each URL is computed, providing valuable insights into the underlying
behavioral trends.

The process begins with the creation of a dictionary, often referred to as the power dictio-
nary, which serves as the repository for storing these calculated values. For every request

35

5. Implementation

encountered in the dataset, the corresponding time interval is computed by subtracting the
timestamp of the last occurrence from that of the current request. These intervals, measured
in seconds, form the basis for assessing the frequency of access. Each time interval is then
mapped to its occurrence count within the dictionary, where the count represents the number
of times a specific interval has been observed. As this iterative process unfolds, the dictio-
nary gradually accumulates a comprehensive record of interval frequencies, encapsulating the
temporal dynamics of the dataset.

Upon completion of this calculation phase, the next step involves computing the average
power across all URLs. This average serves as a benchmark against which individual URL
powers are evaluated. The normalization process entails subtracting this average from the
power values of each URL. This critical step ensures that the analysis focuses on relative de-
viations rather than absolute values, thereby highlighting URLs that exhibit unusual activity.
Notably, URLs with normalized power values that fall below zero are deemed indicative of
non-malicious behavior and are excluded from further analysis. Conversely, those with posi-
tive values proceed to subsequent stages of scrutiny, marking them as potential candidates for
deeper investigation.

This analytical framework offers a robust mechanism for distinguishing normal network be-
havior from anomalies. By systematically identifying URLs with significant deviations in ac-
cess frequency, the methodology enhances the detection of patterns that may signal malicious
intent. The exclusion of URLs with negative power values serves to streamline the analysis, en-
abling a sharper focus on high-priority cases. Moreover, the iterative nature of this calculation
process facilitates continuous refinement, allowing the methodology to adapt dynamically to
the evolving landscape of network activity.

Beyond its technical utility, the calculation of request power provides profound insights
into the behavioral dynamics of users and systems. By revealing the cadence of interactions
and the distribution of access intervals, it paints a detailed picture of network usage patterns.
These insights are invaluable not only for identifying potential security threats but also for
understanding the broader context of network operations. The power dictionary, as the tangible
output of this process, serves as a foundational tool for exploring these patterns. Its structured
representation of time intervals and their corresponding power values offers a precise lens
through which the intricacies of network activity can be examined.

In essence, the request power calculation methodology exemplifies the fusion of quantita-
tive rigor and analytical depth. It transforms raw data into actionable intelligence, equipping
analysts with the tools needed to navigate the complexities of modern network environments.
Through its emphasis on precision, scalability, and adaptability, this approach underscores its
pivotal role in fortifying network security and advancing the frontier of behavioral analytics.

5.4. Band-Pass Filtering

Bandpass filtering is an advanced signal processing technique used to refine time-series data
by isolating specific frequency components within a defined range. The method operates by
allowing only those components of a signal whose frequencies lie within a certain interval to
pass through, while suppressing or attenuating those outside this range. This selective filter-

36

5.5. Function to Calculate Autocorrelation

ing approach is instrumental in reducing noise, enhancing clarity, and extracting meaningful
patterns from complex datasets. In the context of network traffic analysis, this technique is par-
ticularly valuable for identifying periodic behaviors or anomalies that occur within a specific
frequency spectrum.

The process begins by setting lower and upper frequency boundaries, defined in seconds,
to determine the target frequency range. These boundaries are normalized using the Nyquist
frequency, which is half the sampling rate of the data, ensuring that the filtering criteria align
with the temporal resolution of the dataset. Validation checks are performed to ensure that the
normalized thresholds fall within an acceptable range, thereby avoiding computational errors.
The Butterworth filter, known for its smooth frequency response and minimal distortions, is
employed for this purpose. Unlike other filters, the Butterworth design maintains a balanced
trade-off between precision and computational efficiency, making it well-suited for processing
large or sensitive datasets.

To ensure accuracy and minimize phase distortions, the filtering process applies a forward
and backward pass on the data, effectively refining the signal. This dual-pass approach pro-
duces a dataset containing only the frequency components that meet the specified criteria. For
network traffic analysis, the bandpass filter can, for instance, evaluate the time intervals associ-
ated with URLs. By retaining only those URLs with temporal patterns falling within the target
frequency range, the filter ensures that the analysis focuses on the most relevant components.

The practical implementation in your research involves defining specific lowcut and highcut
frequencies, such as 1 second and 1 hour, respectively. This range captures patterns of interest
while excluding noise and irrelevant fluctuations. The filtering process not only reduces the
dataset’s complexity and volume but also amplifies the significance of the retained informa-
tion. By systematically excluding URLs with unimportant temporal dynamics, the technique
supports a more focused and effective analysis of network behaviors.

This methodology has proven critical for cybersecurity applications, where detecting subtle
variations in traffic patterns can reveal potential threats or anomalies. For example, identify-
ing periodic spikes in requests to specific URLs within a defined frequency band can indicate
malicious activity or abnormal network behavior. The refined dataset resulting from bandpass
filtering forms a robust foundation for further analysis, enabling researchers to derive accurate,
actionable insights.

In addition to improving analytical precision, the computational efficiency of the bandpass
filtering process makes it suitable for processing datasets of varying sizes. While the method is
efficient for moderately sized datasets, optimizations such as parallel processing or alternative
algorithms can further enhance performance for very large datasets. Overall, this technique
plays a pivotal role in the comprehensive study of network traffic dynamics, contributing to
a deeper understanding of meaningful patterns and supporting the overarching goals of the
research.

5.5. Function to Calculate Autocorrelation

The calculate_autocorrelation function is used to compute the autocorrelation of
a time series of power values. Autocorrelation is a statistical method that measures the simi-

37

5. Implementation

larity between a signal and a lagged version of itself over successive time intervals. It is partic-
ularly useful in identifying patterns or periodicity within the data, such as repeated cycles or
trends over time. The function utilizes the acf (Autocorrelation Function) method from the
statsmodels library, which efficiently computes the autocorrelation values up to a speci-
fied lag. By analyzing the autocorrelation values, one can determine whether the power values
exhibit any time-dependent structure, which can help in identifying periodicities, noise levels,
or potential anomalies in the dataset. This function is a key tool for understanding the temporal
properties of the power measurements.

5.6. Function to Calculate Fourier Transform

The calculate_fourier_transform function performs a Fourier Transform on the
time series of power values, which is a mathematical technique used to analyze the frequency
components of a signal. The Fourier Transform decomposes a time-domain signal into its con-
stituent frequencies, allowing for the identification of dominant frequency components. This
is particularly useful when analyzing periodic behaviors or oscillations within the power data.
The function uses the fft (Fast Fourier Transform) method from the scipy. fft library,
which computes the discrete Fourier transform (DFT) of the signal. The output of this function
includes the frequencies and corresponding amplitudes, representing how the power values are
distributed across different frequency bands. By examining these components, one can gain
insights into the underlying frequency characteristics of the data, such as identifying dominant
frequencies that may correlate with specific events or behaviors in the system.

5.7. Behavior Detection

In the final stage of the algorithm, behavior detection is performed to determine the rele-
vance and significance of the URLs retained after the filtering process. This stage is critical
for identifying potentially malicious or anomalous URLs. The process begins with establishing
a threshold value, which is determined through a combination of extensive experimentation
and leveraging past experiences.

The experimentation phase involves testing various threshold levels against historical data
to evaluate their effectiveness in flagging suspicious activities without generating excessive
false positives. Insights from previous network security incidents and the specific operational
context of the network further refine this threshold. By integrating empirical data with histor-
ical knowledge, the threshold is calibrated to balance sensitivity and specificity. Once defined,
this threshold becomes the standard against which URL behavior is measured. URLs exhibit-
ing characteristics that surpass this threshold are flagged for further investigation, as they may
indicate potential security threats or deviations from normal network behavior.

This behavior detection step transforms filtered data into actionable intelligence, enabling
network administrators and security professionals to focus on the most critical and relevant
threats. By filtering out noise and highlighting significant anomalies, this stage enhances the
cybersecurity framework’s overall effectiveness, ensuring the network remains secure against
evolving threats.

38

5.8. Algorithm Output

. B ping.citrix.com
2 2000
£
0- " T T
2 4 f 8 10
. B locus-a.wbx2.com
01000+
H
£
0- 7 ;
) 4 f 8 10
. usersub-a.wbx2.com
0 1000+
2
£
0 . . . - -
2 4 f] 10
. calendar-a.whx2.com
0 1000+
2
£
0 . . ; - -
10004 b) 4 A 8 10
. mercury-connection-partition0-a.wbx2.com
3 500
€

2 ! 6 8 10
Time Interval (seconds)

Figure 5.1.: Steps of the proposed method

5.8. Algorithm Output

The algorithm’s output provides a targeted overview of URLs requiring detailed examination.
Each URL is compared against a predefined threshold of 500, and those exceeding this threshold
are flagged for potential concerns. Such URLs are prioritized for closer investigation due to
their deviation from normal behavior, which could indicate possible security threats or unusual
activity.

This alert system is essential for prioritizing high-risk URLs, allowing security analysts to
concentrate on the most significant issues. By efficiently filtering out less critical data, the sys-
tem improves threat detection accuracy and minimizes false positives. Analyzing flagged URLs
can uncover hidden patterns or attack methods that might otherwise be missed. This proac-
tive alert mechanism is integral to effective threat management, facilitating early detection and
response to mitigate risks and safeguard the network against potential breaches.

The algorithm’s ability to promptly identify and address potential threats demonstrates its
effectiveness in reinforcing network security.

39

5. Implementation

5.9. Summary

In this chapter, we delved into the intricacies of preprocessing network activity data, focusing
on the creation and utilization of a whitelist and the application of bandpass filtering to enhance
data analysis. The primary learnings from this chapter include:

« Whitelist Creation:

— We defined a function to create a whitelist by filtering out URLs based on specified
exclusion criteria. This function plays a crucial role in curating a subset of URLs for
further analysis, ensuring that only relevant and trustworthy URLs are retained.

— We discussed the importance of excluding irrelevant or untrustworthy URLs to im-
prove the accuracy and interpretability of subsequent analyses.

— Performance considerations were examined, highlighting the efficiency of the whitelist
creation process and its scalability for larger datasets.
» Bandpass Filtering;:

- A function for applying bandpass filtering to the power values of network activ-
ity data was introduced. This function isolates significant frequency components
within a specified range, reducing noise and enhancing the clarity of the dataset.

— The role of bandpass filtering in refining the dataset and focusing on the most rele-
vant data was emphasized, contributing to a more robust understanding of temporal
patterns and behaviors within the network.

— We explored the performance implications of the filtering process and discussed

potential optimizations for handling large datasets.
» Functional Analysis:

— Both functions were defined with detailed explanations of their parameters, func-
tionality, and performance considerations. This structured approach ensures that
the functions are well-documented and easy to understand for future use and mod-
ification.

« Function to Calculate Autocorrelation:

— Computes the autocorrelation of a time series of power values.

— Measures similarity between a signal and its lagged version over time.

— Useful for identifying patterns, periodicity, and trends in the data.

— Uses the acf method from the statsmodels library to compute autocorrelation values
up to a specified lag.

— Helps detect time-dependent structures, periodicities, noise levels, and potential
anomalies in the dataset.

« Function to Calculate Fourier Transform:

40

5.10. Next Steps

— Performs a Fourier Transform on the time series of power values.
— Decomposes the time-domain signal into its frequency components.
— Useful for analyzing periodic behaviors or oscillations in power data.

— Uses the fft method from the scipy.fit library to compute the discrete Fourier trans-
form (DFT).

— Provides frequencies and corresponding amplitudes, highlighting dominant fre-
quencies and their correlation with system events or behaviors.

5.10. Next Steps
Building on the foundational work presented in this chapter, the next steps involve:

+ Implementing Additional Preprocessing Techniques:

— Investigate and implement additional preprocessing techniques to further enhance
data quality and relevance. This may include methods such as data normalization,
anomaly detection, and more sophisticated filtering techniques.

Integrating the Preprocessed Data into Analytical Models:

— Utilize the preprocessed data in advanced analytical models to uncover deeper in-
sights into network behavior. This could involve machine learning algorithms, sta-
tistical analyses, and other data mining techniques.

Evaluating and Validating the Methods:

— Perform rigorous evaluation and validation of the preprocessing methods to ensure
their effectiveness and reliability. This includes testing the methods on different
datasets and scenarios to assess their generalizability and robustness.

+ Automating the Preprocessing Pipeline:

— Develop an automated preprocessing pipeline that seamlessly integrates the whitelist
creation and bandpass filtering functions. This will streamline the data preparation
process, making it more efficient and scalable for real-time applications.

« Documenting and Sharing Findings:

— Document the findings and methodologies in detail to facilitate knowledge sharing
and reproducibility. This includes creating comprehensive reports, code documen-
tation, and potentially publishing the results in academic journals or conferences.

By following these next steps, we can build upon the foundation established in this chapter,
advancing our understanding and capabilities in network activity data analysis. This progres-
sion will not only enhance the accuracy and effectiveness of our analytical models but also
contribute to the broader field of network security and behavior analysis.

41

6. Experiments

In this experimental chapter, the algorithm’s capability to detect malicious data undergoes
a rigorous inspection. Data from various days is collected to encompass various scenarios,
ensuring a comprehensive evaluation of the algorithm’s performance across different condi-
tions. Once the data is gathered, it is processed through the algorithm to assess its ability to
identify potentially harmful content. The primary focus of this chapter lies in evaluating the
algorithm’s effectiveness in detecting malicious content and its consistency over time. Special
attention is given to the URLs flagged as suspicious by the algorithm, which are closely exam-
ined to gain deeper insights into their functionality and potential areas for enhancement. By
scrutinizing these flagged URLs, the chapter aims to uncover patterns and behaviors that might
indicate malicious activity, providing valuable feedback for refining the algorithm. This chap-
ter comprehensively evaluates the algorithm’s performance, utilizing real-world data to gauge
its effectiveness and explore avenues for improvement. The findings from this analysis not
only demonstrate the algorithm’s current capabilities but also highlight opportunities for fur-
ther development, ensuring its continued relevance and robustness in detecting evolving cyber
threats. Through this detailed examination, the chapter aims to bolster the algorithm’s ability
to safeguard the network, contributing to the overall security infrastructure of the system.

6.1. Validation and Testing

To affirm the efficacy of beaconing detection, the methodology undergoes rigorous testing us-
ing diverse datasets, simulating a range of scenarios that reflect various web traffic patterns.
This comprehensive validation process is undertaken to ensure that the algorithm operates re-
liably across different frequency ranges and adapts seamlessly to the dynamic nature of HTTP
requests. By employing datasets that encompass a wide array of traffic behaviors—from nor-
mal browsing activities to more erratic patterns indicative of potential security threats—the
testing aims to demonstrate the filter’s robustness and versatility. Each dataset is crafted to
mimic real-world conditions, providing a realistic context for evaluating the bandpass filter’s
performance. The results from these tests offer critical insights into the filter’s ability to isolate
relevant frequency components while effectively minimizing noise and irrelevant data.

Furthermore, this validation process helps in identifying any potential weaknesses or limi-
tations of the bandpass filter, guiding subsequent refinements and optimizations. The ultimate
goal is to ensure that the beaconing detection consistently enhances the accuracy and reliabil-
ity of the data analysis, regardless of the variability in web traffic patterns. By confirming its
adaptability and precision, this rigorous testing phase substantiates the filter’s integral role in
the overall methodology, cementing its contribution to the accurate detection and analysis of
network behaviors.

43

6. Experiments

Validation Steps:

1. Diverse Datasets: The beaconing detection is subjected to rigorous testing using datasets
that exhibit varying frequencies of HTTP requests, each embodying distinct traffic pat-
terns. These datasets are carefully curated to represent a broad range of real-world web
traffic scenarios, from sporadic and unpredictable requests to highly regular and pre-
dictable beaconing activity. By employing such a diverse set of datasets, the aim is to
thoroughly evaluate the filter’s adaptability and effectiveness. This comprehensive ap-
proach ensures that the filter can robustly identify beaconing activity amidst different
traffic environments, including those with fluctuating request intervals, mixed legitimate
traffic, and potential noise. Ultimately, this testing strategy is designed to refine the bea-
coning detection mechanism, enhancing its accuracy and reliability across a wide array
of web traffic conditions, thereby improving its practical applicability in detecting mali-
cious or anomalous behavior in varied network contexts.

2. Performance Metrics: To evaluate the method’s performance, the methodology em-
ploys metrics and the preservation of relevant frequency components. These metrics
serve as quantitative indicators, allowing for a thorough assessment of the filter’s ability
to discern and retain meaningful signal components while minimizing noise.

3. Real-world Scenarios: The beaconing technique is rigorously evaluated on historical
datasets containing documented instances of diverse HTTP request patterns within Al-
lianz Company’s network. This real-world testing ensures that the filter can effectively
handle the complexities and nuances inherent in actual network traffic scenarios, further
validating its practical utility.

By subjecting the method to these comprehensive validation steps, the methodology aims to
establish its reliability and robustness in handling a wide array of web traffic patterns. The re-
sults obtained from this testing process contribute to the confidence in the filter’s performance,
reinforcing its role as a valuable tool in the analysis of HTTP request patterns over time.

6.1.1. In-Depth Analysis of Algorithm Output

To assess the accuracy of the algorithm’s identification of malicious behavior, a verification pro-
cess was executed, which involved systematically evaluating the algorithm’s outputs against
known benchmarks. The initial findings from this process unveiled patterns that hinted at pos-
sible malicious behavior, indicating that the algorithm was effectively identifying anomalies
consistent with malicious activities. This verification process is critical for ensuring the relia-
bility and robustness of the algorithm in real-world applications, as it confirms the algorithm’s
ability to detect subtle and complex patterns indicative of potential security threats.

To further refine the focus of the analysis, Figure 6.1 provides a detailed snapshot of the data
from a particular day, highlighting specific areas where suspicious activity may be present. This
figure showcases the URLs identified by the algorithm, each accompanied by a distinct time
interval and power level. The next critical step involves detecting the behavior of these URLs
to accurately report beaconing malicious behavior. This process requires checking the power
levels of these URLs against a predefined threshold value. The threshold value was selected

44

6.1. Validation and Testing

500

login.live.com
client.wns.windows.com
ctldl.windowsupdate.com

400 gagpublic.qg2.apps.qualys.eu
Ifodown01-lanner-lion.cloudsink.net
ocsp.digicert.com

rbing.com

clients2.google.com
keepersecurity.eu
push.services.keepersecurity.eu
clients2.googleusercontent.com
cri3.digicert.com
business.bing.com
fpc.msedge.net
mdv4rdc5.stackpathcdn.com
maps.windows.com
wdcp.microsoft.com

300

Power

200

100

0 100 200 300 401 500 600

Time Interval (seconds)

=]

Figure 6.1.: Testing Data

after numerous experiments and relies heavily on the analyst’s expertise and experience to
ensure its accuracy and reliability.

To enhance clarity and isolate the most significant indicators of potential malicious activity,
Figure 6.2 presents only those URLs that have exceeded the established threshold, which in
this instance is set at 500. This strategic filtering immediately draws attention to the URL
‘m4v4r4c5.stackpathcdn.com’, which exhibits behavior that warrants closer scrutiny due to its
elevated power levels. By isolating this particular domain from the broader dataset, the figure
reveals a significant peak during a specific time interval, indicating a moment of heightened
activity.

This peak is particularly noteworthy as it signifies that during the specified time interval,
the power associated with ‘m4v4r4c5.stackpathcdn.com’ reached an unusually high value of
2877. This substantial power level is well above the predetermined threshold, clearly indicat-
ing an abnormal and potentially malicious pattern of activity. The suspicious behavior was
observed within the time interval of 10-12, marking this period as a critical window for further
investigation.

The isolation and examination of these peaks are important for understanding the nature
of the potential threat. By focusing on the time intervals and power levels that exceed the
threshold, analysts can more effectively identify and interpret patterns indicative of beaconing
malicious behavior. This detailed approach underscores the importance of combining algorith-
mic outputs with the analyst’s expertise to detect and respond to potential security threats
accurately. It highlights how the rigorous verification process, alongside the use of targeted
metrics and thresholds, enhances the ability to discern meaningful signals from noise, thereby
improving the overall effectiveness of the beaconing detection methodology. This thorough
analysis not only aids in identifying immediate threats but also contributes to the ongoing
refinement of detection techniques, ensuring they remain robust and reliable in the face of

45

6. Experiments

500 7

B mavardc5.stackpathcdn.com

400

300+

Power

2004

1004

10 20 30 40 50 60
Time Interval (seconds)

Figure 6.2.: Malicious Domain

evolving web traffic scenarios and potential malicious activities.

Upon the identification of the URL, the subsequent analysis unveiled clear indicators sug-
gesting malicious intent within the algorithm’s output. To verify the authenticity of these
suspicions, a comprehensive inquiry was launched into the nature of the detected behavior,
aimed at determining whether it unequivocally originated from a malicious URL source. This
inquiry involved a detailed examination of the URL’s historical footprint, which uncovered
a disconcerting pattern of activity. It became evident that a particular user had persistently
engaged in phishing tactics, repeatedly attempting to access and manipulate the URL for ne-
farious purposes. Such deliberate and systematic actions underscored the malicious nature of
the user’s intentions. Recognizing the severity of the situation, immediate action was taken to
alert cybersecurity experts, thereby initiating a thorough examination and swift resolution of
the identified security breach.

The investigation revealed that the user behind the malicious activity employed sophisti-
cated techniques to mask their actions, making detection more challenging. This necessitated
a deeper dive into the user’s digital footprint, examining IP addresses, timestamps, and the
nature of the requests made to the URL. The collected evidence pointed to a concerted effort to
exploit vulnerabilities within the system, highlighting the importance of the initial algorithmic
detection and the subsequent manual analysis in identifying and mitigating the threat.

Furthermore, to thoroughly evaluate the algorithm’s effectiveness, a comprehensive analysis
was conducted on the data gathered across multiple days. This longitudinal study allowed for
the identification of recurring patterns or evolving trends that may signify malicious intent.
The subsequent sections present the results derived from the algorithm’s examination of each
day’s data, providing insights into the consistency and reliability of the algorithm in detecting
suspicious activities. By comparing daily outputs, analysts could identify not only persistent
threats but also new and emerging ones, thereby enhancing the overall security posture.

46

6.1. Validation and Testing

500

login.live.com

cri3.digicert.com
yt3.ggpht.com

4001 account.nonprod.allyz.com
Ifodown01-lanner-lion.cloudsink.net
ocsp.digicert.com

rbing.com

keepersecurity.eu
push.services.keepersecurity.eu
omex.cdn.office.net
bam.nr-data.net
fpc.msedge.net
maps.windows.com
wdcp.microsoft.com

300+

2004

Power

1004

Time Interval (seconds)

Figure 6.3.: Testing Data

The analysis also involved cross-referencing the detected malicious activities with known
threat databases to determine if the identified URL and user behavior matched any previously
recorded cyber threats. This step was key in understanding the broader context of the threat
and in developing appropriate countermeasures. The collaboration with cybersecurity experts
ensured that the findings were promptly addressed, and preventative measures were imple-
mented to safeguard against future attacks.

In summary, the identification of the URL and the subsequent in-depth analysis highlighted
the importance of a multi-layered approach to cybersecurity. The combination of advanced
algorithms, historical data analysis, and expert intervention provided a robust framework for
detecting and responding to malicious activities. This approach not only addressed the imme-
diate threat but also contributed to the ongoing refinement of detection techniques, ensuring
they remain effective against evolving cyber threats.

The figures below provide comprehensive snapshots of online activity on different days,
highlighting key patterns and anomalies. In the figure 6.3, a detailed log documents the inter-
net activity of a specific individual on a particular day. This log outlines the various websites
visited, including both innocuous sites and one that raised suspicions. The figure shows the
output of an algorithm designed to detect malicious behavior, marking the beginning of a de-
tailed analysis.

The focus of this analysis is to look over all URLs that exhibit a specific power level. The
algorithm identifies URLs with notable peaks in the output, particularly those with power levels
exceeding a predetermined threshold value. This threshold was established through extensive
experimentation and expert analysis, ensuring its effectiveness in filtering out benign activity
while highlighting potential threats.

Shifting the focus to Figure 6.4, this figure zooms in on a specific timeframe, offering a closer
examination of a particular website’s behavior. During the period from 200 to 220, there was

47

6. Experiments

500
B yt3.ggpht.com

400

300 -

Power

200

100 -

0 50 100 150 200 250 300
Time Interval (seconds)

Figure 6.4.: Malicious Domain

a notable surge in activity on 'yt3.ggpht.com’, which deviated significantly from its usual pat-
terns. This irregularity prompted a deeper analysis, revealing indications of potentially mali-
cious beaconing behavior.

The subsequent investigation into 'yt3.ggpht.com’ confirmed the presence of unauthorized
activity on the website. This finding underscores the critical importance of such monitoring
systems in identifying and addressing cybersecurity threats. By highlighting irregular patterns
and behaviors, these systems act as vigilant guardians, ensuring the safety and integrity of
digital spaces.

These visual representations play a vital role in maintaining online security. They not only
facilitate the detection of malicious activity but also aid in the timely response to emerging
threats. The detailed logs and focused analyses presented in Figures 6.3 and 6.4 exemplify
the effectiveness of combining algorithmic detection with expert scrutiny experiences. This
approach ensures that suspicious activities are not only identified but also thoroughly investi-
gated and mitigated.

The integration of advanced algorithms and detailed visual representations provides a robust
framework for monitoring and securing online environments. By continuously analyzing web
traffic and identifying anomalies, these systems help protect against unauthorized activities and
potential cyber threats. This multi-layered approach is essential for maintaining the integrity
and security of digital spaces in an increasingly connected world.

438

7. Results and Discussions

The implementation of the methodology within Allianz Company’s network infrastructure
represents a pivotal advancement in enhancing network security and resilience. This chap-
ter provides a detailed discussion of how beaconing behavior can be effectively detected and
the impact of periodicity in network communication on the detection of malicious behavior.
The methodology’s application involved several key steps, each contributing to the robustness
of the network monitoring and security measures.

7.1. Detection of Beaconing Behavior

To address the question of how beaconing behavior can be effectively detected within Allianz
Company’s network, several strategies and methodologies were employed and evaluated:

7.1.1. Algorithm Development and Implementation

The core of the detection process involved the development and implementation of advanced
algorithms tailored to identify beaconing behavior. These algorithms were designed to analyze
network traffic for recurring patterns indicative of beaconing. Key methods included:

«+ Pattern Recognition Algorithms: These algorithms scan for regular intervals in net-
work communication, a hallmark of beaconing activity often used by malware to main-
tain contact with a command-and-control server.

« Threshold Analysis: A critical component of the detection system involved setting
thresholds for communication frequencies. URLs with communication intervals exceed-
ing these thresholds were flagged for further investigation.

7.1.2. Data Collection and Preprocessing

Effective detection required comprehensive data collection and preprocessing:

« Network Monitoring: Continuous monitoring captured a wide array of network activ-
ities, including data packets, source and destination addresses, timestamps, and commu-
nication frequencies.

+ Filtering and Aggregation: Known benign traffic was filtered out, and similar types
of communication were aggregated to reduce noise and focus on potentially malicious
activities.

49

7. Results and Discussions

7.1.3. Validation and Testing

To ensure the effectiveness of the detection methods:

« Synthetic and Real-World Data: The algorithm was tested on both synthetic datasets
and real-world traffic from Allianz’s network.

+ Integration with Existing Systems: The detection mechanisms were integrated with
Security Information and Event Management (SIEM) systems to enable automated alerts
and responses, and incident response teams were notified for further investigation.

7.2. Impact of Periodicity in Network Communication

The second research question addresses the impact of periodicity in network communication
on the detection of malicious behavior. Periodicity significantly affects detection capabilities,
as detailed below:

7.2.1. ldentification of Regular Intervals

« Time-Series Analysis: Network traffic was analyzed as time-series data to detect reg-
ular communication intervals. Techniques such as bandpass filtering was employed to
identify periodic patterns.

» Baseline Establishment: A baseline of normal network behavior was established to
identify deviations that might indicate malicious activity. Communication frequencies
that deviated from this baseline were flagged as suspicious.

7.2.2. Differentiation Between Benign and Malicious Periodicity

« Contextual Analysis: Not all periodic communications are indicative of malicious be-
havior. Contextual analysis helped distinguish between normal periodic activities (e.g.,
scheduled updates) and potentially harmful beaconing.

« Anomaly Detection Algorithms: Algorithms trained on periodicity patterns of nor-
mal traffic helped identify anomalies. Techniques such as clustering and classification
were used to differentiate benign from malicious behavior.

7.2.3. Impact on False Positives and Negatives

« Reduction of False Positives: Accurate modeling of normal periodic patterns helped
reduce the number of false positives, ensuring that alerts were actionable.

« Handling False Negatives: Sensitivity adjustments in detection algorithms ensured
that subtle periodic patterns associated with stealthy beaconing were not missed, mini-
mizing false negatives.

50

7.2. Impact of Periodicity in Network Communication

7.2.4. Case Studies and Empirical Evidence

« Real-World Examples: Analysis of real-world cases of beaconing behavior provided
empirical evidence on the effectiveness of periodicity-based detection methods.

« Continuous Learning and Adaptation: The detection system was designed to adapt
to evolving patterns of network traffic, ensuring ongoing effectiveness in identifying new
and emerging threats.

The comprehensive evaluation of the methodology demonstrated its efficacy in handling
diverse network traffic scenarios and real-world cybersecurity challenges. The methodology,
which included advanced algorithms for detecting beaconing behavior, robust data prepro-
cessing techniques, and the use of periodicity in network communication, proved effective in
identifying and mitigating malicious activities. The integration of these methods with Allianz
Company’s existing security infrastructure highlighted the importance of continuous monitor-
ing and proactive response strategies in maintaining network security. The promising results
from this implementation provide a strong foundation for future research and further enhance-
ment of network security measures.

51

8. Conclusion and Future Work

8.1. Conclusion

The thorough study of the dataset provided valuable insights into network security, particularly
in the detection of beaconing activities that may indicate potential threats. This examination
involved a deep dive into the data, encompassing its various aspects and collection methods,
which laid a solid foundation for understanding how networks can detect and respond to sus-
picious signals effectively.

Systematic data collection, cleaning, and processing were important to ensuring the dataset’s
accuracy and reliability. The gathering of relevant information, removal of inconsistencies or
errors, and careful preparation for analysis were essential steps that validated the conclusions
drawn from the data. These steps ensured that the findings were both accurate and actionable.

A significant component of the methodology was the implementation of a *whitelist” mech-
anism alongside specialized filtering and analysis techniques. The whitelist, which consists of
trusted entities or activities within the network, plays an important role in focusing attention
on potentially harmful signals while minimizing the impact of irrelevant noise. This strate-
gic filtering enhanced the network’s ability to detect threats more effectively by isolating and
addressing only the potentially malicious activities.

The evaluation of time intervals between actions, combined with data enhancement tech-
niques and specialized filtering methods, yielded valuable insights into potential malicious
beaconing activity. These analyses illuminated underlying patterns and behaviors within the
network, aiding in the identification of anomalies that could signify suspicious or harmful ac-
tions. The study highlighted the importance of proactive monitoring and response strategies in
mitigating cybersecurity risks, demonstrating the broader significance of data-driven method-
ologies in fortifying network security.

In an era where organizations face increasingly sophisticated cyber threats, the insights from
this research can guide strategic decision-making and resource allocation. By leveraging these
findings, organizations can enhance their protection of critical digital assets and bolster their
defenses against evolving threats.

8.2. Future Work

Building on the findings and methodology presented in this study, several promising avenues
for future research and development can be explored:

1. Enhanced Detection Algorithms: Refining and optimizing beaconing detection algo-
rithms can significantly improve accuracy and reduce false positives. Future research
could explore novel approaches, such as deep learning techniques, which may provide

53

8. Conclusion and Future Work

new insights into anomaly detection in network behavior. These advancements could
lead to more effective threat mitigation strategies and enhanced detection capabilities.

. Real-Time Monitoring Solutions: Investigating real-time monitoring solutions can

enable prompt detection and response to emerging threats, thereby minimizing poten-
tial damages caused by malicious activities. The development of automated response
mechanisms could streamline incident response procedures, reducing the burden on cy-
bersecurity personnel and enhancing the overall efficiency of threat management.

. Behavioral Analysis Across Diverse Networks: Extending the study to analyze net-

work behavior across a variety of organizational networks can reveal commonalities and
variations in malicious activities. Understanding the unique challenges faced by differ-
ent industries and sectors could lead to the development of tailored security measures
that address specific threats more effectively. This cross-network analysis could provide
valuable insights into how different environments respond to and manage cybersecurity
risks.

. Integration with Machine Learning Techniques: Exploring the integration of ad-

vanced machine learning techniques for anomaly detection can augment the capabilities
of beaconing detection systems. Leveraging historical data and learning from past inci-
dents can help these systems adapt to evolving cybersecurity threats, enhancing proac-
tive defense mechanisms. Machine learning models can be trained to recognize subtle
patterns and adapt to new types of attacks, improving overall detection and response.

. Collaborative Research Initiatives: Engaging in collaborative research with industry

partners and cybersecurity experts can foster innovation and the development of proac-
tive security solutions. Joint research initiatives can facilitate the exchange of knowledge
and resources, addressing complex cybersecurity challenges more effectively. Collab-
oration can lead to the creation of comprehensive solutions that benefit from diverse
expertise and perspectives, driving progress in the field of network security.

Pursuing these avenues for future research and development will help advance the field of

cybersecurity, strengthening defenses against emerging threats and safeguarding the integrity
of digital infrastructures. By continuing to innovate and adapt, the cybersecurity community
can better protect critical assets and respond to the dynamic landscape of cyber threats.

54

A.

Appendix

A.1. Algorithm Implementation

from influxdb_client import InfluxDBClient
from datetime import datetime

import pandas as pd

import matplotlib.pyplot as plt

from scipy.signal import butter, filtfilt

def

def

calculate_request _power(request_list):
power _dictionary = {}
last _date_time = request_list[0][”_time™]

for request_dict in request_list:
current _date_time = request_dict[”_time”]

if isinstance(current_date_time, str):
current _date_time = datetime.strptime(current_date_time, ”%Y-%m-%
dT%H: %M: %S . %£Z”)

time_delta = int((current_date_time - last_date_time).total_seconds()

)

power _dictionary[time_delta] = power_dictionary.get(time_delta, 0) +
1
last_date_time = current_date_time

power _dictionary = dict(sorted(power_dictionary.items()))

return power_dictionary

bandpass_filter(data, lowcut_time, highcut_time, sampling_rate, order=4):
nyquist = 0.5 * sampling_rate

lowcut = lowcut_time / nyquist

highcut = highcut_time / nyquist

if lowcut >= 1 or highcut >= 1:

raise ValueError(”Digital filter critical frequencies must be 0 < wn
< 1”)

55

39

40

42

43

44

46

47

48

49

50

51

53

54

55

56

67

82

83

84

85

86

87

88

A. Appendix

b, a = butter(order, [lowcut, highcut], btype=’band’)
filtered_data = filtfilt(b, a, data)
return filtered_data

InfluxDB connection details
url = ”http://localhost:8086”
token = »***e»

org = ”Student”
bucket = ”Net”
influx_username
influx_password

Sk k ok kD

Sk k ok kD

try:
Create an InfluxDB client
client = InfluxDBClient(url=url, token=token, org=org)

Query data from InfluxDB

query = f’from(bucket:”{bucket}”) — range(start: 2023-08-01T00:00:00Z,
stop: 2023-08-02T00:00:00Z)°

tables = client.query_api().query(query, org=org)

Extract points from the result
points = [record.values for table in tables for record in table.records]

Process and organize the InfluxDB data
print (”Processing InfluxDB Data:™)
extracted_influx_objects = {}

for point in points:
url_hostname = point.get(”url_hostname”)

Check if url_hostname is already in the dictionary
if url_hostname not in extracted_influx_objects:
extracted_influx_objects[url_hostname] = []

Append under the corresponding url_hostname
extracted_influx_objects[url_hostname].append(point)

Print the extracted InfluxDB data for debugging
print (point)

Create a whitelist to filter out unwanted URLs
def create_whitelist(data, exclusion_criteria):
whitelist = {url: requests for url, requests in data.items() if not
any(exclusion in url for exclusion in exclusion.criteria)}
return whitelist

Define exclusion criteria for URLs
exclusion._criteria = [’allianz’, ’res’]

Create a whitelist based on the exclusion criteria

whitelist = create_whitelist(extracted_influx_objects, exclusion_criteria

)

56

90

91

92

93

94

95

96

97

98

99

102

103

104

106

107

108

109

110

111

112

113

114
115

116

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

A.1. Algorithm Implementation

print(”Filtered URLs based on whitelist:”)
for url_hostname in whitelist:
print (url_hostname)

Create a table of power for each URL hostname with bandpass filtering
in terms of time

print(”“nPower Table with Bandpass Filtering in Terms of Time:”)

for url_hostname, requests in whitelist.items():
print (£”URL Hostname: {url_hostname}”)
power _dictionary = calculate_request_power(requests)

Print the power dictionary for debugging
print (”Power Dictionary:”, power_dictionary)

Extract keys and values from the power dictionary
time_intervals = list(power_dictionary.keys())
power _values = list(power_dictionary.values())

Apply bandpass filtering in terms of time
lowcut_time = 5 # 5 seconds
highcut_time = 1000 # 1000 seconds

Check if there are enough elements to calculate sampling rate
if len(time_intervals) >= 2:
sampling _rate = 1.0 / (time_intervals[1] - time_intervals[0])
Sampling frequency

try:
filtered_power_values = bandpass_filter(power_values, lowcu
time, highcut_time, sampling_rate)
except ValueError as e:
print(f”Error: {e}”)
filtered_power_values = power_values

Print the filtered power values for debugging
print(”Filtered Power Values:”, filtered_power_values)

Calculate the average power
average_power = sum(filtered_power_values) / len(filtered_power
values)

Print the average power for debugging
print (”Average Power:”, average_power)

Subtract average power from all power values
adjusted_power_values = [power - average_power for power in
filtered_power_values]

Print the adjusted power values for debugging
print(”Adjusted Power Values:”, adjusted_power_values)

Remove negative powers
non_negative_power _values = [max(0, power) for power in adjuste
power _values]

#

t_

d_

57

138

139

140

141

142

143

144

146

148

149

150

151

152

A. Appendix

Get indices for the time range of interest (5 to 1000 seconds)
time_range_indices = [i for i, t in enumerate(time_intervals) if
5 <=t <= 1000]

Print the time range indices for debugging
print (”Time Range Indices:”, time_range_indices)

Plot the adjusted data within the specified time range

plt.plot([time_intervals[i] for i in time_range_indices], [non_
negative _power_values[i] for i in time_range_indices], label=
url _hostname)

Check if there are multiple URLs in the whitelist before creating
legend

if len(whitelist) > 1:
plt.legend()

plt.xlabel(”Time Interval (seconds)”) # Change x-axis label
plt.ylabel(”Adjusted Power”) # Change y-axis label
plt.title(”Adjusted Power over Time”) # Change the chart title
plt.show()

except Exception as e:

print(f”An error occurred: {e}”)

A.2. Data Analysis Implementation

import pandas as pd
import matplotlib.pyplot as plt
from scipy.signal import butter, filtfilt

#

Function to calculate request occurrence

def calculate_request_occurrence(request_list):

58

occurrence_dictionary = {}
last_date_time = None

for _, request_row in request_list.iterrows():
try:
current _date_time = pd.to_datetime(request_row[”_time”])

if last_date_time is not None:
time_delta = int((current_date_time - last_date_time).total_
seconds())

Add the occurrence to the occurrence dictionary
occurrence._dictionary[time_delta] = occurrence_dictionary.get
(time_delta, 0) + 1

last_date_time = current_date_time

A.2. Data Analysis Implementation

22 except (ValueError, TypeError) as e:

23 print (£”’Error in row: {_}, Timestamp value: {request_row[’_time’]
}, Error message: {e}”)

24

25 # Sort the dictionary for better visualization

26 occurrence_dictionary = dict(sorted(occurrence_dictionary.items()))
27

28 return occurrence._dictionary

29
3 |# Function to apply bandpass filtering in terms of time

51 |def bandpass_filter(data, lowcut_time, highcut_time, sampling_rate, order=4):
32 nyquist = 0.5 * sampling_rate

33 lowcut = lowcut_time / nyquist

34 highcut = highcut_time / nyquist

35

36 if lowcut >= 1 or highcut >= 1:

37 raise ValueError(”Digital filter critical frequencies must be 0 < Wn
< 17)

38

39 b, a = butter(order, [lowcut, highcut], btype=’band’)

40 filtered_data = filtfilt(b, a, data)

41 return filtered_data

42
43 |# CSV file path for the cleaned and modified data
4 |csv_file_path = r’C:“Allianz“4“1125“Modified_Beaconing.csv’

45

16 | try:

47 # Read data from CSV file and explicitly convert ”_time” to datetime

48 df = pd.read_csv(csv_file_path)

49 df[”_time”] = pd.to_datetime(df[”_time”], format="%H:%M:%S.%f’, errors=’
coerce’)

50

51 # Process and organize the CSV data

52 print(”Processing CSV Data:”)

53 extracted_csv_objects = {}

55 for _, row in df.iterrows():

56 url_hostname = row.get(”url_hostname”)

58 # Check if url_hostname is already in the dictionary
59 if url_hostname not in extracted_csv_objects:

60 extracted_csv_objects[url_hostname] = []

61

62 # Append under the corresponding url_hostname

63 extracted_csv_objects[url_hostname] .append(row)

65 # Print the extracted CSV data for debugging
66 print (row)

67

68 # Create a whitelist to filter out unwanted URLs

69 def create_whitelist(data, exclusion_criteria):

70 whitelist = {url: requests for url, requests in data.items() if not
any(exclusion in url for exclusion in exclusion_criteria)}

7 return whitelist

59

89

90

91

92

93

94

95

96

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112
113

114

115

116

117

118

119

120

121

A. Appendix

60

Define exclusion criteria for URLS
exclusion_criteria = [’allianz’, ’res’]

Create a whitelist based on the exclusion criteria
whitelist = create_whitelist(extracted_csv_objects, exclusion_criteria)

print(”Filtered URLs based on whitelist:”)
for url_hostname in whitelist:
print (url_hostname)

Create a table of occurrence for each URL hostname with bandpass
filtering in terms of time
print (”“nOccurrence Table with Bandpass Filtering in Terms of Time:”)
peak_url_hostname = None
peak_occurrence_value = 0
for url_hostname, requests in whitelist.items():
print (£”URL Hostname: {url_hostname}”)
occurrence_dictionary = calculate_request_occurrence(pd.DataFrame(
requests))

Print the occurrence dictionary for debugging
print(”Occurrence Dictionary:”, occurrence._dictionary)

Identify peak occurrence value and corresponding URL hostname
if occurrence_dictionary:
max _occurrence_value = max(occurrence_dictionary.values())
if max_occurrence_value > peak_occurrence_value:
peak_occurrence_value = max._occurrence._value
peak_url_hostname = url_hostname

Extract keys and values from the occurrence dictionary
time_intervals = list(occurrence_dictionary.keys())
occurrence_values = list(occurrence_dictionary.values())

Apply bandpass filtering in terms of time
lowcut_time = 5 # 5 seconds
highcut_time = 1000 # 1000 seconds

Check if there are enough elements to calculate sampling rate
if len(time_intervals) >= 2:
sampling_rate = 1.0 / (time_intervals[1] - time_intervals[0]) #
Sampling frequency

try:
filtered_occurrence_values = bandpass_filter(occurrence._
values, lowcut_time, highcut_time, sampling_rate)
except ValueError as e:
print(f”’Error: {e}”)
filtered_occurrence_values = occurrence_values

Print the filtered occurrence values for debugging
print(”Filtered Occurrence Values:”, filtered_occurrence_values)

A.2. Data Analysis Implementation

122 # Calculate the average occurrence

123 average_occurrence = sum(filtered_occurrence_values) / len(
filtered_occurrence_values)

124

125 # Print the average occurrence for debugging

126 print(”Average Occurrence:”, average._occurrence)

127

128 # Subtract average occurrence from all occurrence values

129 adjusted_occurrence_values = [occurrence - average_occurrence for

occurrence in filtered_occurrence_values]
130

131 # Print the adjusted occurrence values for debugging

132 print(”Adjusted Occurrence Values:”, adjusted_occurrence_values)
133

134 # Remove negative occurrences

135 non_negative_occurrence_values = [max(0, occurrence) for

occurrence in adjusted_occurrence_values]
136
137 # Get indices for the time range of interest (5 to 1000 seconds)
138 time_range_indices = [i for i, t in enumerate(time_intervals) if
5 <=t <= 1000]

139

140 # Print the time range indices for debugging

141 print(”Time Range Indices:”, time_range_indices)

142

143 # Plot the adjusted data within the specified time range

144 plt.plot([time_intervals[i] for i in time_range_indices], [non.-

negative_occurrence_values[i] for i in time_range_indices],
label=url_hostname)

145

146 # Print the URL hostname with the peak occurrence

147 if peak_url_hostname:

148 print (£”“nURL Hostname with Peak Occurrence: {peak_url_hostname}”)

149 print(f”Peak Occurrence Value: {peak_occurrence_value}”)

150

151 # Check if there are multiple URLs in the whitelist before creating
legend

152 if len(whitelist) > 1:

153 plt.legend()

154

155 plt.xlabel(”Time Interval (seconds)”) # Change x-axis label

156 plt.ylabel(”Adjusted Occurrence”) # Change y-axis label

157 plt.title(”Adjusted Occurrence over Time”) # Change the chart title
158 plt.show()

159
10 | except Exception as e:

161 print(£”An error occurred: {e}”)

61

Bibliography

(1]

(2]

[5]

Bitdefender, “Global cybersecurity threat map,” accessed: 2024-08-13. [Online]. Available:
https://threatmap.bitdefender.com/

InfluxData, “Influxdb 3.0 system architecture,” accessed: 2024-08-13. [Online]. Available:
https://www.influxdata.com/blog/influxdb- 3-0-system-architecture/

X. Hu, J. Jang, M. P. Stoecklin, T. Wang, D. L. Schales, D. Kirat, and J. R. Rao, “Baywatch:
robust beaconing detection to identify infected hosts in large-scale enterprise networks,”
in 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2016, pp. 479-490.

Y. Zhang, H. Dong, A. Nottingham, M. Buchanan, D. E. Brown, and Y. Sun, “Global analysis
with aggregation-based beaconing detection across large campus networks,” in ACSAC
’23: Proceedings of the 39th Annual Computer Security Applications Conference, 2023, pp.
565-579.

G. Apruzzese, M. Marchetti, M. Colajanni, G. G. Zoccoli, and A. Guido, “Identifying ma-
licious hosts involved in periodic communications,” in 2017 IEEE 16th International Sym-
posium on Network Computing and Applications (NCA). 1EEE, 2017, pp. 1-8.

[6] J. Seo and S. Lee, “Abnormal behavior detection to identify infected systems using the

apchain algorithm and behavioral profiling,” Security and Communication Networks, vol.
2018, no. 1, p. 9706706, 2018.

N. A. Huynh, W. K. Ng, A. Ulmer, and J. Kohlhammer, “Uncovering periodic network sig-
nals of cyber attacks,” in 2016 IEEE Symposium on Visualization for Cyber Security (VizSec).
IEEE, 2016, pp. 1-8.

[8] J. Jang, D. H. Kirat, B. J. Kwon, D. L. Schales, and M. P. Stoecklin, “Detecting malicious

beaconing communities using lockstep detection and co-occurrence graph,” Jan. 5 2021,
uS Patent 10,887,323.

M. A. Talib, Q. Nasir, A. B. Nassif, T. Mokhamed, N. Ahmed, and B. Mahfood, “Apt bea-
coning detection: A systematic review,” Computers & Security, vol. 122, p. 102875, 2022.

P.S. Charan, P. M. Anand, and S. K. Shukla, “Dmapt: Study of data mining and machine
learning techniques in advanced persistent threat attribution and detection,” Data Mining-
Concepts and Applications, p. 63, 2021.

63

https://threatmap.bitdefender.com/
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

Bibliography

[11]

[12]

[13]

[16]

[18]

M. Hagan, B. Kang, K. McLaughlin, and S. Sezer, “Peer based tracking using multi-tuple
indexing for network traffic analysis and malware detection,” in 2018 16th Annual Confer-
ence on Privacy, Security and Trust (PST). IEEE, 2018, pp. 1-5.

A. Shalaginov, K. Franke, and X. Huang, “Malware beaconing detection by mining large-
scale dns logs for targeted attack identification,” International Journal of Computer and
Systems Engineering, vol. 10, no. 4, pp. 743-755, 2016.

Y.-R. Yeh, T. C. Tu, M.-K. Sun, S. M. Pi, and C.-Y. Huang, “A malware beacon of botnet by
local periodic communication behavior,” in 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), vol. 2. IEEE, 2018, pp. 653-657.

Y. Borchani, “Advanced malicious beaconing detection through ai,” Network Security, vol.
2020, no. 3, pp. 8—14, 2020.

M. A. Enright, E. Hammad, and A. Dutta, “A learning-based zero-trust architecture for 6g
and future networks,” in 2022 IEEE Future Networks World Forum (FNWF). 1EEE, 2022,
pp- 64-71.

T. Van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova, A. Continella, M. van
Steen, A. Peter, C. Kruegel, and G. Vigna, “Deepcase: Semi-supervised contextual analysis
of security events,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp.
522-539.

T. Ongun, O. Spohngellert, B. Miller, S. Boboila, A. Oprea, T. Eliassi-Rad, J. Hiser, A. Not-
tingham, J. Davidson, and M. Veeraraghavan, “Portfiler: port-level network profiling for
self-propagating malware detection,” in 2021 IEEE Conference on Communications and Net-
work Security (CNS). IEEE, 2021, pp. 182-190.

W. Niu, X. Zhang, X. Zhang, X. Du, X. Huang, M. Guizani et al, “Malware on internet of
uavs detection combining string matching and fourier transformation,” IEEE Internet of
Things Journal, vol. 8, no. 12, pp. 9905-9919, 2020.

[19] J. Duan, Z. Zeng, A. Oprea, and S. Vasudevan, “Automated generation and selection of

[20]

64

interpretable features for enterprise security,” in 2018 IEEE International Conference on
Big Data (Big Data). 1EEE, 2018, pp. 1258-1265.

M. Haffey, M. Arlitt, and C. Williamson, “Modeling, analysis, and characterization of pe-
riodic traffic on a campus edge network,” in 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS). IEEE, 2018, pp. 170-182.

	Abstract
	Topical Overview
	Problem Statement
	Research Objectives
	Research Questions

	Structure of Thesis

	Background
	Cybersecurity Landscape
	Emerging Trends and Challenges

	Advanced Persistent Threats (APTs) and Covert Tactics
	Case Studies of APT Attacks

	Enterprise Networks
	Key Aspects of Enterprise Networks
	Vulnerabilities in Enterprise Networks

	Periodicity in Network Communication
	Importance in Cybersecurity

	Time Series Databases
	Characteristics of Time Series Databases
	InfluxDB

	Summary

	Related Work
	Methodology
	Design of the proposed method
	Data Extraction and Preparation
	Data Preprocessing
	Time Interval Analysis
	Data Enhancement
	Band-Pass Filtering
	Evaluation Criteria

	Implementation
	Experimental Setup
	Whitelisting Mechanism for URL Filtering
	Average Power Calculation
	Band-Pass Filtering
	Function to Calculate Autocorrelation
	Function to Calculate Fourier Transform
	Behavior Detection
	Algorithm Output
	Summary
	Next Steps

	Experiments
	Validation and Testing
	In-Depth Analysis of Algorithm Output

	Results and Discussions
	Detection of Beaconing Behavior
	Algorithm Development and Implementation
	Data Collection and Preprocessing
	Validation and Testing

	Impact of Periodicity in Network Communication
	Identification of Regular Intervals
	Differentiation Between Benign and Malicious Periodicity
	Impact on False Positives and Negatives
	Case Studies and Empirical Evidence

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Algorithm Implementation
	Data Analysis Implementation

