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Abstract

In today’s rapidly evolving cybersecurity landscape, Allianz Company faces significant threats
from advanced persistent threats (APTs), which are sophisticated, stealthy attacks that target
large organizations over extended periods. This master thesis focuses on the critical need to
strengthen Allianz Company’s network security by developing a proactive defense mechanism
against these persistent threats. Central to this research is the analysis of the Allianz company
user log dataset, which includes essential data such as URLs, hostnames, timestamps, and IP
addresses. Currently, threat detection occurs once daily, highlighting the urgency for a more
adaptive and responsive defense strategy to keep pace with the evolving nature of APTs.

The research builds on key references that delve into APT characteristics, particularly bea-
coning behavior, a crucial aspect of APT operations that allows attackers to maintain covert
communication. The thesis addresses the challenges faced by large-scale enterprise networks
in detecting and mitigating APTs, emphasizing the need for periodicity detection and behavior
analysis. These strategies are vital for identifying patterns that indicate APT activity, which
often blends in with normal network traffic.

The proposed methodology involves several critical steps: data extraction and preparation,
time interval analysis, average power calculation, band-pass filtering, and behavior detection.
These components are designed to work together to identify and respond effectively to po-
tential threats within Allianz Company’s network. To ensure the accuracy and reliability of
this approach, the methodology is validated using simulated datasets and historical data with
known security incidents.

This research draws upon six key references that provide a strong foundation for detecting
malicious network behavior. These references cover beaconing detection, peer-based tracking,
systematic reviews, large-scale DNS log mining, and advanced techniques involving artificial
intelligence. The integration of these insights into the proposed framework aims to enhance
network security by offering a real-time defense mechanism capable of countering persistent
and evolving cybersecurity threats.

In summary, this master thesis presents a comprehensive and systematic exploration of
methods to detect and mitigate APTs within Allianz Company’s network. By developing a
structured and validated methodology informed by foundational research and diverse per-
spectives, the thesis seeks to significantly improve the organization’s ability to defend against
sophisticated and persistent cyber threats. This work contributes not only to the academic un-
derstanding of APT detection but also offers practical solutions to enhance the security of large
enterprises in an increasingly complex threat environment.
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1. Topical Overview

1.1. Problem Statement

In today’s digital age, protecting sensitive data and ensuring the integrity of network systems
are top priorities for organizations. Like many others, Allianz Company produces vast user log
data daily. This data contains critical information and is continuously monitored to detect any
potential security threats. The increasing complexity and sophistication of cyber-attacks, es-
pecially advanced persistent threats (APTs), highlight the need for strong and proactive cyber-
security measures. The main challenge is effectively sifting through this extensive log data to
identify signs of malicious behavior and ensure that threats are detected and mitigated quickly.
This research aims to improve the company’s cybersecurity framework, focusing on early de-
tection of APTs and other potential threats to protect the network infrastructure.

1.2. Research Objectives

The main goal of this research is to improve the network security of Allianz Company by
finding and using better ways to spot and respond to possible cyber threats. The focus is mainly
on advanced persistent threats (APTs), which are known for being sneaky and long-lasting. To
do this, the research aims to:

1. DevelopAdvancedDetectionTechniques: Create methods to identify potential threats
early, focusing on the unique behaviors of APTs.

2. Implement Proactive Security Measures: Establish protocols that enable quicker re-
sponses to detected threats, reducing the risk of data breaches.

3. Educate and Train Staff: Provide training for employees to recognize and respond to
potential security threats effectively.

4. Evaluate andUpdate Security Policies: Continuously assess and refine the company’s
security policies to adapt to new and evolving cyber threats.

1.2.1. ResearchQuestions

The research is guided by the following key questions:

• How can beaconing behavior be effectively detected within Allianz Company’s network?

• What is the impact of periodicity in network communication on the detection of mali-
cious behavior?
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1. Topical Overview

1.3. Structure of Thesis

This section outlines the organization of the chapters in this thesis. The structure is designed to
systematically address the research objectives and questions outlined above, ensuring a com-
prehensive understanding of the problem and the proposed solutions.

Chapter 2 provides the essential background necessary for understanding the context of this
research. It begins with an introduction that sets the stage for the subsequent discussions. This
chapter delves into the cybersecurity landscape, highlighting the current state of cybersecu-
rity and the challenges enterprises face. It then explores advanced persistent threats (APTs)
and their covert tactics, providing a detailed examination of how these threats operate and
the sophisticated methods they employ. Additionally, this chapter discusses enterprise net-
works, focusing on their structure, functionality, and the inherent vulnerabilities that make
them targets for cyberattacks. Finally, it introduces the concept of periodicity in network com-
munication, explaining its relevance to detecting malicious activities.

Chapter 3 is dedicated to a review of related work. It begins with an overview of the BAY-
WATCH framework, then an exploration of various methods for APT beaconing detection. The
chapter then discusses peer-based tracking techniques and presents a systematic review of the
literature on APT beaconing detection. Further, it examines the use of DNS logs for malware
beaconing detection and the application of AI-driven approaches to identify malicious bea-
coning. The chapter concludes with a discussion on local periodic communication behavior,
providing a comprehensive overview of existing research and highlighting gaps that this thesis
aims to address.

Chapter 4 focuses on the methodology adopted for this research. It begins with the design
of the proposed method, outlining the theoretical foundation and the rationale behind the cho-
sen approach. This is followed by a detailed description of data extraction and preparation
processes, ensuring the data used is both relevant and reliable. The chapter also covers data
preprocessing techniques, time interval analysis, and data enhancement methods. Band-pass
filtering is introduced as an important step in the methodology, followed by a discussion on
the evaluation criteria used to assess the effectiveness of the proposed solution.

Chapter 5 details the implementation of the proposed method. It starts with an explanation of
the experimental setup, describing the environment and tools used for the experiments. This
chapter also introduces a whitelisting mechanism for URL filtering, aimed at reducing false
positives. It then describes the process of average power calculation and the application of
band-pass filtering to the data. The chapter concludes with a discussion on behavior detection,
explaining how the proposed method identifies malicious activities.

Chapter 6 presents the experiments conducted to validate the proposed method. It includes
sections on validation and testing, detailing the procedures and metrics used to assess the per-
formance of the method. An in-depth analysis of the algorithm’s output is provided, focusing
on the detection of malicious behavior. This chapter aims to demonstrate the efficacy of the
proposed method through empirical evidence.

Chapter 7 covers the results and discussions, summarizing the key findings of the research. It
provides a critical analysis of the results, discussing their implications and relevance to the field
of cybersecurity. This chapter also highlights the contributions of the research, emphasizing
how it advances the current state of knowledge.
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1.3. Structure of Thesis

Chapter 8 concludes the thesis by summarizing the main findings and providing insights into
future work. It outlines potential avenues for further research, suggesting how the proposed
method can be refined and extended. This chapter aims to provide a comprehensive conclu-
sion to the thesis, tying together the various elements and emphasizing the significance of the
research. In summary, the structure of this thesis is designed to provide a logical and coherent
progression from background information and related work to methodology, implementation,
experiments, and results, culminating in a comprehensive conclusion and suggestions for fu-
ture research.
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2. Background

This chapter provides the essential background necessary for understanding the context of this
research. It begins with an overview of the cybersecurity landscape, emphasizing the current
state, emerging trends, and persistent challenges faced by organizations. It then explores Ad-
vanced Persistent Threats (APTs) and their sophisticated, covert tactics that pose significant
risks to enterprise networks. The discussion also covers the concept of periodicity in network
communication, crucial for detecting anomalies in cybersecurity contexts. Finally, the chapter
delves into the role of time series databases, with a specific focus on InfluxDB, in managing
and analyzing the vast amounts of data generated in cybersecurity operations.

The field of cybersecurity is continually evolving, with new threats emerging as technology
advances. Understanding these threats and the strategies to counter them is crucial for protect-
ing sensitive information, ensuring the continuity of operations, and maintaining the integrity
of enterprise networks. This chapter lays the foundation for the research by discussing key
concepts and technologies relevant to cybersecurity, setting the stage for the detailed analysis
and solutions proposed in subsequent chapters.

2.1. Cybersecurity Landscape

The cybersecurity landscape is characterized by a dynamic and increasingly complex environ-
ment where various types of cyber threats continually evolve. Organizations across the globe
face numerous challenges in protecting their networks, data, and systems from these threats,
which range from malware and ransomware to sophisticated nation-state attacks.

Cybersecurity encompasses a wide range of practices, technologies, and strategies aimed
at safeguarding information and systems from unauthorized access, damage, or disruption.
It involves both proactive measures, such as implementing robust security architectures and
practices, and reactive measures, such as incident response and recovery strategies.

Figure 2.1 presents a global map of cybersecurity threats, illustrating the widespread nature
of these challenges. This visualization highlights regions most affected by various types of
cyber attacks, underscoring the global reach and impact of cyber threats.

2.1.1. Emerging Trends and Challenges

The rapid digitization of industries, the increasing reliance on cloud services, and the prolif-
eration of Internet of Things (IoT) devices have significantly expanded the attack surface for
cyber threats. These developments, while beneficial, have introduced new vulnerabilities that
attackers are quick to exploit. Additionally, the rise of ransomware as a service (RaaS) and the
growing sophistication of phishing attacks reflect the evolving threat landscape.

5



2. Background

Figure 2.1.: Global cybersecurity threat map [1]

Another significant challenge is the shortage of skilled cybersecurity professionals, which
hampers the ability of organizations to effectively defend against these threats. This gap is
exacerbated by the complexity of modern networks and the need for advanced tools and tech-
niques to detect and mitigate sophisticated attacks.

2.2. Advanced Persistent Threats (APTs) and Covert Tactics

Advanced Persistent Threats (APTs) represent one of the most sophisticated and dangerous
forms of cyber attacks. APTs involve prolonged, targeted efforts by attackers, typically state-
sponsored or highly organized criminal groups, aimed at stealing sensitive information, dis-
rupting operations, or compromising critical infrastructure. Unlike traditional cyber attacks,
which may be opportunistic and short-lived, APTs are characterized by their stealth, persis-
tence, and the significant resources devoted to them.

Figure 2.2 illustrates the lifecycle of an APT attack, highlighting the various stages involved,
from initial reconnaissance to exfiltration of data. Understanding these stages is crucial for
developing effective detection and mitigation strategies.

APT actors employ various covert tactics to remain undetected and achieve their objectives.
Some of these tactics include:

• Spear Phishing: Crafting highly personalized email messages that appear legitimate to
the recipient. These emails are designed to trick recipients into clicking on malicious
links or attachments, leading to the compromise of their credentials or systems.

• Zero-Day Exploits: Exploiting previously unknown vulnerabilities in software or hard-
ware, which have not yet been patched by the vendor. This allows attackers to gain
unauthorized access to systems without triggering existing security defenses.

6



2.3. Enterprise Networks

Figure 2.2.: APT attack lifecycle [?]

• Lateral Movement: After gaining initial access, attackers move within the compro-
mised network, exploring and compromising additional systems to find and exfiltrate
valuable data. This tactic often involves the use of legitimate administrative tools to
avoid detection.

• Command and Control (C2): Establishing a secure communication channel with the
compromised systems to remotely control them, issue commands, and exfiltrate data.

2.2.1. Case Studies of APT Attacks

Prominent examples of APT attacks include the Stuxnet worm, which targeted Iran’s nuclear
program, and the SolarWinds breach, which compromised numerous U.S. government agencies
and corporations. These cases underscore the potential impact of APTs on national security and
global business operations.

2.3. Enterprise Networks

Enterprise networks are the backbone of modern organizations, providing the necessary infras-
tructure for communication, data sharing, and operational efficiency. However, their complex-
ity and scale make them attractive targets for cyber attackers. Understanding the architecture,

7



2. Background

components, and vulnerabilities of enterprise networks is essential for developing effective
cybersecurity strategies.

Figure 2.3.: Enterprise network diagram

Figure 2.3 provides a visual representation of an enterprise network, illustrating the vari-
ous components such as servers, workstations, routers, and communication links, as well as
potential points of vulnerability.

2.3.1. Key Aspects of Enterprise Networks

Enterprise networks typically consist of multiple interconnected subsystems, including:

• Network Architecture: The physical and logical design of the network, including the
layout and interconnection of routers, switches, firewalls, and other network devices. A
well-designed architecture enhances security by segmenting the network and controlling
traffic flow.

• Security Protocols: Protocols such as TLS (Transport Layer Security) and IPSec (In-
ternet Protocol Security) protect data in transit. Additionally, firewalls, intrusion detec-
tion/prevention systems (IDS/IPS), and encryption mechanisms are employed to safe-
guard data and systems.

• Access Controls: Policies and technologies that regulate who can access specific data
and resources within the network. This includes user authentication, role-based access
control (RBAC), and multi-factor authentication (MFA) to ensure that only authorized
personnel can access sensitive information.

8
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• Network Monitoring and Management: Tools and practices for monitoring network
traffic, identifying anomalies, and managing network resources to maintain performance
and security.

2.3.2. Vulnerabilities in Enterprise Networks

Despite the implementation of robust security measures, enterprise networks remain vulnera-
ble to a variety of threats, including:

• InsiderThreats: Employees or contractors with legitimate access who misuse their priv-
ileges, either maliciously or negligently.

• AdvancedMalware: Malware is designed to bypass traditional security measures, often
delivered through phishing attacks or drive-by downloads.

• Misconfigurations: Incorrectly configured devices or systems that leave the network
open to exploitation.

• Supply Chain Attacks: Attacks that target the software or hardware supply chain,
introducing vulnerabilities that can be exploited after deployment.

2.4. Periodicity in Network Communication

Periodicity in network communication refers to the recurring patterns observed in network
traffic over time. Detecting and analyzing these patterns can provide valuable insights into
normal and anomalous behavior within the network. In cybersecurity, periodicity analysis is
particularly useful for identifying stealthy activities, such as those conducted by APTs, which
may generate periodic communication to maintain control over compromised systems.

2.4.1. Importance in Cybersecurity

Understanding periodicity is crucial for the following reasons:

• Anomaly Detection: Deviations from established periodic patterns can indicate the
presence of malware or other malicious activities.

• Traffic Analysis: Analyzing periodic traffic can help in identifying command and con-
trol (C2) communications used by attackers.

• ResourceOptimization: Periodicity analysis can be used to optimize network resources
by predicting traffic loads and adjusting resources accordingly.

9



2. Background

2.5. Time Series Databases

Time series databases are specialized databases designed to handle time-stamped or time-series
data efficiently. This type of data is common in network activity logs, sensor readings, finan-
cial transactions, and many other applications where the sequence and timing of data points
are critical. Time series databases are optimized for high-frequency data writes and efficient
queries over time intervals, making them ideal for use in monitoring, alerting, and anomaly
detection in cybersecurity contexts.

2.5.1. Characteristics of Time Series Databases

Time series databases differ from traditional relational databases in several key ways:

• Time-Optimized Storage: Data is stored in a way that optimizes retrieval by time,
enabling fast queries across large datasets.

• EfficientDataCompression: Given the often high volume of data, time series databases
employ advanced compression techniques to reduce storage requirements.

• HighThroughput: They are optimized to handle high-frequency data writes and queries,
ensuring efficient data handling even under heavy load.

• Querying Capabilities: Time series databases support complex querying over time
intervals, which is essential for trend analysis and anomaly detection.

2.5.2. InfluxDB

InfluxDB is a popular time series database known for its high performance and ease of use. It is
optimized for handling large-scale time-series data, providing powerful querying capabilities
and efficient storage.

Key Features of InfluxDB

• Time-Optimized Storage: InfluxDB uses a custom storage engine that efficiently writes
and reads time-series data.

• High Throughput: It can handle high write and query loads, making it suitable for
large-scale monitoring applications.

• SQL-like Query Language (Flux): InfluxDB offers a powerful query language that is
both easy to learn and capable of complex data manipulations.

• Retention Policies: Users can define retention policies to manage data lifecycle, auto-
matically deleting old data to save storage.

• Integrations: InfluxDB integrates well with other tools and platforms, supporting var-
ious data inputs and outputs.

10



2.5. Time Series Databases

Applications in Cybersecurity

InfluxDB can be employed in cybersecurity for:

• Real-Time Monitoring: Capturing and analyzing live data to detect anomalies and
potential threats.

• Historical Analysis: Storing historical data for trend analysis and forensic investiga-
tions.

• Alerting: Setting up alerts based on specific criteria to notify administrators of suspi-
cious activities.

• Visualization: Integrating with visualization tools like Grafana to create dashboards
that display network metrics and security insights.

Figure 2.4.: InfluxDB Architecture [2]

Figure 2.4 illustrates the architecture of InfluxDB and how data flows through the system,
from ingestion to querying and visualization.

11



2. Background

2.6. Summary

This chapter has provided a comprehensive overview of the cybersecurity landscape, APTs and
their covert tactics, enterprise networks, periodicity in network communication, and time se-
ries databases, with a detailed focus on InfluxDB. These foundational topics are essential for
understanding the subsequent chapters, which will delve deeper into related work, methodol-
ogy, implementation, experiments, and results. The knowledge gained from this background
will inform the development and evaluation of advanced techniques for detecting and mitigat-
ing cyber threats in enterprise networks.

12



3. Related Work

In the field of network security, detecting beaconing behavior is a critical task for identify-
ing compromised hosts, especially in large-scale enterprise environments. The study by Hu
et al. (2016), BAYWATCH: Robust Beaconing Detection to Identify Infected Hosts in Large-Scale
Enterprise Networks, addresses this challenge by proposing a robust detection methodology for
identifying stealthy beaconing activity. Beaconing is commonly used by malware to establish
communication with command and control servers, but it often resembles legitimate network
traffic, making detection difficult. The authors introduce an 8-step filtering process that refines
and isolates malicious beaconing traffic from legitimate sources. This method is evaluated using
a large-scale dataset of over 30 billion events collected over five months from a corporate net-
work with more than 130,000 devices. The results demonstrate that BAYWATCH significantly
outperforms traditional security mechanisms in identifying malicious beaconing, which often
goes undetected by conventional methods. This work contributes to improving network traffic
analysis and provides a foundation for more effective detection of advanced persistent threats
(APT) in large, complex networks [3].

The paper Global Analysis with Aggregation-based Beaconing Detection across Large Campus
Networks presents an advanced approach to detecting beaconing activities in large-scale cam-
pus networks. The system introduced aggregates signals across multiple traffic protocols and
networks to uncover hidden periodicity, which is often a characteristic of beaconing behaviors.
This method utilizes a time-series analysis algorithm to identify periodicity and a ranking-based
detection pipeline enhanced by self-training and active-learning techniques. Evaluation of the
system using data from two large campus networks, spanning over 75 billion connections over
ten months, showed significant improvements. By aggregating signals across multiple net-
works, the system detected 43% more periodic domains than single-network analysis. Further-
more, it identified 1,387 unique malicious domains, 56% of which were previously unknown to
major threat intelligence platforms like VirusTotal. This approach highlights the potential of
leveraging aggregated network data to improve the detection of previously undetected threats
and is particularly relevant for large organizations and academic environments that deal with
massive network traffic [4].

The paper Identifying Malicious Hosts Involved in Periodic Communications proposes a novel
method for detecting malicious network activities in large-scale networks by focusing on peri-
odic communications. Traditional Network Intrusion Detection Systems (NIDS) often struggle
to detect malware-related traffic, as it may not always trigger alerts. This research highlights
that periodic communication patterns, even when they occur at varying intervals, are often
linked to malicious behavior. The proposed method examines network traffic over extended
time windows and identifies external hosts that are likely involved in malicious operations,
even if these activities do not trigger immediate alerts. The authors demonstrate that this ap-
proach can filter out normal traffic and identify a small subset of suspicious hosts from large
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amounts of network data. The method integrates well with existing NIDS, helping security
teams focus on the most probable threats by providing a manageable list of suspicious hosts
[5].

The research presented in Abnormal Behavior Detection to Identify Infected Systems Using the
APChain Algorithm and Behavioral Profiling focuses on detecting infected hosts in network
environments by analyzing abnormal behavior patterns. The APChain algorithm is utilized to
track network traffic attributes over time, forming a chain that links these attributes to un-
usual communication patterns. This chain is used to identify behaviors associated with hosts
infected by malicious software, such as establishing communication with Command and Con-
trol (C2) servers. The system monitors real-time network traffic, extracts relevant data such as
IP addresses, ports, protocols, and timestamps, and profiles the behavior of networked systems
based on this information. Suspicious patterns are flagged as potential indicators of infection,
facilitating early detection and response. This methodology is further enhanced by eliminating
false positives through whitelist-based filtering. The APChain algorithm’s approach to behav-
ioral profiling and its detailed traffic attribute analysis provides a robust means of identifying
infected systems and preventing widespread network compromise [6].

The study titled Periodic Behavior in Botnet Command and Control Channels Traffic explores
the detection of periodic patterns in botnet command-and-control (CC2) communications, which
are crucial for identifying infected systems within a network. By analyzing the traffic data from
botnets, this work demonstrates how to leverage the periodic nature of such communication to
distinguish between benign and malicious behavior. The authors employ periodogram-based
analysis techniques to detect significant periodic components in traffic patterns. The results
show that the periodicity in botnet communications often exhibits distinct statistical prop-
erties that can be used as a signature for detection. This work emphasizes the importance
of understanding periodic behavior in network traffic to enhance botnet detection strategies,
particularly within large-scale systems like enterprise networks. The method also highlights
the challenge of distinguishing periodic signals from random noise in network traffic, which
requires careful analysis and thresholding techniques [7].

The paper Uncovering Periodic Network Signals of Cyber Attacks addresses the detection of
malware through the periodic traces it leaves in network traffic. This research identifies that
malware behavior often follows periodic patterns, which can be leveraged to detect malicious
activity. The authors propose a visual analytics solution that automates detection while also
supporting manual inspection of periodic signals. Their approach uses circular graphs and
stacked histograms for visual verification, combined with deep packet inspection for detailed
analysis. The method demonstrates effectiveness in identifying complex periodic behaviors,
enhancing network security by recognizing hidden attack signals [8].

The studyDetectingMalicious Beaconing Communities Using Lockstep Detection and Co-occurrence
Graph introduces a two-phase process for identifying malicious beaconing signals. The first
phase uses lockstep detection to recognize synchronized beaconing activities across multiple
devices, indicating a coordinated attack. The second phase employs community detection using
a co-occurrence graph, which analyzes the relationships between destination servers involved
in beaconing to uncover anomalous patterns. This method helps reduce false positives and
more accurately identifies malicious activities by detecting communities of compromised de-
vices. The use of community detection based on graph analytics is crucial for distinguishing
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malicious from benign behaviors [9].
The paper APT Beaconing Detection: A Systematic Review provides a comprehensive analysis

of advanced persistent threat (APT) detection techniques, with a particular focus on beacon-
ing detection methods. The review emphasizes the increasing need for effective solutions to
identify beaconing behavior, a key characteristic of APT attacks, which often serves as a sign
of ongoing communication between the infected hosts and their command and control (C2)
servers. The paper surveys a variety of detection techniques and classifies them based on their
detection methods, strengths, and weaknesses. It also highlights the use of Artificial Intelli-
gence (AI) algorithms, which have been increasingly integrated into APT detection systems,
and assesses the datasets commonly used for training and testing these models. The study
aims to provide an understanding of current APT detection strategies, while also identifying
gaps and potential areas for future research, including more efficient and adaptive solutions
for detecting beaconing in real-time environments [10].
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4. Methodology

This chapter initiates a comprehensive exploration of the dataset, providing a detailed introduc-
tion to its various aspects and components. By thoroughly examining the dataset, the chapter
aims to establish a solid foundation for the subsequent analyses. It begins by describing the
origins and nature of the dataset, including its structure, the types of data included, and the
context in which it was collected. This includes an overview of the dataset’s dimensions, vari-
ables, and any relevant metadata that is critical for understanding its scope and limitations.

Following this introduction, the process of data generation is elaborated upon. The data gen-
eration process is central to the research, ensuring the reliability and validity of the findings.
Each step involved in generating the data is outlined, starting from the initial conceptualiza-
tion to the final implementation. This section covers the design choices made, the tools and
technologies used, and the protocols followed to collect and process the data. By providing a
step-by-step explanation, the methodology is made transparent and reproducible.

Additionally, the specific functions and algorithms employed at each stage of the data gen-
eration process are detailed. This includes a discussion of the rationale behind selecting certain
methods over others, as well as the practical considerations that influenced these decisions. In-
sights are offered into how these functions contribute to the overall data generation process and
how they impact the quality and integrity of the dataset. Examples of code snippets, flowcharts,
and diagrams may be included to illustrate the implementation process more clearly.

This thorough examination of both the dataset and the data generation process sets the stage
for the subsequent analyses and findings presented in the following chapters. By laying this
groundwork, the chapter ensures that readers have a comprehensive understanding of the data
and the methodology, which is key for interpreting the results and conclusions of the research.
This foundational knowledge will facilitate a deeper appreciation of the analyses conducted and
the insights derived from them, ultimately contributing to the overall robustness and credibility
of the thesis.

4.1. Design of the proposed method

The proposed methodology for beaconing detection encompasses a multifaceted approach de-
signed to effectively identify and mitigate malicious beaconing activities within behavior detec-
tion frameworks. This strategy integrates a variety of advanced techniques and algorithms to
bolster the system’s detection capabilities. Among these techniques are sophisticated anomaly
detection methods, and pattern recognition tools, all of which contribute to a robust framework
for identifying suspicious activities. By leveraging these advanced technologies, the system is
equipped to adapt and respond to new and evolving threats, ensuring that detection remains
effective even as malicious actors continuously modify their tactics. A key component of this
methodology is its emphasis on real-time detection and response. Continuous monitoring of
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network traffic and behavior patterns enables the system to quickly identify and flag potential
beaconing activities, allowing for rapid threat mitigation before significant harm can occur.
This real-time capability is complemented by automated response mechanisms that swiftly
neutralize detected threats, thus enhancing the overall security posture of the network. In ad-
dition to real-time capabilities, the methodology incorporates a layer of resilience against false
positives and negatives. By refining detection algorithms and employing sophisticated filtering
techniques, the system aims to minimize incorrect detections that could lead to unnecessary
alerts or overlooked threats. This balance is key for maintaining both the efficiency and reli-
ability of the detection system, ensuring that resources are focused on genuine threats. Fur-
thermore, the methodology integrates advanced analytics and continuous learning processes,
which are pivotal for maintaining and enhancing detection accuracy over time. By leveraging
data analytics and feedback loops, the system can learn from past detections and iteratively
improve its performance. This continuous learning process ensures that the detection capabil-
ities are consistently refined and enhanced, keeping pace with the dynamic and ever-evolving
nature of cyber threats. Overall, this robust and adaptive methodology significantly strength-
ens network defenses against beaconing attacks. Adopting a comprehensive and multifaceted
approach, enhances both the detection and mitigation processes, providing a resilient and ro-
bust defense mechanism against sophisticated and evolving threats. This strategy is poised to
play a critical role in safeguarding network security, ensuring the integrity and reliability of
the system in the face of malicious beaconing activities.

Figure 4.1.: Steps of the proposed method

Figure 4.1 visually represents the methodology for beaconing detection as proposed in the
master thesis. The process begins with the collection of data, a first step that will be elaborated
upon in detail later in the thesis. Following data collection, the methodology involves exact data
cleaning and processing to ensure the accuracy and quality of the dataset. This stage addresses
any inconsistencies or errors in the data, preparing it for more sophisticated analysis.

To enhance security and simplify data management for large organizations with diverse
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URL hostnames, a whitelist is implemented. This whitelist restricts user activity to domains
containing ”Allianz resolution.” By comparing this whitelist against all user data, entries asso-
ciated with whitelisted domains are removed. This focused approach significantly reduces the
volume of data to be processed, which is given that the dataset exceeds 500,000 entries per day.
URLs included in the whitelist are deemed non-malicious and therefore do not require further
behavior checks, streamlining the analysis.

Subsequently, the methodology calculates the time intervals for each domain and their oc-
currences within these intervals. This step is essential for identifying patterns and trends in
beaconing activities, providing insight into the frequency and timing of these activities.

The next phase involves bandpass filtering to eliminate noise, retaining only the data within
the time range of 1 second to 1 hour for further analysis. This filtering step focuses on relevant
signals while minimizing interference from irrelevant data, ensuring that the analysis is both
efficient and accurate.

Following filtering, the methodology includes the calculation of average power for each do-
main and subsequent normalization by adjusting all powers accordingly. In this context, the
”power” metric indicates how frequently a particular website is visited within a given day. This
metric relies on the assumption that each access to the website represents a distinct user in-
teraction, with multiple accesses from the same user counted separately. The accuracy of the
”power” measure depends on the consistency and reliability of the data collection methods used
to track website visits. Domains exhibiting a negative decrease in power are disregarded, as
they do not conform to expected patterns and are unlikely to be indicative of malicious activity.

Finally, the analysis phase involves a thorough examination of the data over time. Significant
peaks observed during this analysis are indicative of potential malicious beaconing activity,
marking the culmination of the beaconing detection process. This comprehensive methodol-
ogy ensures that the detection system is robust, accurate, and capable of adapting to evolving
threats, thereby enhancing the overall security and integrity of the network.

4.2. Data Extraction and Preparation

The dataset documents the activities of users as they navigate through different URLs during
each workday, encompassing a variety of information such as the URLs visited, the date and
time of each visit, and potentially other relevant details regarding user behavior or system in-
teractions. This comprehensive collection of data provides a detailed view of user activities
and interactions, allowing for an in-depth analysis of browsing patterns and behaviors. Orga-
nized within a JSON file, the dataset facilitates efficient storage and retrieval of data, thanks to
JSON’s flexibility and readability, which make it easier to manage and manipulate large vol-
umes of information. Each entry logs a specific user interaction, including the precise time
and date, allowing for a chronological reconstruction of user activities essential for identify-
ing patterns and trends over time, such as peak usage periods or frequent transitions between
specific URLs. The dataset may also include other relevant details that provide further context
to user behavior, such as system interactions like login times or error messages, offering addi-
tional insights into the user experience and system performance. Overall, the dataset serves as
a foundational resource for analyzing user behavior, enabling the identification of significant
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patterns and trends, and supporting efficient data processing and analysis, which is key for de-
veloping effective strategies for beaconing detection and enhancing overall network security.

Figure 4.2 displays a visual representation of the JSON file, providing a comprehensive overview
of the specific user’s browsing activity.

Figure 4.2.: Steps of the proposed method

Each JSON file acts as a comprehensive record, including important information such as
”logdate” (date and time) and ”url hostname”. The company prioritizes security;
usernames are deliberately omitted during the import process for added protection. The fol-
lowing section outlines the Document Type Definition (DTD) for the JSON files.

1 {
2 ”$schema”: ”http://json-schema.org/draft-07/schema#”,
3 ”type”: ”object”,
4 ”properties”: {
5 ”logdate”: {
6 ”type”: ”string”,
7 ”format”: ”date-time”
8 },
9 ”urlhostname”: {

10 ”type”: ”string”
11 },
12 ”user”: {
13 ”type”: ”string”
14 }
15 },
16 ”required”: [”logdate”, ”urlhostname”]
17 }

The provided DTD serves as a specification for the structure and constraints of the dataset
entries. It defines the expected format and mandatory fields for each log entry. Specifically:
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• ”logdate”: Specifies the date and time format for the log entry.

• ”url hostname”: Identifies the hostname of the accessed URLs.

• ”user”: Optional field denoting the user identifier.

This thesis proposes a sophisticated system for managing website connection data, designed
to handle and analyze extensive logs of IP address connections to various domains. The sys-
tem begins by utilizing InfluxDB, a highly specialized database optimized for managing time-
series data. InfluxDB’s architecture is particularly well-suited for this application because it
is engineered to efficiently handle high volumes of data with temporal components, such as
timestamps associated with user interactions.

The methodology for managing the data involves importing the dataset into InfluxDB, start-
ing with a strategic focus on a single day’s worth of data. This approach allows for an initial,
manageable dataset to be processed, which is key for validating the system’s functionality and
performance before scaling up to larger volumes of data. The dataset itself is composed of
JSON files, each containing detailed logs of connections made from various IP addresses to
specific domains. These logs include timestamps, IP addresses, and domain names, forming a
comprehensive record of user activity.

The success of this methodology relies on establishing a well-structured data environment
within InfluxDB. To achieve this, a predefined schema is implemented, which dictates how
the data is organized and stored within the database. This schema is designed to ensure data
integrity and consistency by enforcing a uniform set of rules across all entries. Consistency in
data structure is important as it facilitates smoother data processing and analysis, reducing the
likelihood of errors and discrepancies.

The implementation of this schema supports reliable data management by ensuring that each
piece of information adheres to the same format and standards. This uniformity is important
for maintaining the quality of the data, which in turn impacts the reliability of subsequent
analyses and research findings. Clean and reliable data is the cornerstone of trustworthy and
effective research, and thus, establishing a well-defined schema is another step in the proposed
method. By prioritizing data integrity and consistency, the system lays a solid foundation for
accurate and insightful analysis, ultimately contributing to the overall success of the proposed
research methodology.

After establishing a well-structured data environment, the next step involves importing the
data itself. This process follows a defined sequence, facilitated by custom Python scripts. These
scripts automate the creation of a dedicated ”bucket” within InfluxDB.

This method establishes a solid foundation for in-depth analysis by transforming raw, un-
structured data into a well-organized format that is highly conducive to detailed examination.
The strategic decision to import data for a specific day allows for a focused analysis of temporal
patterns and variations, which are essential for uncovering trends and anomalies within a de-
fined timeframe. This approach simplifies the analysis, making the data more manageable and
representative of specific time-based behaviors. The JSON file structure, with its predefined
key criteria and integrated security measures. It provides a clear and consistent framework
for storing and accessing data, ensuring that each piece of information adheres to the same
standards and is safeguarded against unauthorized access. This structured format supports
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efficient data processing and retrieval, which is vital for conducting thorough and accurate
analyses of network interactions. By utilizing this organized data structure, the methodology
enables a comprehensive exploration of user behavior, connection patterns, and potential se-
curity threats. This detailed examination is essential for identifying vulnerabilities, detecting
suspicious activities, and enhancing overall network security. The systematic approach not
only facilitates a deeper understanding of the dataset but also sets the stage for generating
actionable insights and implementing effective security measures.

The data is collected over exactly one day, which represents a typical working day on Tues-
day. The total volume of data generated during this single day amounts to almost 73 gigabytes.
To gain meaningful insights from this data, it is crucial to understand its behavior. Therefore,
as an initial step, the data’s behavior was thoroughly examined. This analysis was conducted
in several stages: By observing the overall data behavior within one day, identifying which
data sets were most frequently accessed or visited during the day, and analyzing the time in-
tervals between each request, this approach enables a deeper understanding of usage patterns
and helps in identifying any anomalies or trends that may be present in the data.

Figure 4.3 provides a visual representation of the request counts for different URLs within
the dataset. The logarithmic scale on the Y-axis allows for a clearer comparison of the visit
frequencies across URLs with varying levels of activity. This visualization highlights the distri-
bution of request counts, showcasing the range of visit frequencies observed within the dataset.
By examining this distribution, it is possible to identify URLs with high visit counts, which may
indicate critical resources or frequently accessed services. Conversely, URLs with lower visit
counts may represent less frequently accessed or less critical components of the network. This
analysis provides valuable insights into user behavior and resource utilization, enabling orga-
nizations to optimize their network infrastructure and prioritize security measures effectively.

Figure 4.3.: Request counts of URLs (log scale)

Figure 4.4 provides a linear scale representation of the request counts for different URLs
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within the dataset. This visualization offers a more detailed view of the visit frequencies across
URLs, highlighting the distribution of request counts with greater granularity. By examin-
ing this distribution, it is possible to identify URLs with varying levels of activity, ranging
from high-visit counts to low-visit counts. This analysis enables organizations to gain insights
into user behavior and resource utilization, facilitating informed decision-making and strategic
planning.

Figure 4.4.: Request counts of URLs (linear scale)

Figure 4.5 illustrates the number of visits to different URLs over a 24-hour period. The x-axis
represents the hours of the day, while the y-axis indicates the number of visits to each URL.
This visualization provides a clear overview of the distribution of visits throughout the day,
highlighting peak usage times and periods of lower activity. By examining this data, it is pos-
sible to identify trends and patterns in user behavior, which can be instrumental in detecting
anomalies or suspicious activities. This analysis serves as a foundational step in understanding
the dataset’s behavior and establishing a baseline for further investigations. As shown, the dis-
tribution of visits predominantly falls within the range of 0–500, which is significantly higher
compared to the range of 500–3,500.

From the figure, it is evident that some URLs exhibit high activity levels initially but expe-
rience a steep decline, with their visit counts approaching zero around 04:00. Based on this
observation, the URL activity was categorized into two distinct periods: day activity and night
activity, each represented by separate charts for better analysis.

Figure 4.6 and Figure 4.7 provide a more detailed breakdown of visit patterns during night
and day times, respectively. These visualizations offer insights into how user behavior varies
between different times of the day, shedding light on potential differences in activity levels
and usage patterns. By examining these variations, it is possible to gain a more nuanced un-
derstanding of network interactions and identify any irregularities that may require further
investigation. This detailed analysis of visit patterns is essential for detecting anomalies and
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Figure 4.5.: Number of visit by hour (24 hours)

potential security threats, as it provides a comprehensive view of user behavior and network
activity.

Figure 4.6 highlights the night activity of URLs, spanning the period from 00:00 to 04:00. A
closer examination of the URLs during this time reveals that the URLs with the highest visit
counts, which subsequently drop off rapidly near 04:00, are associated with automated software
updates occurring over the network. This behavior aligns with typical network maintenance or
update schedules, which are often performed during off-peak hours to minimize disruptions.

Conversely, Figure 4.7 depicts the day activity of URLs, covering the period from 04:00 to
24:00. During this time, the distribution of URLs with a visit count in the range of 0–100 is sig-
nificantly more frequent compared to higher ranges. This indicates that a large portion of URL
activity during the day comprises low-visit events, likely reflecting regular user interactions or
routine operations.

By separating the data into night and day activity, the analysis provides a clearer understand-
ing of how URL usage patterns vary throughout the day. This division helps identify critical
periods of high network activity and aids in distinguishing between automated processes and
user-driven events.

A time interval refers to the duration or amount of time between two events or points in
time. In this context, it means the period between each request made to the URLs.

Figure 4.8 illustrates the distribution of time intervals between requests for different URLs
within the dataset. The logarithmic scale on the Y-axis allows for a clearer comparison of the
time intervals across URLs with varying patterns of activity. The X-axis demonstrates the bins,
which are divided into 90 bins. These bins are structured as follows: from 0 to 60 seconds, each
second has its own bin; from 1 to 30 minutes, each minute has its own bin. The calculation
within this period is such that if the bin is 1 minute, the interval is ±30 seconds, meaning it
calculates from 30 seconds to 90 seconds. This approach helps ensure that the analysis does
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Figure 4.6.: Number of visit by hour (Night time)

not miss any potential malicious behavior within the specified time limits. This visualization
highlights the variability in time intervals between requests, showcasing the range of dura-
tions observed within the dataset. By examining this distribution, it is possible to identify
URLs with distinct time interval patterns, which may indicate specific usage behaviors or in-
teraction trends. This analysis provides valuable insights into the frequency and timing of user
interactions, enabling organizations to optimize their network resources and enhance security
measures effectively.

Figure 4.9 provides a linear scale representation of the time intervals between requests for
different URLs within the dataset. This visualization offers a more detailed view of the time
intervals across URLs, highlighting the distribution of durations with greater granularity. By
examining this distribution, it is possible to identify URLs with varying patterns of activity,
ranging from short intervals to longer durations. This analysis enables organizations to gain
insights into user behavior and interaction patterns, facilitating informed decision-making and
strategic planning.

To better understand the output, given the large amount of data, the criteria that were eval-
uated were narrowed down to the top 20 for display.

Figure 4.10 displays the top 20 URLs with the highest visit counts during the day, providing a
focused view of the most frequently accessed domains. This visualization highlights the distri-
bution of visits across these top URLs, showcasing the range of activity levels observed within
the dataset. By examining the visit patterns of these top URLs, it is possible to identify critical
resources or frequently accessed services, which may require additional security measures or
monitoring. This analysis offers valuable insights into user behavior and resource utilization,
enabling organizations to optimize their network infrastructure effectively.

Figure 4.11 provides a detailed view of the request counts for the top 20 URLs within the
dataset, highlighting the distribution of visit frequencies across these high-activity domains.
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Figure 4.7.: Number of visit by hour (Day time)

This visualization offers insights into the visit patterns of these top URLs, showcasing the range
of activity levels observed within the dataset. By examining the request counts of these top
URLs, it is possible to identify critical resources or frequently accessed services, which may
require additional security measures or monitoring. This analysis enables organizations to
gain a deeper understanding of user behavior and resource utilization, facilitating informed
decision-making and strategic planning.

Figure 4.12 provides a detailed view of the time intervals between requests for the top 20
URLs within the dataset. This visualization offers insights into the frequency and timing of
user interactions with these high-activity domains, shedding light on potential patterns and
trends in behavior. By examining the time intervals of these top URLs, it is possible to identify
distinct usage patterns and interaction trends, which may be indicative of specific user behav-
iors or system activities. This analysis enables organizations to gain a deeper understanding
of network interactions and user behavior, facilitating informed decision-making and strategic
planning.

4.3. Data Preprocessing

The initial step in the data cleaning process involves separating all URL hostnames from one
another. Once these hostnames are isolated, they are systematically sorted by date. This sort-
ing step serves several important purposes. Firstly, it organizes the data chronologically, which
facilitates the identification of trends or patterns that emerge over time. For instance, if there
is a need to investigate a specific security incident that occurred on a certain day, sorting the
data by date allows for a more focused and efficient search, thereby reducing the time and ef-
fort required to locate the relevant information. Secondly, sorting by date prepares the data for
subsequent stages in the data management workflow. Many data analysis techniques depend
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Figure 4.8.: Time interval (log scale)

on the data being arranged in a specific sequence, and organizing the data chronologically
ensures that it is ready for these advanced analytical processes. This stage of the cleaning pro-
cess effectively transforms raw data into a structured and coherent format, which is necessary
for performing in-depth analyses of network interactions and identifying potential security
threats.

Additionally, this preprocessing step includes the creation of a whitelist from all URL host-
names. Since the company frequently accesses a variety of trusted URLs multiple times through-
out the day, establishing a whitelist helps to streamline the algorithm’s operations. By compil-
ing a list of these consistently trusted URLs, the algorithm’s efficiency is enhanced, allowing
it to operate more quickly and effectively. This improved efficiency supports the algorithm’s
ability to detect potentially suspicious activities within network interactions more accurately.
Through this cleaning process, raw data is organized into a format that is both structured and
easily analyzable, setting the stage for comprehensive insights into network behaviors and
security risks.

In the figure 4.13 the various steps undertaken to process the data are illustrated, beginning
with the initial stages of data collection and extending through to the final preparation required
before the algorithmic process can commence. This visual representation outlines how the raw
data is first gathered and then cleaned to ensure accuracy and consistency. The process includes
several key stages, Each step is designed to transform the raw, unprocessed data into a well-
organized dataset that is ready for detailed algorithmic examination.

4.4. Time Interval Analysis

The concept of a ”time interval” in this context pertains to the duration between occurrences of
a specific URL hostname within a given day. This analysis focuses on the time elapsed between
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Figure 4.9.: Time interval (linear scale)

visits to each unique website (URL hostname) during a single day. Visualize this as tracking the
gaps between entries in a log for a particular website; each visit to the site is recorded as a new
entry. By examining these time intervals, the method aims to decipher how frequently and
consistently users access each website throughout the day. This approach effectively captures
the ”rhythm” of website activity, revealing patterns such as peak usage times and periods of
lower activity.

Calculating these time intervals produces a numerical value that represents the time gaps
between visits to the same website. This value serves as a foundational metric for understand-
ing typical website usage patterns. By focusing on daily data, the method ensures that the time
intervals reflect a representative snapshot of user behavior, allowing for a nuanced exploration
of how web traffic fluctuates throughout the day. This in-depth analysis helps to identify the
typical patterns of website access, creating a baseline for what is considered normal activity.

This focus on time intervals is key for setting a robust baseline of regular website traffic. Un-
derstanding these regular patterns establishes a benchmark against which unusual or atypical
activities can be measured. For instance, if a website that typically has long intervals between
visits suddenly experiences a surge in frequent accesses, this deviation from the established
norm may indicate suspicious behavior or potential security threats. Therefore, the analysis of
time intervals facilitates the identification of normal traffic patterns and enhances the ability
to detect anomalies effectively.

Moreover, analyzing time intervals provides a framework for differentiating between rou-
tine user behavior and potential malicious activities. By establishing clear patterns of typical
website usage, the methodology can more accurately pinpoint deviations that may warrant
further investigation. This thorough examination lays the groundwork for subsequent analyti-
cal steps, where patterns that deviate from the norm can be scrutinized for signs of anomalous
or harmful activities. Ultimately, this focus on time intervals strengthens the overall detection
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Figure 4.10.: Number of visit by hour (top 20 URLs)

process, ensuring that the system can distinguish between expected and unexpected behavior
with greater precision, leading to more reliable and actionable insights into network security.

Figure 4.14 is a series of histograms depicting the distribution of time intervals between
successive network requests for different URLs within a specified timeframe. Each histogram
represents a unique URL, with the x-axis consistently ranging from 0 to 400 seconds. This range
captures the variability in time intervals between requests.

The histograms are constructed using data that records the duration between consecutive
requests. Each bar in the histogram illustrates the frequency, or ”power,” (that refers to the
frequency of network requests that occur within specific time interval bins) of requests that
fall within specific time interval bins. This visualization helps to understand how often requests
occur within different time gaps for each URL.

For each URL, the histogram reveals the frequency of requests within various time intervals.
Taller bars indicate higher request frequencies within those intervals, while shorter bars sug-
gest less frequent requests. The uniform x-axis range across all plots enables straightforward
comparison between different URLs, highlighting differences in request timing patterns.

URLs with concentrated request bursts will show taller bars in certain intervals, reflecting
periods of higher request activity. Conversely, URLs with more sporadic or irregular request
patterns will exhibit shorter bars, indicating lower or more inconsistent request frequencies.
By analyzing these histograms, one can discern patterns such as periodic bursts, irregular in-
tervals, or consistent frequencies. These insights can be indicative of the operational behavior,
performance, and load of the respective URLs.

Overall, the histograms provide a visual summary of how request timings are distributed
over the observed period, facilitating an understanding of request dynamics and potentially
revealing insights into the performance and usage patterns of the monitored web services.
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Figure 4.11.: Request count (top 20 URLs)

4.5. Data Enhancement

Once the ”power” for all URLs in the dataset is calculated, representing the frequency of vis-
its to each unique website, the next step involves computing the average power. The ”power”
metric serves as a quantitative measure of how often each website is accessed within a given
timeframe, providing valuable insight into user behavior patterns. The average power acts as a
reference point or baseline against which the individual powers are compared, allowing for the
identification of significant deviations from typical visit frequencies. To determine the average
power, the total power across all URLs is summed and then divided by the number of URLs in
the dataset. This average power serves as a benchmark, providing a context for evaluating the
frequency of visits to each specific URL. By establishing this baseline, the methodology can dif-
ferentiate between normal and abnormal activity levels, thereby facilitating the identification
of URLs that exhibit unusual patterns of access. After determining the average power, each
calculated power is assessed relative to this baseline. The evaluation process involves compar-
ing the power of each URL to the average power to identify significant deviations. Specifically,
the power of each URL is subtracted from the average power. If the resulting value is negative,
indicating that the URL’s visit frequency is below the baseline, it is omitted from further anal-
ysis. This step ensures that the focus remains on URLs with visit frequencies that significantly
exceed the norm, which are more likely to represent meaningful patterns or anomalies. The
rationale behind omitting negative deviations is based on the premise that these values do not
provide meaningful insights into unusual behavior or potential security threats. By filtering
out these less significant data points, the methodology enhances the quality and relevance of
the dataset. This focused approach allows for a more efficient examination of the data, con-
centrating on positive deviations that indicate higher-than-average visit frequencies. Focusing
on significant deviations from the average power refines the dataset, making it more manage-
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Figure 4.12.: Time interval (top 20 URLs)

Figure 4.13.: Dataset

able and pertinent for further analysis. This step not only improves the efficiency of the data
processing but also enhances the ability to detect anomalies that could signify security threats
or other irregularities. By concentrating on URLs with visit frequencies that stand out from
the baseline, the methodology increases the likelihood of identifying genuinely noteworthy
patterns. In summary, the calculation of average power and the subsequent evaluation of indi-
vidual powers against this baseline are critical components of the data enhancement process.
By omitting powers that result in negative values, the methodology ensures that the dataset
is refined to include only significant deviations. This targeted focus on relevant patterns and
anomalies lays the groundwork for a more detailed and accurate analysis of network inter-
actions and potential threats, ultimately contributing to a more robust and reliable security
framework.

4.6. Band-Pass Filtering

In network processing, bandpass filtering is a technique employed to dissect time-series data,
allowing the extraction of specific frequency components within a predefined range. This tech-
nique is particularly useful in analyzing patterns in HTTP requests. Bandpass filtering involves
the application of a filter that selectively passes signals whose frequencies fall within a certain
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Figure 4.14.: Time Intervals

range, known as the ”bandpass” range. By isolating these specific frequencies, the technique
enables a focused examination of data that is most relevant to the analysis, effectively filtering
out noise and irrelevant information. This selective process enhances the clarity and preci-
sion of the data, making it easier to identify significant patterns and trends in HTTP requests.
For instance, in a dataset containing web traffic data, bandpass filtering can help highlight the
intervals and frequencies at which certain URLs are accessed, providing insights into user be-
havior and potential security threats. The ability to concentrate on a specific frequency range
allows analysts to zero in on the most pertinent signals, thereby improving the accuracy and
effectiveness of the analysis.

Furthermore, bandpass filtering aids in detecting anomalies and irregularities within the
network. By focusing on the relevant frequency components, it becomes easier to spot de-
viations from the norm, which could indicate unusual or suspicious activity. This method is
instrumental in the context of network security, where identifying and understanding these
anomalies is key for protecting against potential threats. In addition to its application in secu-
rity, bandpass filtering is also valuable for optimizing network performance. By understanding
the regular patterns of data flow and identifying any irregular spikes or drops, network admin-
istrators can make informed decisions to enhance the efficiency and reliability of the network.
This comprehensive approach ensures that only the most significant data is analyzed, leading
to more accurate and actionable insights. Overall, bandpass filtering is a powerful technique
in-network processing, enabling the extraction of meaningful information from large datasets.
By focusing on specific frequency components, it facilitates a detailed and precise analysis of
network interactions, helping to uncover important patterns and trends. This technique not
only improves the understanding of user behavior and network performance but also plays a
vital role in enhancing security by detecting potential threats and anomalies.

The bandpass filter formula can be expressed as:
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H(ω) =
1

1 + j(ω−ωlow)
ωc

· 1

1 +
j(ωhigh−ω)

ωc

Where:

• H(ω) is the frequency response of the bandpass filter,

• ω is the angular frequency,

• ωlow is the low cut-off frequency,

• ωhigh is the high cut-off frequency,

• ωc is the critical frequency.

The bandpass filter selectively passes frequencies between the low cut-off frequency (ωlow)
and the high cut-off frequency (ωhigh), while attenuating frequencies outside this range. This
formula provides a mathematical representation of how the bandpass filter operates to isolate
specific frequency components within the defined range.

4.7. Evaluation Criteria

The Python-implemented data evaluation process reveals instances of beaconing behavior within
the dataset, providing valuable insights for experts to identify potential malicious activity. This
task extends beyond simply visualizing the algorithm’s output; it relies heavily on the exper-
tise of professionals who navigate vast amounts of data to detect subtle indicators of malicious
behavior. The evaluation involves an examination of user behavior patterns to identify any
anomalies or suspicious activities that suggest beaconing. Beaconing, a technique used by
malicious actors, involves repetitive signal transmissions that allow compromised systems to
communicate with external servers. Identifying such behavior requires sophisticated analysis
techniques and a deep understanding of network traffic patterns.

Leveraging Python’s powerful data analysis and processing capabilities, the evaluation pro-
cess begins with the systematic analysis of large volumes of network data. Python’s libraries
and tools enable the handling and manipulation of complex datasets, facilitating the detection
of beaconing signals embedded within regular network traffic. The process involves applying
various algorithms and analytical methods to sift through the data, identifying patterns that
deviate from normal user behavior. This initial algorithmic analysis provides a foundation, but
the true strength of the evaluation lies in the subsequent expert review.

Experts play a critical role in this process, as they interpret the algorithmic findings within
the broader context of network activity. They scrutinize the identified patterns, cross-referencing
them with known threat indicators and leveraging their experience to assess the likelihood of
malicious intent. This human expertise is essential for distinguishing between benign anoma-
lies and genuine threats. Upon detection of suspicious behavior, experts are tasked with making
informed decisions on how to address the implicated users and domains. This involves a risk
assessment to determine the severity and potential impact of the detected activity.
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Decisions on handling identified threats may include a range of actions, from monitoring the
suspect activity more closely to implementing immediate mitigation measures such as blocking
the suspicious domains or isolating affected systems. The evaluation process also involves
documenting the findings and actions taken, ensuring a comprehensive record that can be
used for future reference and continuous improvement of the detection system.

The integration of Python’s technical capabilities with the nuanced understanding of skilled
analysts results in a robust and dynamic approach to network security. This comprehensive
approach not only enhances the accuracy of detecting beaconing behavior but also ensures
that potential threats are thoroughly understood and effectively mitigated. By combining au-
tomated data processing with expert analysis, the methodology provides a reliable framework
for maintaining network security and proactively addressing emerging threats. The continuous
evaluation and refinement of this process are vital for staying ahead of increasingly sophisti-
cated cyber threats, ultimately safeguarding the integrity and security of network environ-
ments.
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This chapter introduces the implementation of the proposed methodology within Allianz Com-
pany’s network infrastructure, delving into the intricate process of adapting the system to in-
tegrate seamlessly with the company’s extensive log data. It begins by exploring the necessary
adjustments made to align the methodology with Allianz’s specific log data formats and struc-
tures, highlighting the critical decisions in parameter selection and the strategic use of various
analytical tools. The chapter aims to provide a comprehensive evaluation of the performance
metrics derived from this implementation, offering a detailed analysis of the methodology’s ef-
ficacy. Supported by visualizations such as graphs and charts, this analysis facilitates a clearer
understanding of complex data and key findings.

Furthermore, the chapter rigorously assesses the methodology’s effectiveness in detecting
malicious behavior, providing an in-depth examination of detected anomalies, their correlation
with potential security threats, and the system’s responsiveness. This assessment underscores
the practical value of the methodology, demonstrating its significant impact on enhancing net-
work security. By presenting concrete evidence of the methodology’s success in identifying
and mitigating threats, the chapter establishes a foundation for discussing advanced security
strategies.

The insights gained from this implementation are important for Allianz, as they pave the way
for continuous improvement initiatives and the development of more robust security measures.
This chapter sets the stage for broader discussions on enhancing network security, offering a
clear pathway for future chapters to explore advanced techniques and strategies aimed at for-
tifying Allianz’s network infrastructure against the ever-evolving landscape of cyber threats.
Through this comprehensive examination, the chapter not only highlights the immediate ben-
efits of the methodology but also its long-term potential to significantly bolster Allianz’s cy-
bersecurity framework.

5.1. Experimental Setup

This section details the adaptation process to integrate the methodology within Allianz Com-
pany’s network infrastructure. Initially, adjustments were made to ensure compatibility with
the company’s log data, involving comprehensive data mapping and transformation to align
with the methodology’s requirements. This step was key to guarantee that the raw data could
be accurately interpreted and utilized by the detection algorithms. Stringent measures were
taken to address any discrepancies or inconsistencies encountered during the integration pro-
cess. These measures included validating data integrity, standardizing log formats, and resolv-
ing any anomalies to ensure seamless integration.

For testing purposes, an experimental framework was established. This framework was de-
signed to cover a wide range of scenarios, from routine network operations to sophisticated
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simulated cyber-attacks. These scenarios were crafted to assess the methodology’s perfor-
mance under diverse conditions, providing a realistic and thorough evaluation. The scenarios
mimicked real-world network behaviors, encompassing various types of user activities, net-
work loads, and potential threat vectors. This comprehensive testing ensured that the method-
ology was robust and applicable in practical settings, capable of handling the dynamic nature
of real-world network environments.

Additionally, real data sourced from Allianz Company was utilized to validate the methodol-
ogy’s efficacy under authentic operational conditions. This real-world validation was a critical
component of the adaptation process, as it provided invaluable insights into the methodol-
ogy’s performance in a live environment. The use of genuine operational data bolstered the
credibility and relevance of the methodology, demonstrating its practical utility in addressing
real-world cybersecurity challenges. By evaluating the methodology against actual network
traffic and user behavior, the team could identify and address any limitations, fine-tuning the
system to enhance its effectiveness.

Throughout the testing phase, data collection was conducted rigorously, capturing a com-
prehensive array of network activities and events. This extensive data collection ensured a rich
dataset for analysis, encompassing a wide variety of normal and abnormal behaviors. The col-
lected data served as the foundation for subsequent analyses, enabling a thorough and detailed
evaluation of the methodology’s effectiveness in detecting and mitigating malicious behavior
within Allianz Company’s network infrastructure. The analysis focused on identifying pat-
terns and anomalies indicative of malicious activity and assessing the accuracy and reliability
of the detection algorithms.

The comprehensive approach to adaptation and testing detailed in this section underscores
the methodology’s readiness for real-world deployment. By ensuring data compatibility, rig-
orously testing under diverse scenarios, and validating with real-world data, the methodology
is demonstrated to be not only theoretically sound but also practically effective. This robust
process lays a solid foundation for enhancing Allianz’s network security, providing a reliable
tool to tackle the complex cybersecurity issues faced by the organization. The insights and
results garnered from this extensive testing phase set the stage for further refinement and op-
timization, ensuring that the methodology remains effective against evolving cyber threats.

5.2. Whitelisting Mechanism for URL Filtering

Establishing a robust URL whitelist is paramount in significantly enhancing network security
and monitoring capabilities. This section delves into the comprehensive methodology em-
ployed for creating and implementing an effective whitelist mechanism within Allianz Com-
pany’s extensive network infrastructure. The primary purpose of the whitelist is to gather all
URLs that are considered safe, based on predefined criteria. These criteria include URLs that
are commonly visited by users every day, resolution URLs of the company, and other trusted
URLs.

The whitelist creation process involves systematically curating URLs based on these inclu-
sion criteria to ensure that only legitimate and relevant URLs are retained. URLs that do not
meet these criteria are excluded from the whitelist. This means that all URLs in the whitelist
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are trusted and do not need to proceed through the additional steps of the algorithm, while
other URLs that do not meet these criteria are subject to further detailed analysis.

Examples of exclusion criteria include known malicious domains, suspicious IP addresses,
unauthorized access points, and other indicators of potential threats. These URLs are system-
atically identified and excluded to maintain the integrity and security of the network environ-
ment.

The whitelist creation function, as outlined in the methodology, plays a foundational role
in preprocessing network activity data by curating a refined subset of URLs that do not need
further in-depth analysis. This ensures that these analyses focus exclusively on potentially
harmful communication patterns within the network, thereby greatly enhancing the efficiency
and accuracy of the detection process. This essential preprocessing step not only reduces the
overall volume of data to be analyzed but also significantly improves the relevance and quality
of the dataset, allowing for more targeted and effective monitoring of network activity.

Furthermore, the whitelist substantially enhances the interpretability and clarity of results
by providing a refined and high-quality dataset that is specifically tailored to the specific re-
search context. This facilitates more accurate, insightful, and actionable conclusions. By selec-
tively retaining URLs that align precisely with the predefined inclusion criteria, the whitelist
mechanism enables the methodology to identify and focus on genuine security threats and
critical behavioral patterns that are of primary interest.

This streamlined and optimized dataset ensures that analysts can more easily and effectively
identify anomalies and patterns indicative of potential security breaches, ultimately contribut-
ing to a more secure, robust, and resilient network infrastructure for Allianz Company. This
comprehensive and detailed approach to whitelist creation and implementation not only under-
scores its importance in the broader context of advanced network security but also highlights
the concerted effort invested in ensuring the methodology’s robustness, reliability, and overall
effectiveness in safeguarding the organization’s digital assets.

Figure 5.1.: Whitelist steps
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Figure 5.1 provides a comprehensive visual representation of the whitelist’s functionality
within the overall algorithm, outlining each stage from the initial reception of raw data to the
final determination of which parts to retain based on predefined rules and criteria. Starting
with the entry point where raw data, encompassing a wide array of URLs, is collected and fed
into the system, the figure details the sophisticated filtration mechanism that systematically
evaluates each URL against established whitelist criteria designed to exclude known malicious
domains, suspicious IP addresses, and unauthorized access points. As each URL undergoes as-
sessment, those meeting the stringent inclusion criteria are retained, while those that do not
are filtered out. This critical stage ensures that only relevant and legitimate URLs proceed to the
next phase of analysis, significantly aiding in the isolation of important information. The figure
further illustrates how this refined dataset, now devoid of irrelevant and potentially harmful
URLs, is seamlessly integrated back into the algorithmic framework for deeper processing. By
focusing on retaining only URLs that pass the whitelist criteria, the filtration mechanism not
only streamlines the data but also enhances the clarity and utility of the information being an-
alyzed. This refined approach reduces noise and ensures that analysts and automated systems
can utilize the cleaner dataset more effectively, leading to more precise detection of patterns,
trends, and anomalies indicative of security threats. The figure underscores the critical role
of the whitelist in enhancing the overall efficiency and accuracy of the algorithm, making the
detection of malicious behavior more reliable and robust. This thorough and detailed visualiza-
tion emphasizes the importance of each stage in the process, highlighting how the integration
of the whitelist fundamentally improves the algorithm’s ability to discern and address security
challenges within the network infrastructure.

Function Signature:

The whitelist creation function is defined as follows:

Listing 5.1: Whitelist Function
def create whitelist(data, exclusion criteria):

Parameters:

• data: A dictionary containing network activity data organized by URL hostname.

• exclusion criteria: A list of words or phrases used to filter out URLs that should not
be included in the whitelist. URLs are compared against this list of exclusion criteria,
and if a URL contains any of the exclusion criteria, it is excluded from the whitelist.
Consequently, only URLs that do not match any of the exclusion criteria are added to
the whitelist. In subsequent steps, only URLs that have been added to the whitelist are
considered for further analysis, while those that are excluded are ignored as they are
deemed untrustworthy or irrelevant.
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Function Definition

Listing 5.2: create whitelist Function
def create whitelist(data, exclusion criteria):

whitelist = {url: requests for url, requests in data.items()
if not any(exclusion in url for exclusion

in exclusion criteria)}
return whitelist

Functionality:

1. Whitelist Initialization: Initialize an empty whitelist dictionary to store URLs that
meet the inclusion criteria.

2. URL Filtering:
• Iterate through each URL hostname and associated activity data in the input dic-

tionary.
• Check if the URL hostname contains any of the specified exclusion criteria.
• If the URL hostname does not match any exclusion criteria, add it to the whitelist

dictionary along with its associated activity data.

3. ReturnWhitelist: Return the generated whitelist dictionary containing URLs that passed
the exclusion criteria.

Performance Considerations

The create whitelist function is efficient in terms of both time and space complexity:

• Time Complexity: The function iterates over each URL in the data dictionary once
and performs a check against the exclusion criteria list for each URL. If there
are n URLs and m exclusion criteria, the time complexity is O(n×m).

• Space Complexity: The function creates a new dictionary to store the whitelisted URLs.
In the worst case, where no URLs match the exclusion criteria, the space complexity is
O(n), where n is the number of URLs in the input data dictionary.

While the function is efficient for small to moderately sized datasets, its performance could
be affected by a very large number of URLs or exclusion criteria. Optimizations, such as parallel
processing or more efficient data structures, could be considered for handling larger datasets.

Role in Thesis:

The whitelist creation function plays a critical role in preprocessing network activity data by
curating a subset of URLs for further analysis. By excluding URLs that are irrelevant or known
to be unrelated to the research objectives, the function ensures that subsequent analyses fo-
cus on meaningful communication patterns within the network. Additionally, the whitelist

39



5. Implementation

enhances the interpretability of results by providing a refined dataset tailored to the specific
research context, thereby facilitating more accurate insights and conclusions in the thesis.

Results and Output:

The filtered URLs, as per the established whitelist, are then presented in the output. This step
serves to showcase the effectiveness of the whitelist mechanism in selectively retaining URLs
that align with the predefined inclusion criteria, thereby contributing to the enhancement of
the overall analytical precision in the context of network behavior analysis.

5.3. Average Power Calculation

The implementation of the power calculation step follows the figure’s progression 5.2. After
the whitelist filtering process, the determination of URL powers ensues, resulting in the cre-
ation of a power dictionary. Following the completion of power calculations for all URLs, the
subsequent step involves computing the average power across the dataset. Following this com-
putation, the process proceeds to normalize the URL powers by subtracting the average power.
This normalization step may yield negative values for certain URLs. As such negative values
are indicative of non-malicious behavior, URLs associated with negative power values are ex-
cluded from further analysis. Conversely, URLs with positive power values continue through
subsequent steps of analysis.

Figure 5.2.: Average power calculation

The calculation of request power is a component aimed at quantitatively assessing the fre-
quency of requests based on the temporal intervals between successive occurrences of URL
hostnames within the dataset. This subsection delineates the functionality, parameters, and
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approach employed by the calculate request power function, providing an in-depth
understanding of its mechanics and significance.

Key parameters such as the request list and the specific approach employed for power calcu-
lation are elaborated upon in detail. The request list comprises a comprehensive collection of
individual requests, each containing pertinent information such as timestamps that denote the
exact occurrence time of each request. By analyzing the temporal intervals between succes-
sive occurrences of URL hostnames within the dataset, the calculation of request power yields
valuable insights into the frequency dynamics of network activity.

This analytical process involves determining the duration between each visit to the same
URL hostname, effectively capturing the rhythm and regularity of access patterns.

The calculate request power function leverages these intervals to compute the
power of requests, which is essentially a measure of how frequently specific URLs are accessed
over a given time. This measure is key as it helps to identify normal versus abnormal patterns
of network behavior, which can be indicative of potential security threats or unusual activities.

Furthermore, the calculated request power values facilitate a granular understanding of net-
work interaction patterns, enabling a more precise and detailed analysis of user behavior and
network usage. By identifying deviations from established norms, the methodology enhances
the detection of anomalous behavior and potential security threats. The iterative nature of
the calculation process ensures continuous refinement and optimization of the methodology’s
performance, thereby enhancing its efficacy in real-world cybersecurity scenarios. Each itera-
tion involves reassessing and recalibrating the parameters to better fit the observed data, thus
improving the accuracy and reliability of the power calculations over time. This continuous im-
provement cycle is essential for adapting to the evolving landscape of network security threats
and ensuring that the methodology remains robust and effective in detecting and mitigating
potential risks. Through this comprehensive approach, the calculate request power
function plays a role in fortifying network security by providing deep, actionable insights into
the frequency and patterns of network requests.

Function Signature

The function for calculating the average power is defined as follows:

Listing 5.3: Calculate Power Function
def calculate request power(request list):

Parameters:

• request list: A list of dictionaries representing individual requests, where each dictio-
nary contains pertinent information such as timestamps (” time”) denoting the oc-
currence time of the request.

41



5. Implementation

Function Definition

Listing 5.4: calculate request power Function
def calculate request power(request list):

power dictionary = {}
last date time = request list[0][” time”]

for request dict in request list:
current date time = request dict[” time”]
# Check if current date time is a string,
# and convert it to a datetime object
if isinstance(current date time, str):

current date time = datetime.strptime(
current date time, ”%Y-%m-%dT%H:%M:%S.%fZ”

)

time delta = int(
(current date time - last date time).total seconds()

)

# Add the power to the power dictionary
power dictionary[time delta] = power dictionary.get(

time delta, 0
) + 1
last date time = current date time

# Sort the dictionary for better visualization
power dictionary = dict(sorted(power dictionary.items()))

return power dictionary

Functionality

1. Initialization: The function initializes an empty dictionary, power dictionary, to
store the computed power values.

2. Time Interval Computation: It iterates through therequest list, calculating the
time delta (in seconds) between consecutive request occurrences.

3. Power Assignment: For each time delta, the function assigns a corresponding power
value in the power dictionary, representing the frequency of requests occurring
within that interval.

4. Output Generation: Upon completion, the function returns power dictionary,
mapping time intervals to their respective power values.

Performance Considerations

The calculate request power function is efficient in terms of both time and space
complexity:
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• Time Complexity: The function iterates over each request in the request list
once and performs a timestamp comparison for each request. If there are n requests, the
time complexity is O(n).

• Space Complexity: The function creates a new dictionary to store the power values. In
the worst case, where each request occurs at a unique time interval, the space complexity
is O(n), where n is the number of requests in the input request list.

While the function is efficient for small to moderately-sized datasets, its performance could
be affected by a very large number of requests. Optimizations, such as parallel processing or
more efficient data structures, could be considered for handling larger datasets.

Role in Thesis

The calculate request power function plays a critical role in analyzing network ac-
tivity data by computing the power of requests over time. By measuring the frequency of re-
quests occurring within specific time intervals, the function helps identify patterns and trends
in network behavior. This analysis is essential for understanding the dynamics of user inter-
actions and system activities, which can inform various aspects of network security and per-
formance monitoring. Additionally, the computed power values can serve as input for further
analysis, such as detecting anomalies or assessing the impact of different network events.

Results and Outputs

The function yields power dictionary, a structured representation of time intervals and
their corresponding request power values, which is essential for analyzing and interpreting the
frequency dynamics within the dataset. This power dictionary serves as a foundational
tool that encapsulates the quantitative assessment of how frequently specific URL hostnames
are accessed over defined periods. Providing a detailed mapping of time intervals to request
power values, allows for a nuanced examination of the temporal patterns of network activity.
The structured nature of power dictionary ensures that each data point is accurately
cataloged and easily retrievable, facilitating efficient data manipulation and analysis. This com-
putation of request power enables a granular understanding of network interaction patterns,
offering deep insights into the behavior of users and systems over time. It helps to identify
normal operational patterns, thereby making it easier to spot deviations that may indicate
anomalous or malicious activity. This capability is particularly valuable for cybersecurity appli-
cations, where understanding the baseline frequency dynamics is critical for detecting threats.
By contributing significantly to the overarching objective of characterizing the temporal dy-
namics inherent in the dataset, the power dictionary plays a pivotal role in enhancing
the overall robustness and effectiveness of the network security methodology. This structured
representation not only aids in current analytical processes but also lays the groundwork for
future research and development, allowing for continuous improvement and adaptation of the
security framework in response to evolving threats.
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5.4. Band-Pass Filtering

Bandpass filtering is a signal processing technique employed to dissect time-series data, allow-
ing the extraction of specific frequency components nestled within a pre-defined range. This
technique involves passing signals through a filter that permits only those components whose
frequencies lie within a certain interval while attenuating or eliminating frequencies outside
this range. The effectiveness of bandpass filtering lies in its ability to isolate and highlight the
most pertinent aspects of the data, effectively reducing noise and enhancing the clarity of the
signal. By focusing on a specific band of frequencies, bandpass filtering can reveal underlying
patterns and trends that may not be immediately apparent in the raw data. This is particu-
larly useful in various applications, including network traffic analysis, where it is essential to
identify and analyze periodic behaviors or anomalies that occur within a certain frequency
spectrum. The technique’s precision and adaptability make it a powerful tool for extracting
meaningful insights from complex datasets, enabling more accurate and reliable interpreta-
tions of time-series data.

This technique is used to remove noisy data by focusing on specific frequency ranges. This
process effectively cleans up the data, making it clearer and more manageable for analysis.

Figure 5.3.: Average power calculation

Figure 5.3 illustrates the implementation of the bandpass filtering method, which is a sophis-
ticated technique for refining the analysis of network traffic data. This method builds upon two
critical steps from previous stages: the identification of whitelisted URLs and the calculation of
averaged power values. The algorithm sets a lowcut frequency at 1 second and a highcut fre-
quency at 1 hour, establishing a specific frequency range for the filtering process. By applying
these criteria, the bandpass filter analyzes the time intervals associated with each URL. URLs
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whose time intervals fall within this predefined range are retained for further scrutiny, while
those outside the range are systematically excluded. This selective filtering process is key as
it hones in on URLs that demonstrate temporal patterns of interest, thereby aligning with the
research objectives. By focusing the analysis on relevant frequency components, the bandpass
filter enhances the precision and accuracy of the subsequent data examination. This targeted
approach not only reduces the complexity and volume of data but also amplifies the significance
of the retained information. The process ensures that only URLs exhibiting meaningful tempo-
ral dynamics are considered, facilitating a more nuanced understanding of network behaviors.
This method is particularly valuable in cybersecurity research, where identifying and inter-
preting subtle variations in traffic patterns can reveal potential security threats or anomalies.
The refined dataset resulting from this bandpass filtering method provides a robust foundation
for further analysis, enabling researchers to derive more accurate and actionable insights from
the data. By isolating the most relevant temporal patterns, the filtering process significantly
improves the effectiveness of the overall analytical framework, making it a vital component in
the comprehensive study of network traffic dynamics.

Function Signature

The function for applying bandpass filtering to the power values is defined as follows:

Listing 5.5: Bandpass Filter Function
def bandpass filter(data, lowcut time, highcut time, sampling rate, order=4):

Parameters:

• data: A list or array of power values representing the frequency of requests within spe-
cific time intervals.

• lowcut time: An integer representing the lower boundary of the frequency range (in
seconds). Components below this threshold are filtered out.

• highcut time: An integer representing the upper boundary of the frequency range (in
seconds). Components above this limit are filtered out.

• sampling rate: A float representing the sampling rate of the data (in Hz). This is the
rate at which data points are sampled per second.

• order: An integer specifying the order of the filter (default is 4). Higher-order filters
have sharper cutoffs, providing better separation of frequencies, but may introduce more
phase delay and computational complexity.
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Function Definition

Listing 5.6: bandpass filter Function
def bandpass filter(data, lowcut time, highcut time, sampling rate, order=4):

nyquist = 0.5 * sampling rate
lowcut = lowcut time / nyquist
highcut = highcut time / nyquist

if lowcut >= 1 or highcut >= 1:
raise ValueError(”filter critical frequencies must be 0 < Wn < 1”)

b, a = butter(order, [lowcut, highcut], btype=’band’)
return filtfilt(b, a, data)

Functionality

1. Frequency Normalization: Calculate the Nyquist frequency, which is half the sam-
pling rate. Normalize the low and high cut-off frequencies by dividing them by the
Nyquist frequency.

2. Frequency Validation: Ensure that the normalized frequencies are within the valid
range 0 < Wn < 1. Raise a ValueError if they are not.

3. Filter Design: Use the Butterworth filter design (butter function) to create a band-
pass filter with the specified order.

4. Data Filtering: Apply the filter to the data using the filtfilt function, which per-
forms forward and backward filtering to minimize phase distortion.

5. Return Filtered Data: Return the filtered data, which contains only the frequency com-
ponents within the specified range.

Performance Considerations

The bandpass filter function involves several steps, each with its own performance
implications:

• Time Complexity: The filtering process involves creating the filter coefficients and
applying the filter to the data. The butter function has a time complexity of O(n),
where n is the order of the filter. The filtfilt function has a time complexity of
O(m · n), where m is the length of the data.

• Space Complexity: The function requires space to store the filter coefficients and the
filtered data. The space complexity is O(m), where m is the length of the data.

The function is efficient for moderate-sized datasets but may require optimization for very
large datasets. Techniques such as parallel processing or more efficient filtering algorithms
could be considered.
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Role in Thesis

The bandpass filter function is crucial for refining the power data by isolating signif-
icant frequency components within a specified range. This process enhances the accuracy of
subsequent analyses by focusing on the most relevant data, reducing the impact of noise and
irrelevant fluctuations. It provides a clearer understanding of the temporal patterns of network
activity, which is essential for identifying meaningful trends and anomalies.

Results and Outputs

The function yields filtered data, a list or array of power values that fall within the
specified frequency range. This refined dataset is more suitable for detailed analysis and inter-
pretation, allowing for better identification of significant patterns and behaviors. By isolating
the critical frequency components, the bandpass filtering process contributes to a more robust
understanding of the dynamics within the network.

5.5. Behavior Detection

In the last step, as shown in Figure 5.4, the algorithm reaches its final stage, which is behavior
detection. This stage is pivotal in discerning the relevance and significance of the URLs retained
after the filtering process. To accurately identify potentially malicious or anomalous URLs, the
algorithm requires the establishment of a threshold value. This threshold is not arbitrary; it is
determined through a combination of extensive experimentation and leveraging past experi-
ences. The experimentation phase involves testing various threshold levels against historical
data to observe their effectiveness in accurately flagging suspicious activities without gener-
ating excessive false positives. Past experiences, particularly insights gleaned from previous
network security incidents and the operational context of the network, also play a role in fine-
tuning this threshold. By integrating empirical data with historical knowledge, the threshold is
calibrated to optimize the balance between sensitivity and specificity. Once set, this threshold
becomes a benchmark against which the behavior of URLs is measured. URLs that exhibit char-
acteristics surpassing this threshold are flagged for further investigation, as they may indicate
potential security threats or deviations from normal network behavior. This final detection step
is essential for transforming the filtered data into actionable intelligence, enabling network ad-
ministrators and security professionals to focus their attention on the most critical and relevant
threats. By effectively filtering out noise and highlighting significant anomalies, the behavior
detection stage enhances the overall efficacy of the cybersecurity framework, ensuring that the
network remains secure against evolving threats.

The output of the algorithm, as shown in Figure 5.5, delivers a targeted overview of URLs
that require detailed examination. This list is produced by comparing each URL against a prede-
fined threshold of 500, with those exceeding this threshold being flagged for potential concerns.
URLs identified as surpassing this threshold are marked for closer investigation due to their
deviation from normal behavior, which could indicate possible security threats or unusual ac-
tivity. This alert system is crucial for prioritizing high-risk URLs, enabling security analysts to
focus their efforts on the most significant issues. By efficiently filtering out less critical data, the
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Figure 5.4.: Behavior Detection

system enhances threat detection accuracy and reduces false positives. Analyzing these flagged
URLs can reveal hidden patterns or attack methods that may otherwise be missed. Thus, this
proactive alert mechanism is vital for effective threat management, facilitating early detection
and response to mitigate risks and safeguard the network against potential breaches.

The algorithm’s output demonstrates its effectiveness in reinforcing network security by
promptly identifying and addressing potential threats.

5.6. Summary

In this chapter, we delved into the intricacies of preprocessing network activity data, focusing
on the creation and utilization of a whitelist and the application of bandpass filtering to enhance
data analysis. The primary learnings from this chapter include:

• Whitelist Creation:

– We defined a function to create a whitelist by filtering out URLs based on specified
exclusion criteria. This function plays a crucial role in curating a subset of URLs for
further analysis, ensuring that only relevant and trustworthy URLs are retained.

– We discussed the importance of excluding irrelevant or untrustworthy URLs to im-
prove the accuracy and interpretability of subsequent analyses.

– Performance considerations were examined, highlighting the efficiency of the whitelist
creation process and its scalability for larger datasets.

• Bandpass Filtering:
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Figure 5.5.: Steps of the proposed method

– A function for applying bandpass filtering to the power values of network activ-
ity data was introduced. This function isolates significant frequency components
within a specified range, reducing noise and enhancing the clarity of the dataset.

– The role of bandpass filtering in refining the dataset and focusing on the most rele-
vant data was emphasized, contributing to a more robust understanding of temporal
patterns and behaviors within the network.

– We explored the performance implications of the filtering process and discussed
potential optimizations for handling large datasets.

• Functional Analysis:
– Both functions were defined with detailed explanations of their parameters, func-

tionality, and performance considerations. This structured approach ensures that
the functions are well-documented and easy to understand for future use and mod-
ification.

5.7. Next Steps

Building on the foundational work presented in this chapter, the next steps involve:
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• Implementing Additional Preprocessing Techniques:

– Investigate and implement additional preprocessing techniques to further enhance
data quality and relevance. This may include methods such as data normalization,
anomaly detection, and more sophisticated filtering techniques.

• Integrating the Preprocessed Data into Analytical Models:

– Utilize the preprocessed data in advanced analytical models to uncover deeper in-
sights into network behavior. This could involve machine learning algorithms, sta-
tistical analyses, and other data mining techniques.

• Evaluating and Validating the Methods:

– Perform rigorous evaluation and validation of the preprocessing methods to ensure
their effectiveness and reliability. This includes testing the methods on different
datasets and scenarios to assess their generalizability and robustness.

• Automating the Preprocessing Pipeline:

– Develop an automated preprocessing pipeline that seamlessly integrates the whitelist
creation and bandpass filtering functions. This will streamline the data preparation
process, making it more efficient and scalable for real-time applications.

• Documenting and Sharing Findings:

– Document the findings and methodologies in detail to facilitate knowledge sharing
and reproducibility. This includes creating comprehensive reports, code documen-
tation, and potentially publishing the results in academic journals or conferences.

By following these next steps, we can build upon the foundation established in this chapter,
advancing our understanding and capabilities in network activity data analysis. This progres-
sion will not only enhance the accuracy and effectiveness of our analytical models but also
contribute to the broader field of network security and behavior analysis.
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In this experimental chapter, the algorithm’s capability to detect malicious data undergoes
a rigorous inspection. Data from various days is collected to encompass various scenarios,
ensuring a comprehensive evaluation of the algorithm’s performance across different condi-
tions. Once the data is gathered, it is processed through the algorithm to assess its ability to
identify potentially harmful content. The primary focus of this chapter lies in evaluating the
algorithm’s effectiveness in detecting malicious content and its consistency over time. Special
attention is given to the URLs flagged as suspicious by the algorithm, which are closely exam-
ined to gain deeper insights into their functionality and potential areas for enhancement. By
scrutinizing these flagged URLs, the chapter aims to uncover patterns and behaviors that might
indicate malicious activity, providing valuable feedback for refining the algorithm. This chap-
ter comprehensively evaluates the algorithm’s performance, utilizing real-world data to gauge
its effectiveness and explore avenues for improvement. The findings from this analysis not
only demonstrate the algorithm’s current capabilities but also highlight opportunities for fur-
ther development, ensuring its continued relevance and robustness in detecting evolving cyber
threats. Through this detailed examination, the chapter aims to bolster the algorithm’s ability
to safeguard the network, contributing to the overall security infrastructure of the system.

6.1. Validation and Testing

To affirm the efficacy of beaconing detection, the methodology undergoes rigorous testing us-
ing diverse datasets, simulating a range of scenarios that reflect various web traffic patterns.
This comprehensive validation process is undertaken to ensure that the algorithm operates re-
liably across different frequency ranges and adapts seamlessly to the dynamic nature of HTTP
requests. By employing datasets that encompass a wide array of traffic behaviors—from nor-
mal browsing activities to more erratic patterns indicative of potential security threats—the
testing aims to demonstrate the filter’s robustness and versatility. Each dataset is crafted to
mimic real-world conditions, providing a realistic context for evaluating the bandpass filter’s
performance. The results from these tests offer critical insights into the filter’s ability to isolate
relevant frequency components while effectively minimizing noise and irrelevant data.

Furthermore, this validation process helps in identifying any potential weaknesses or limi-
tations of the bandpass filter, guiding subsequent refinements and optimizations. The ultimate
goal is to ensure that the beaconing detection consistently enhances the accuracy and reliabil-
ity of the data analysis, regardless of the variability in web traffic patterns. By confirming its
adaptability and precision, this rigorous testing phase substantiates the filter’s integral role in
the overall methodology, cementing its contribution to the accurate detection and analysis of
network behaviors.
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Validation Steps:

1. DiverseDatasets: The beaconing detection is subjected to rigorous testing using datasets
that exhibit varying frequencies of HTTP requests, each embodying distinct traffic pat-
terns. These datasets are carefully curated to represent a broad range of real-world web
traffic scenarios, from sporadic and unpredictable requests to highly regular and pre-
dictable beaconing activity. By employing such a diverse set of datasets, the aim is to
thoroughly evaluate the filter’s adaptability and effectiveness. This comprehensive ap-
proach ensures that the filter can robustly identify beaconing activity amidst different
traffic environments, including those with fluctuating request intervals, mixed legitimate
traffic, and potential noise. Ultimately, this testing strategy is designed to refine the bea-
coning detection mechanism, enhancing its accuracy and reliability across a wide array
of web traffic conditions, thereby improving its practical applicability in detecting mali-
cious or anomalous behavior in varied network contexts.

2. Performance Metrics: To evaluate the method’s performance, the methodology em-
ploys metrics and the preservation of relevant frequency components. These metrics
serve as quantitative indicators, allowing for a thorough assessment of the filter’s ability
to discern and retain meaningful signal components while minimizing noise.

3. Real-world Scenarios: The beaconing technique is rigorously evaluated on historical
datasets containing documented instances of diverse HTTP request patterns within Al-
lianz Company’s network. This real-world testing ensures that the filter can effectively
handle the complexities and nuances inherent in actual network traffic scenarios, further
validating its practical utility.

By subjecting the method to these comprehensive validation steps, the methodology aims to
establish its reliability and robustness in handling a wide array of web traffic patterns. The re-
sults obtained from this testing process contribute to the confidence in the filter’s performance,
reinforcing its role as a valuable tool in the analysis of HTTP request patterns over time.

6.1.1. In-Depth Analysis of Algorithm Output

To assess the accuracy of the algorithm’s identification of malicious behavior, a verification pro-
cess was executed, which involved systematically evaluating the algorithm’s outputs against
known benchmarks. The initial findings from this process unveiled patterns that hinted at pos-
sible malicious behavior, indicating that the algorithm was effectively identifying anomalies
consistent with malicious activities. This verification process is critical for ensuring the relia-
bility and robustness of the algorithm in real-world applications, as it confirms the algorithm’s
ability to detect subtle and complex patterns indicative of potential security threats.

To further refine the focus of the analysis, Figure 6.1 provides a detailed snapshot of the data
from a particular day, highlighting specific areas where suspicious activity may be present. This
figure showcases the URLs identified by the algorithm, each accompanied by a distinct time
interval and power level. The next critical step involves detecting the behavior of these URLs
to accurately report beaconing malicious behavior. This process requires checking the power
levels of these URLs against a predefined threshold value. The threshold value was selected
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after numerous experiments and relies heavily on the analyst’s expertise and experience to
ensure its accuracy and reliability.

Figure 6.1.: Testing Data

To enhance clarity and isolate the most significant indicators of potential malicious activity,
Figure 6.2 presents only those URLs that have exceeded the established threshold, which in
this instance is set at 500. This strategic filtering immediately draws attention to the URL
’m4v4r4c5.stackpathcdn.com’, which exhibits behavior that warrants closer scrutiny due to its
elevated power levels. By isolating this particular domain from the broader dataset, the figure
reveals a significant peak during a specific time interval, indicating a moment of heightened
activity.

This peak is particularly noteworthy as it signifies that during the specified time interval,
the power associated with ’m4v4r4c5.stackpathcdn.com’ reached an unusually high value of
2877. This substantial power level is well above the predetermined threshold, clearly indicat-
ing an abnormal and potentially malicious pattern of activity. The suspicious behavior was
observed within the time interval of 10-12, marking this period as a critical window for further
investigation.

The isolation and examination of these peaks are important for understanding the nature
of the potential threat. By focusing on the time intervals and power levels that exceed the
threshold, analysts can more effectively identify and interpret patterns indicative of beaconing
malicious behavior. This detailed approach underscores the importance of combining algorith-
mic outputs with the analyst’s expertise to detect and respond to potential security threats
accurately. It highlights how the rigorous verification process, alongside the use of targeted
metrics and thresholds, enhances the ability to discern meaningful signals from noise, thereby
improving the overall effectiveness of the beaconing detection methodology. This thorough
analysis not only aids in identifying immediate threats but also contributes to the ongoing
refinement of detection techniques, ensuring they remain robust and reliable in the face of
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evolving web traffic scenarios and potential malicious activities.

Figure 6.2.: Malicious Domain

Upon the identification of the URL, the subsequent analysis unveiled clear indicators sug-
gesting malicious intent within the algorithm’s output. To verify the authenticity of these
suspicions, a comprehensive inquiry was launched into the nature of the detected behavior,
aimed at determining whether it unequivocally originated from a malicious URL source. This
inquiry involved a detailed examination of the URL’s historical footprint, which uncovered
a disconcerting pattern of activity. It became evident that a particular user had persistently
engaged in phishing tactics, repeatedly attempting to access and manipulate the URL for ne-
farious purposes. Such deliberate and systematic actions underscored the malicious nature of
the user’s intentions. Recognizing the severity of the situation, immediate action was taken to
alert cybersecurity experts, thereby initiating a thorough examination and swift resolution of
the identified security breach.

The investigation revealed that the user behind the malicious activity employed sophisti-
cated techniques to mask their actions, making detection more challenging. This necessitated
a deeper dive into the user’s digital footprint, examining IP addresses, timestamps, and the
nature of the requests made to the URL. The collected evidence pointed to a concerted effort to
exploit vulnerabilities within the system, highlighting the importance of the initial algorithmic
detection and the subsequent manual analysis in identifying and mitigating the threat.

Furthermore, to thoroughly evaluate the algorithm’s effectiveness, a comprehensive analysis
was conducted on the data gathered across multiple days. This longitudinal study allowed for
the identification of recurring patterns or evolving trends that may signify malicious intent.
The subsequent sections present the results derived from the algorithm’s examination of each
day’s data, providing insights into the consistency and reliability of the algorithm in detecting
suspicious activities. By comparing daily outputs, analysts could identify not only persistent
threats but also new and emerging ones, thereby enhancing the overall security posture.
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The analysis also involved cross-referencing the detected malicious activities with known
threat databases to determine if the identified URL and user behavior matched any previously
recorded cyber threats. This step was key in understanding the broader context of the threat
and in developing appropriate countermeasures. The collaboration with cybersecurity experts
ensured that the findings were promptly addressed, and preventative measures were imple-
mented to safeguard against future attacks.

In summary, the identification of the URL and the subsequent in-depth analysis highlighted
the importance of a multi-layered approach to cybersecurity. The combination of advanced
algorithms, historical data analysis, and expert intervention provided a robust framework for
detecting and responding to malicious activities. This approach not only addressed the imme-
diate threat but also contributed to the ongoing refinement of detection techniques, ensuring
they remain effective against evolving cyber threats.

The figures below provide comprehensive snapshots of online activity on different days,
highlighting key patterns and anomalies. In the figure 6.3, a detailed log documents the inter-
net activity of a specific individual on a particular day. This log outlines the various websites
visited, including both innocuous sites and one that raised suspicions. The figure shows the
output of an algorithm designed to detect malicious behavior, marking the beginning of a de-
tailed analysis.

Figure 6.3.: Testing Data

The focus of this analysis is to look over all URLs that exhibit a specific power level. The
algorithm identifies URLs with notable peaks in the output, particularly those with power levels
exceeding a predetermined threshold value. This threshold was established through extensive
experimentation and expert analysis, ensuring its effectiveness in filtering out benign activity
while highlighting potential threats.

Shifting the focus to Figure 6.4, this figure zooms in on a specific timeframe, offering a closer
examination of a particular website’s behavior. During the period from 200 to 220, there was
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a notable surge in activity on ’yt3.ggpht.com’, which deviated significantly from its usual pat-
terns. This irregularity prompted a deeper analysis, revealing indications of potentially mali-
cious beaconing behavior.

Figure 6.4.: Malicious Domain

The subsequent investigation into ’yt3.ggpht.com’ confirmed the presence of unauthorized
activity on the website. This finding underscores the critical importance of such monitoring
systems in identifying and addressing cybersecurity threats. By highlighting irregular patterns
and behaviors, these systems act as vigilant guardians, ensuring the safety and integrity of
digital spaces.

These visual representations play a vital role in maintaining online security. They not only
facilitate the detection of malicious activity but also aid in the timely response to emerging
threats. The detailed logs and focused analyses presented in Figures 6.3 and 6.4 exemplify
the effectiveness of combining algorithmic detection with expert scrutiny experiences. This
approach ensures that suspicious activities are not only identified but also thoroughly investi-
gated and mitigated.

The integration of advanced algorithms and detailed visual representations provides a robust
framework for monitoring and securing online environments. By continuously analyzing web
traffic and identifying anomalies, these systems help protect against unauthorized activities and
potential cyber threats. This multi-layered approach is essential for maintaining the integrity
and security of digital spaces in an increasingly connected world.
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The implementation of the methodology within Allianz Company’s network infrastructure
represents a pivotal advancement in enhancing network security and resilience. This chap-
ter provides a detailed discussion of how beaconing behavior can be effectively detected and
the impact of periodicity in network communication on the detection of malicious behavior.
The methodology’s application involved several key steps, each contributing to the robustness
of the network monitoring and security measures.

7.1. Detection of Beaconing Behavior

To address the question of how beaconing behavior can be effectively detected within Allianz
Company’s network, several strategies and methodologies were employed and evaluated:

7.1.1. Algorithm Development and Implementation

The core of the detection process involved the development and implementation of advanced
algorithms tailored to identify beaconing behavior. These algorithms were designed to analyze
network traffic for recurring patterns indicative of beaconing. Key methods included:

• Pattern Recognition Algorithms: These algorithms scan for regular intervals in net-
work communication, a hallmark of beaconing activity often used by malware to main-
tain contact with a command-and-control server.

• Threshold Analysis: A critical component of the detection system involved setting
thresholds for communication frequencies. URLs with communication intervals exceed-
ing these thresholds were flagged for further investigation.

7.1.2. Data Collection and Preprocessing

Effective detection required comprehensive data collection and preprocessing:

• NetworkMonitoring: Continuous monitoring captured a wide array of network activ-
ities, including data packets, source and destination addresses, timestamps, and commu-
nication frequencies.

• Filtering and Aggregation: Known benign traffic was filtered out, and similar types
of communication were aggregated to reduce noise and focus on potentially malicious
activities.
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7.1.3. Validation and Testing

To ensure the effectiveness of the detection methods:

• Synthetic and Real-World Data: The algorithm was tested on both synthetic datasets
and real-world traffic from Allianz’s network.

• Integration with Existing Systems: The detection mechanisms were integrated with
Security Information and Event Management (SIEM) systems to enable automated alerts
and responses, and incident response teams were notified for further investigation.

7.2. Impact of Periodicity in Network Communication

The second research question addresses the impact of periodicity in network communication
on the detection of malicious behavior. Periodicity significantly affects detection capabilities,
as detailed below:

7.2.1. Identification of Regular Intervals

• Time-Series Analysis: Network traffic was analyzed as time-series data to detect reg-
ular communication intervals. Techniques such as bandpass filtering was employed to
identify periodic patterns.

• Baseline Establishment: A baseline of normal network behavior was established to
identify deviations that might indicate malicious activity. Communication frequencies
that deviated from this baseline were flagged as suspicious.

7.2.2. Differentiation Between Benign and Malicious Periodicity

• Contextual Analysis: Not all periodic communications are indicative of malicious be-
havior. Contextual analysis helped distinguish between normal periodic activities (e.g.,
scheduled updates) and potentially harmful beaconing.

• Anomaly Detection Algorithms: Algorithms trained on periodicity patterns of nor-
mal traffic helped identify anomalies. Techniques such as clustering and classification
were used to differentiate benign from malicious behavior.

7.2.3. Impact on False Positives and Negatives

• Reduction of False Positives: Accurate modeling of normal periodic patterns helped
reduce the number of false positives, ensuring that alerts were actionable.

• Handling False Negatives: Sensitivity adjustments in detection algorithms ensured
that subtle periodic patterns associated with stealthy beaconing were not missed, mini-
mizing false negatives.
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7.2.4. Case Studies and Empirical Evidence

• Real-World Examples: Analysis of real-world cases of beaconing behavior provided
empirical evidence on the effectiveness of periodicity-based detection methods.

• Continuous Learning and Adaptation: The detection system was designed to adapt
to evolving patterns of network traffic, ensuring ongoing effectiveness in identifying new
and emerging threats.

The comprehensive evaluation of the methodology demonstrated its efficacy in handling
diverse network traffic scenarios and real-world cybersecurity challenges. The methodology,
which included advanced algorithms for detecting beaconing behavior, robust data prepro-
cessing techniques, and the use of periodicity in network communication, proved effective in
identifying and mitigating malicious activities. The integration of these methods with Allianz
Company’s existing security infrastructure highlighted the importance of continuous monitor-
ing and proactive response strategies in maintaining network security. The promising results
from this implementation provide a strong foundation for future research and further enhance-
ment of network security measures.
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8.1. Conclusion

The thorough study of the dataset provided valuable insights into network security, particularly
in the detection of beaconing activities that may indicate potential threats. This examination
involved a deep dive into the data, encompassing its various aspects and collection methods,
which laid a solid foundation for understanding how networks can detect and respond to sus-
picious signals effectively.

Systematic data collection, cleaning, and processing were important to ensuring the dataset’s
accuracy and reliability. The gathering of relevant information, removal of inconsistencies or
errors, and careful preparation for analysis were essential steps that validated the conclusions
drawn from the data. These steps ensured that the findings were both accurate and actionable.

A significant component of the methodology was the implementation of a ”whitelist” mech-
anism alongside specialized filtering and analysis techniques. The whitelist, which consists of
trusted entities or activities within the network, plays an important role in focusing attention
on potentially harmful signals while minimizing the impact of irrelevant noise. This strate-
gic filtering enhanced the network’s ability to detect threats more effectively by isolating and
addressing only the potentially malicious activities.

The evaluation of time intervals between actions, combined with data enhancement tech-
niques and specialized filtering methods, yielded valuable insights into potential malicious
beaconing activity. These analyses illuminated underlying patterns and behaviors within the
network, aiding in the identification of anomalies that could signify suspicious or harmful ac-
tions. The study highlighted the importance of proactive monitoring and response strategies in
mitigating cybersecurity risks, demonstrating the broader significance of data-driven method-
ologies in fortifying network security.

In an era where organizations face increasingly sophisticated cyber threats, the insights from
this research can guide strategic decision-making and resource allocation. By leveraging these
findings, organizations can enhance their protection of critical digital assets and bolster their
defenses against evolving threats.

8.2. Future Work

Building on the findings and methodology presented in this study, several promising avenues
for future research and development can be explored:

1. Enhanced Detection Algorithms: Refining and optimizing beaconing detection algo-
rithms can significantly improve accuracy and reduce false positives. Future research
could explore novel approaches, such as deep learning techniques, which may provide
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new insights into anomaly detection in network behavior. These advancements could
lead to more effective threat mitigation strategies and enhanced detection capabilities.

2. Real-Time Monitoring Solutions: Investigating real-time monitoring solutions can
enable prompt detection and response to emerging threats, thereby minimizing poten-
tial damages caused by malicious activities. The development of automated response
mechanisms could streamline incident response procedures, reducing the burden on cy-
bersecurity personnel and enhancing the overall efficiency of threat management.

3. Behavioral Analysis Across Diverse Networks: Extending the study to analyze net-
work behavior across a variety of organizational networks can reveal commonalities and
variations in malicious activities. Understanding the unique challenges faced by differ-
ent industries and sectors could lead to the development of tailored security measures
that address specific threats more effectively. This cross-network analysis could provide
valuable insights into how different environments respond to and manage cybersecurity
risks.

4. Integration with Machine Learning Techniques: Exploring the integration of ad-
vanced machine learning techniques for anomaly detection can augment the capabilities
of beaconing detection systems. Leveraging historical data and learning from past inci-
dents can help these systems adapt to evolving cybersecurity threats, enhancing proac-
tive defense mechanisms. Machine learning models can be trained to recognize subtle
patterns and adapt to new types of attacks, improving overall detection and response.

5. Collaborative Research Initiatives: Engaging in collaborative research with industry
partners and cybersecurity experts can foster innovation and the development of proac-
tive security solutions. Joint research initiatives can facilitate the exchange of knowledge
and resources, addressing complex cybersecurity challenges more effectively. Collab-
oration can lead to the creation of comprehensive solutions that benefit from diverse
expertise and perspectives, driving progress in the field of network security.

Pursuing these avenues for future research and development will help advance the field of
cybersecurity, strengthening defenses against emerging threats and safeguarding the integrity
of digital infrastructures. By continuing to innovate and adapt, the cybersecurity community
can better protect critical assets and respond to the dynamic landscape of cyber threats.
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A.1. Algorithm Implementation

1 from influxdb client import InfluxDBClient
2 from datetime import datetime
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 from scipy.signal import butter, filtfilt
6

7 # Function to calculate request power
8 def calculate request power(request list):
9 power dictionary = {}

10 last date time = request list[0][” time”]
11

12 for request dict in request list:
13 current date time = request dict[” time”]
14

15 # Check if current date time is a string, and convert it to a
datetime object

16 if isinstance(current date time, str):
17 current date time = datetime.strptime(current date time, ”%Y-%m-%

dT%H:%M:%S.%fZ”)
18

19 time delta = int((current date time - last date time).total seconds()
)

20

21 # Add the power to the power dictionary
22 power dictionary[time delta] = power dictionary.get(time delta, 0) +

1
23 last date time = current date time
24

25 # Sort the dictionary for better visualization
26 power dictionary = dict(sorted(power dictionary.items()))
27

28 return power dictionary
29

30 # Function to apply bandpass filtering in terms of time
31 def bandpass filter(data, lowcut time, highcut time, sampling rate, order=4):
32 nyquist = 0.5 * sampling rate
33 lowcut = lowcut time / nyquist
34 highcut = highcut time / nyquist
35

36 if lowcut >= 1 or highcut >= 1:
37 raise ValueError(”Digital filter critical frequencies must be 0 < Wn 

< 1”)
38
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39 b, a = butter(order, [lowcut, highcut], btype=’band’)
40 filtered data = filtfilt(b, a, data)
41 return filtered data
42

43 # InfluxDB connection details
44 url = ”http://localhost:8086”
45 token = ”****”
46 org = ”Student”
47 bucket = ”Net”
48 influx username = ’****’
49 influx password = ’****’
50

51 try:
52 # Create an InfluxDB client
53 client = InfluxDBClient(url=url, token=token, org=org)
54

55 # Query data from InfluxDB
56 query = f’from(bucket:”{bucket}”) —> range(start: 2023-08-01T00:00:00Z, 

stop: 2023-08-02T00:00:00Z)’
57 tables = client.query api().query(query, org=org)
58

59 # Extract points from the result
60 points = [record.values for table in tables for record in table.records]
61

62 # Process and organize the InfluxDB data
63 print(”Processing InfluxDB Data:”)
64 extracted influx objects = {}
65

66 for point in points:
67 url hostname = point.get(”url hostname”)
68

69 # Check if url hostname is already in the dictionary
70 if url hostname not in extracted influx objects:
71 extracted influx objects[url hostname] = []
72

73 # Append under the corresponding url hostname
74 extracted influx objects[url hostname].append(point)
75

76 # Print the extracted InfluxDB data for debugging
77 print(point)
78

79 # Create a whitelist to filter out unwanted URLs
80 def create whitelist(data, exclusion criteria):
81 whitelist = {url: requests for url, requests in data.items() if not

any(exclusion in url for exclusion in exclusion criteria)}
82 return whitelist
83

84 # Define exclusion criteria for URLs
85 exclusion criteria = [’allianz’, ’res’]
86

87 # Create a whitelist based on the exclusion criteria
88 whitelist = create whitelist(extracted influx objects, exclusion criteria

)
89
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90 print(”Filtered URLs based on whitelist:”)
91 for url hostname in whitelist:
92 print(url hostname)
93

94 # Create a table of power for each URL hostname with bandpass filtering
in terms of time

95 print(”“nPower Table with Bandpass Filtering in Terms of Time:”)
96 for url hostname, requests in whitelist.items():
97 print(f”URL Hostname: {url hostname}”)
98 power dictionary = calculate request power(requests)
99

100 # Print the power dictionary for debugging
101 print(”Power Dictionary:”, power dictionary)
102

103 # Extract keys and values from the power dictionary
104 time intervals = list(power dictionary.keys())
105 power values = list(power dictionary.values())
106

107 # Apply bandpass filtering in terms of time
108 lowcut time = 5 # 5 seconds
109 highcut time = 1000 # 1000 seconds
110

111 # Check if there are enough elements to calculate sampling rate
112 if len(time intervals) >= 2:
113 sampling rate = 1.0 / (time intervals[1] - time intervals[0]) #

Sampling frequency
114

115 try:
116 filtered power values = bandpass filter(power values, lowcut

time, highcut time, sampling rate)
117 except ValueError as e:
118 print(f”Error: {e}”)
119 filtered power values = power values
120

121 # Print the filtered power values for debugging
122 print(”Filtered Power Values:”, filtered power values)
123

124 # Calculate the average power
125 average power = sum(filtered power values) / len(filtered power

values)
126

127 # Print the average power for debugging
128 print(”Average Power:”, average power)
129

130 # Subtract average power from all power values
131 adjusted power values = [power - average power for power in

filtered power values]
132

133 # Print the adjusted power values for debugging
134 print(”Adjusted Power Values:”, adjusted power values)
135

136 # Remove negative powers
137 non negative power values = [max(0, power) for power in adjusted

power values]
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138

139 # Get indices for the time range of interest (5 to 1000 seconds)
140 time range indices = [i for i, t in enumerate(time intervals) if

5 <= t <= 1000]
141

142 # Print the time range indices for debugging
143 print(”Time Range Indices:”, time range indices)
144

145 # Plot the adjusted data within the specified time range
146 plt.plot([time intervals[i] for i in time range indices], [non

negative power values[i] for i in time range indices], label=
url hostname)

147

148 # Check if there are multiple URLs in the whitelist before creating
legend

149 if len(whitelist) > 1:
150 plt.legend()
151

152 plt.xlabel(”Time Interval (seconds)”) # Change x-axis label
153 plt.ylabel(”Adjusted Power”) # Change y-axis label
154 plt.title(”Adjusted Power over Time”) # Change the chart title
155 plt.show()
156

157 except Exception as e:
158 print(f”An error occurred: {e}”)

A.2. Data Analysis Implementation

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from scipy.signal import butter, filtfilt
4

5 # Function to calculate request occurrence
6 def calculate request occurrence(request list):
7 occurrence dictionary = {}
8 last date time = None
9

10 for , request row in request list.iterrows():
11 try:
12 current date time = pd.to datetime(request row[” time”])
13

14 if last date time is not None:
15 time delta = int((current date time - last date time).total

seconds())
16

17 # Add the occurrence to the occurrence dictionary
18 occurrence dictionary[time delta] = occurrence dictionary.get

(time delta, 0) + 1
19

20 last date time = current date time
21
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22 except (ValueError, TypeError) as e:
23 print(f”Error in row: { }, Timestamp value: {request row[’ time’]

}, Error message: {e}”)
24

25 # Sort the dictionary for better visualization
26 occurrence dictionary = dict(sorted(occurrence dictionary.items()))
27

28 return occurrence dictionary
29

30 # Function to apply bandpass filtering in terms of time
31 def bandpass filter(data, lowcut time, highcut time, sampling rate, order=4):
32 nyquist = 0.5 * sampling rate
33 lowcut = lowcut time / nyquist
34 highcut = highcut time / nyquist
35

36 if lowcut >= 1 or highcut >= 1:
37 raise ValueError(”Digital filter critical frequencies must be 0 < Wn 

< 1”)
38

39 b, a = butter(order, [lowcut, highcut], btype=’band’)
40 filtered data = filtfilt(b, a, data)
41 return filtered data
42

43 # CSV file path for the cleaned and modified data
44 csv file path = r’C:“Allianz“4“1125“Modified Beaconing.csv’
45

46 try:
47 # Read data from CSV file and explicitly convert ” time” to datetime
48 df = pd.read csv(csv file path)
49 df[” time”] = pd.to datetime(df[” time”], format=’%H:%M:%S.%f’, errors=’

coerce’)
50

51 # Process and organize the CSV data
52 print(”Processing CSV Data:”)
53 extracted csv objects = {}
54

55 for , row in df.iterrows():
56 url hostname = row.get(”url hostname”)
57

58 # Check if url hostname is already in the dictionary
59 if url hostname not in extracted csv objects:
60 extracted csv objects[url hostname] = []
61

62 # Append under the corresponding url hostname
63 extracted csv objects[url hostname].append(row)
64

65 # Print the extracted CSV data for debugging
66 print(row)
67

68 # Create a whitelist to filter out unwanted URLs
69 def create whitelist(data, exclusion criteria):
70 whitelist = {url: requests for url, requests in data.items() if not

any(exclusion in url for exclusion in exclusion criteria)}
71 return whitelist

67



A. Appendix

72

73 # Define exclusion criteria for URLs
74 exclusion criteria = [’allianz’, ’res’]
75

76 # Create a whitelist based on the exclusion criteria
77 whitelist = create whitelist(extracted csv objects, exclusion criteria)
78

79 print(”Filtered URLs based on whitelist:”)
80 for url hostname in whitelist:
81 print(url hostname)
82

83 # Create a table of occurrence for each URL hostname with bandpass
filtering in terms of time

84 print(”“nOccurrence Table with Bandpass Filtering in Terms of Time:”)
85 peak url hostname = None
86 peak occurrence value = 0
87 for url hostname, requests in whitelist.items():
88 print(f”URL Hostname: {url hostname}”)
89 occurrence dictionary = calculate request occurrence(pd.DataFrame(

requests))
90

91 # Print the occurrence dictionary for debugging
92 print(”Occurrence Dictionary:”, occurrence dictionary)
93

94 # Identify peak occurrence value and corresponding URL hostname
95 if occurrence dictionary:
96 max occurrence value = max(occurrence dictionary.values())
97 if max occurrence value > peak occurrence value:
98 peak occurrence value = max occurrence value
99 peak url hostname = url hostname

100

101 # Extract keys and values from the occurrence dictionary
102 time intervals = list(occurrence dictionary.keys())
103 occurrence values = list(occurrence dictionary.values())
104

105 # Apply bandpass filtering in terms of time
106 lowcut time = 5 # 5 seconds
107 highcut time = 1000 # 1000 seconds
108

109 # Check if there are enough elements to calculate sampling rate
110 if len(time intervals) >= 2:
111 sampling rate = 1.0 / (time intervals[1] - time intervals[0]) #

Sampling frequency
112

113 try:
114 filtered occurrence values = bandpass filter(occurrence

values, lowcut time, highcut time, sampling rate)
115 except ValueError as e:
116 print(f”Error: {e}”)
117 filtered occurrence values = occurrence values
118

119 # Print the filtered occurrence values for debugging
120 print(”Filtered Occurrence Values:”, filtered occurrence values)
121
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122 # Calculate the average occurrence
123 average occurrence = sum(filtered occurrence values) / len(

filtered occurrence values)
124

125 # Print the average occurrence for debugging
126 print(”Average Occurrence:”, average occurrence)
127

128 # Subtract average occurrence from all occurrence values
129 adjusted occurrence values = [occurrence - average occurrence for

occurrence in filtered occurrence values]
130

131 # Print the adjusted occurrence values for debugging
132 print(”Adjusted Occurrence Values:”, adjusted occurrence values)
133

134 # Remove negative occurrences
135 non negative occurrence values = [max(0, occurrence) for

occurrence in adjusted occurrence values]
136

137 # Get indices for the time range of interest (5 to 1000 seconds)
138 time range indices = [i for i, t in enumerate(time intervals) if

5 <= t <= 1000]
139

140 # Print the time range indices for debugging
141 print(”Time Range Indices:”, time range indices)
142

143 # Plot the adjusted data within the specified time range
144 plt.plot([time intervals[i] for i in time range indices], [non

negative occurrence values[i] for i in time range indices],
label=url hostname)

145

146 # Print the URL hostname with the peak occurrence
147 if peak url hostname:
148 print(f”“nURL Hostname with Peak Occurrence: {peak url hostname}”)
149 print(f”Peak Occurrence Value: {peak occurrence value}”)
150

151 # Check if there are multiple URLs in the whitelist before creating
legend

152 if len(whitelist) > 1:
153 plt.legend()
154

155 plt.xlabel(”Time Interval (seconds)”) # Change x-axis label
156 plt.ylabel(”Adjusted Occurrence”) # Change y-axis label
157 plt.title(”Adjusted Occurrence over Time”) # Change the chart title
158 plt.show()
159

160 except Exception as e:
161 print(f”An error occurred: {e}”)
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