N)
e Global Analysis with Aggregation-based Beaconing Detection

across Large Campus Networks

Yizhe Zhang
University of Virginia
Charlottesville, Virginia, USA
yzéme@virginia.edu

Hongying Dong
University of Virginia
Charlottesville, Virginia, USA
hd7gr@virginia.edu

Alastair Nottingham®
University of Virginia
Charlottesville, Virginia, USA
atn5vs@virginia.edu

Donald E. Brown
University of Virginia
Charlottesville, Virginia, USA
deb@virginia.edu

Yixin Sun
University of Virginia
Charlottesville, Virginia, USA
ys3kz@virginia.edu

Molly Buchanan
University of Virginia
Charlottesville, Virginia, USA
mkb4vb@virginia.edu

ABSTRACT

We present a new approach to effectively detect and prioritize ma-
licious beaconing activities in large campus networks by profiling
the server activities through aggregated signals across multiple
traffic protocols and networks. Key components of our system in-
clude a novel time-series analysis algorithm that uncovers hidden
periodicity in aggregated signals, and a ranking-based detection
pipeline that utilizes self-training and active-learning techniques.
We evaluate our detection system on 10 months of real-world traffic
collected at two large campus networks, comprising over 75 billion
connections. On a daily average, we detect 43% more periodic do-
mains by aggregating signals across multiple networks compared
to single-network analysis. Furthermore, our ranking pipeline suc-
cessfully identifies 1,387 unique malicious domains, out of which
781 (56%) were unknown to the major online threat intelligence
platform, VirusTotal, at the time of our detection.

CCS CONCEPTS

« Security and privacy — Network security; Intrusion detec-
tion systems.

KEYWORDS

intrusion detection, self-training, active learning

ACM Reference Format:

Yizhe Zhang, Hongying Dong, Alastair Nottingham, Molly Buchanan, Don-
ald E. Brown, and Yixin Sun. 2023. Global Analysis with Aggregation-based
Beaconing Detection across Large Campus Networks. In Annual Computer
Security Applications Conference (ACSAC °23), December 04-08, 2023, Austin,
TX, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/
3627106.3627126

*Alastair Nottingham is now with Peraton Labs.

This work is licensed under a Creative Commons Attribution International
4.0 License.

ACSAC °23, December 04—08, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0886-2/23/12.
https://doi.org/10.1145/3627106.3627126

565

1 INTRODUCTION

Modern sophisticated cyber attacks often rely on command and
control (C&C, or C2) communications to remotely control infected
endpoints (e.g., APT29 [42], the Sony hack [92]). Adversaries typ-
ically establish stealthy outbound communication channels from
compromised internal hosts (bots) to external C2 infrastructures
(bot masters) using common application protocols like HTTP and
TLS [24]. In a centralized botnet architecture, the bot master relies
on each bot to announce its presence and regularly connect to the
external C2 server for commands and upgrades [91]. These timed
connections - also known as ‘beacons’ - are pre-programmed in
the malware [62] and exhibit periodic communication pattern in
network traces [6, 9, 43]. Consequently, defenders can identify the
compromised host by analyzing these periodic time-series patterns.

While not all malware exhibits periodic communication patterns,
detecting beaconing activity is yet one of the most effective ways for
threat hunting [18] given its widespread usage. Research has found
that over 90% of malware families manifest periodic behavior [36].
Notably, beaconing malware such as Andromeda [7], Conficker [54],
ZeuS [8], and QBot [16] continue to be among the most active bot-
nets in recent years [5, 23, 40, 65]. In addition, beaconing detection
is effective even when the packet payload is encrypted (e.g., TLS),
making it an ideal solution for campus networks where deep packet
inspections and TLS interceptions are not feasible due to high traffic
volume.

Nevertheless, accurately detecting malicious beaconing traffic
poses challenges for two reasons: (i) detection may fail due to
missing or irregular signals, and (ii) benign programs can also
exhibit periodic behaviors like software updates. In large campus
networks, these challenges are further exacerbated by the difficulty
of capturing continuous traffic for most devices, as individuals can
join/leave the network at anytime, resulting in fragmented signals.

In our work, we propose a new approach to address these chal-
lenges at each step of the detection process, outlined as below:

Step 1: Global analysis to reconstruct beaconing signals.
Inter-organizational cooperation in cyber defense typically shares
attack information after detection. Indicators of Compromise (IoCs)
are distributed through threat intelligence platforms such as STIN-
GAR [75], enabling feed subscribers to update their firewall rules
accordingly. However, these solutions primarily take place after
attack detection within individual networks, with no integration
of data across multiple organizations. In contrast, our approach,


https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3627106.3627126
https://doi.org/10.1145/3627106.3627126
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3627106.3627126
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3627106.3627126&domain=pdf&date_stamp=2023-12-04

ACSAC °23, December 04-08, 2023, Austin, TX, USA

referred as global analysis, integrates data at the signal level through

collaboration across institutions, reconstructing a more compre-

hensive view of the beaconing activity.

Step 2: Novel periodicity detection algorithm to handle
noisy data. While aggregating data in global analysis helps in
reconstructing missing signals, it introduces additional noises, par-
ticularly with the high volume of traffic from multiple organizations.
To tackle this challenge, we develop a new periodicity detection
algorithm (Section 4) that employs Empirical Mode Decomposi-
tion [34], a data-adaptive multi-resolution technique. Our algorithm
effectively captures periodicity and regularity of signals in much
noisier scenarios, allowing us to leverage data across multiple cam-
pus networks (global analysis) to enhance detection performance.

Step 3: Ranking pipeline to prioritize most suspicious ac-
tivities with limited labels. While the previous two steps aim at
identifying periodic activities in the presence of missing signals,
they lead to significantly more identified beaconing domains, which
may or may not be malicious. Dealing with this increased volume
poses challenges for malicious beaconing activity detection due to
the limited availability of ground-truth labeling resources [30] and
the sheer volume of traffic.

Towards this end, we design a ranking pipeline that employs
self-training [83], a state-of-the-art semi-supervised machine learn-
ing technique, to reduce model bias through data re-balancing in
the early training phase. In addition, we incorporate active learn-
ing into the daily detection pipeline that ranks periodic domains
from the most suspicious to the least suspicious and learns from
external oracles to validate the top-ranked domains. This approach
empowers the model to gradually improve the performance and
keep updated throughout the time (Section 5).

Deployment and evaluation. Our beaconing detection system
is deployed at (i) two individual campus networks, and (ii) a global
analysis cluster where data aggregation is performed. We system-
atically evaluate the detection results in these two setups using
real-world traffic collected from two campus networks (10 months,
75B events). Our key evaluation results are as follows:

o Performing global analysis across the two campus networks al-
lows the system to detect 65.32% more malicious domains than
running the system on each individual network separately.

e On a daily average, about 77 suspicious beaconing cases were
reported in the global analysis setup, out of which 72 (93.5%) are
confirmed truly malicious by VirusTotal, a widely used threat
intelligence platform [93].

e Our system detects 509 malicious domains that were unknown
to VirusTotal at the time of detection. Additionally, we quantify
the extent of VirusTotal’s query delay, offering valuable insights
to the research community.

In summary, our key contributions are as follows: (i) we develop
a system that performs novel global analysis leveraging data across
multiple organization, (ii) we employ new data-adaptive multi-
resolution techniques to detect periodicity patterns in the presence of
large noises, (iii) we introduce self-training into the semi-supervised
active-learning pipeline to perform detection on large volume of
traffic with limited labels and human involvement, and (iv) we run
our system on the largest dataset of network traffic known to date,
demonstrating the efficacy of our detection system in real-world
scenarios.

566

Y. Zhang et al.

Artifact. While we cannot release the campus traffic data used
in our main evaluation due to legal and privacy rules, we have made
our source code and simulation for the periodicity detection algo-
rithms publicly available: https://github.com/yzzhn/bcndetection.

2 MOTIVATION AND CHALLENGES

Prior works [4, 14, 19, 29, 32, 33, 37, 78, 88] typically reconstruct the
time series of network connections based on each {source, destina-
tion} pair. We categorize these algorithms as fine-grained detectors
as their underlying shared concept is to build as precise a time series
as possible by representing each individual {source, destination} pair
in a finer granularity. For example, the source and destination can
be represent by {IP, port, MAC (Media Access Control) address, user
agent, device identifier} and {IP, port, full domain name, top-level
domain name, AS number, URL} respectively [33]. We identify two
main issues when applying fine-grained algorithms to real-world
campus network data:

o Difficulties in campus network host tracking. Counter-intuitively,
the campus Security Operations Center (SOC) often does not
have full visibility into, or control over, internal device tracking.
In practice, much of the traffic log data collected at our campus
lacks corresponding MAC addresses due to complex Network
Address Translation (NAT) deployments, limited visibility into
uninstrumented subnets, and record loss when logging infras-
tructure is under heavy load.

Vulnerabilities to common attacker evasion techniques. Such detec-
tion algorithms can be easily evaded by common attacker evasion
techniques, such as DNS (Domain Name System) fast fluxing [56],
or by placing the C2 server in a cloud environment [17] where a
domain can be associated with multiple IP addresses.

Src: 186.31.69.186
Dst: 192.243.29.20

Src: 186.31.83.55

2 Dst: 192.243.29.12

0

wn
.§ 5] Src:186.31.100.23 Src: 186.31.100.23
G “] Dst: 192.243.59.12 Dst: 192.243.59.13
5 00‘90Qut“ogﬁs’g\,7;90@'9010‘9030‘90 00'90“&‘«000%‘90\190\69010'9000'«00
c
5 2 FQDN-based Aggregation
i L]
00'-00 @»“0 0%'5‘0 @'90 \,690 10'5‘0 00‘90

Figure 1: Periodic pattern is not evident in fine-grained anal-
ysis. IPs are anonymized.

Due to above issues, time series reconstructed by fine-grained
detectors are often broken in reality, resulting in periodicity de-
tection failure. We illustrate an example of incomplete periodic
signals observed in real campus network traffic in Figure 1. The
upper four figures show the time series of four {source, destination}
pairs, where all destination IPs host the same malicious domain.
Interestingly, though using any individual time series alone is in-
sufficient for periodicity detection, we observe that aggregating all
signals together based on the shared Fully Qualified Domain Name
(FQDN) generates a periodic pattern, as shown in the bottom of


https://github.com/yzzhn/bcndetection

Global Analysis with Aggregation-based Beaconing Detection across Large Campus Networks

Figure 1, thus making it possible to detect such beaconing behav-

ior. We further observe that by aggregating signals using shared

domain names across protocols and organizations, we can uncover
periodic patterns that were not evident in any single protocol or
network.

These observations motivate our design of a new aggregation-
based beaconing detection system with the ability to reconstruct
complete time series across multiple traffic protocols and networks.
However, such approach is non-trivial and poses several challenges:
o Increased noise in aggregated signals compared to fine-grained time

series: we develop a new periodicity detection algorithm to unfold

hidden periodicity against various noise in Section 4.

o Distinguish between benign and malicious periodic network activi-
ties: we build a ranking system with semi-supervised learning
that prioritizes the most suspicious activities for further human
analysis and SOC investigation in Section 5.

o
9
3

k-]
c
“n
-

&
.4 Data Cent
Mirror | g [ ] Security DMZ ata ener
‘.g TAP g | Anonymized Periodicity
\_":“_I E a $| - Detection
[=%
A = &
= nonymize
L5 T" Z.:ek Learning and
- 5 Rankin,
Mirror t.':J TAP M | Security DMZ ¢ T
A
Campus2 =

Figure 2: Beaconing detection system across two large campus
networks.

3 DATASET AND SYSTEM ARCHITECTURE

We first provide an overview of our data collection process con-
ducted at two large, disjoint university campuses, namely, the Uni-
versity of Virginia (referred to as Campusl) and Virginia Tech
(referred to as Campus2). Subsequently, we outline the key compo-
nents of our beaconing detection system to address specific chal-
lenges posed by campus networks.

3.1 Campus Network Traffic Collection

We cooperate with each university’s information security depart-
ment for data collection and processing. In each network, raw
border traffic is mirrored via a Gigamon network TAP (test access
point) to a cluster in the secure DMZ (demilitarized zone). The mir-
rored traffic is then parsed by Zeek software [89] into a collection
of logs. To protect user privacy, these Zeek logs are anonymized
before transmission to the cluster where our beaconing detection
system runs. The data collection process is illustrated in Figure 2
and detailed in prior work [58].

Ethics consideration.The anonymization process has passed
IRB review and is conducted in a secure cluster accessible by only
a few designated personnel within the university (e.g., the SOC
analysts). We, the researchers, are restricted to using anonymized
data and cannot access the raw data. We responsibly disclose our
findings to campus Security Operations Centers (SOCs).

Choice of protocols. Zeek uses dynamic protocol detection
(DPD) [90] to analyze protocols instead of determining protocols
based on standard ports. We conduct beaconing detection on Zeek

567

ACSAC °23, December 04-08, 2023, Austin, TX, USA

HTTP.log and SSL. log that captures HTTP and TLS-based traffic.
HTTP and TLS-based traffic constitutes the majority of campus traf-
fic and are majorly used by malware C2 connections [24]. Due to the
campus DNS configuration and caching mechanism (i.e., requests
sent to local subnet DNS servers are invisible to security analysts),
DNS logs do not preserve the necessary time-series pattern for
beaconing detection, and are not utilized in this work.

Traffic statistics. Table 1 summarizes the total volume of HTTP
and TLS-based traffic collected in the 10-month period (2020-06-01
to 2021-03-31) for both campus networks. Due to inevitable network
and machine failure, around 3% of the traffic is missing from the
datasets. In total, 75.23 billion connections are collected from both
campus networks.

3.2 Beaconing Detection System Overview

Our beaconing detection system runs in the data storage and com-
puting center, where it receives logs daily as illustrated in Figure 2.
The system has two key steps: (i) a periodicity detection component
to reconstruct time series signals via global analysis and identify
periodic domains, and (ii) a semi-supervised learning and ranking
pipeline to detect malicious beaconing activities among the periodic
domains with limited human involvement.

Aggregation-based periodicity detection. We aggregate traf-
fic per server across all devices in both campus networks to con-
struct time series that provides a more comprehensive view than
using individual devices or individual campus networks alone. We
further develop a novel algorithm based on Empirical Mode De-
composition (EMD) [34] and frequency-domain signal processing
techniques to compensate for the noise due to aggregation. We
describe the details of the algorithm and evaluate its efficacy using
both simulated signals and real-world campus traffic in Section 4.

Table 1: Total volume of traffic logs.

Log Size . Data
Log : Connections

(gzipped) Coverage
Camopusi HTTP 0.8 TB 8.92B 96.97%
P SSL | 38TB 34.05 B 97.56%
Campus?2 HTTP 0.8 TB 7.82B 97.22%
pu SSL | 227TB 24.44B 97.02%

Total - 7.6 TB 75.23 B -

Semi-supervised learning and ranking. Given the sheer vol-
ume of traffic produced by two campus networks, we develop a
multi-phase semi-supervised learning pipeline, including (i) a novel
self-training phase to tackle the highly-imbalanced dataset and
mitigate model bias, and (ii) an active-learning phase to rank bea-
coning domains from the most to the least suspicious and continu-
ously "learn" the accuracy of the top-ranked domains from various
sources with minimal human involvement. We describe the pipeline
in further detail in Section 5.

3.3 Threat Model

Adversaries may compromise end host machines within a target
network. Infected machines (bots) periodically contact the external
C&C server(s) to report their status, request instructions, or convey
other information based on the logic of the installed malware. The



ACSAC °23, December 04-08, 2023, Austin, TX, USA

border routers at which our data is collected are not compromised,
nor is the secure computing center where anonymized network
traffic data is stored and analyzed.

4 PERIODICITY DETECTION

We describe our simple yet novel time-series aggregation algorithm
in Section 4.1. To mitigate the increased noise introduced by ag-
gregation, we innovatively employ Empirical Mode Decomposition
(EMD) to smooth the signal, and then uncover the hidden period-
icity using traditional Fourier analysis. We compare our proposed
algorithm with several representative works using both synthetic
and real-world traffic in Section 4.2, and end this section by demon-
strating the efficacy of global analysis in Section 4.3.

4.1 Algorithm Description

The theory behind the success of the aggregation-based time-series
analysis is that the summation of multiple discrete periodic signals,
regardless of the time intervals, is still periodic [66]. This property
allows us to reconstruct a comprehensive server-side temporal
pattern even when the compromised hosts exhibit different periodic
patterns.

Time series aggregation. The communication pattern between
a client (IP) C; and a server (FQDN) S; is represented by an integer
sequence X;; = {x;j;j[n]}, where x;;[n] represents the count of con-
nections from the client C; to the server S; at time interval n. Let
C be the set of clients connecting to server S;, the communication
behavior of server S; is represented by S; = 3¢, cc Xij. Let S;.(Ok)
be the min-max normalized time series of server S; in organiza-
tion Oy, and O be the set of all organizations, the aggregated time
series for server S; is defined as the min-max normalization of
2.0€0 S}(Ok). Figure 3a shows the fine-grained time-series recre-
ation examples to server www.youtube.com in one campus, and
Figure 3b illustrates the aggregated time series of the same server
across all users at both campuses.

Comparing to fine-grained detectors, we only use IP address as
a proxy to represent a user for coding implementation and do not
differentiate between or rely on the actual devices behind each
specific IP since only server-side time series are analyzed in the
following periodicity discovery process.

Pattern decomposition. While server-based aggregation over-
comes the host-tracking challenge described in Section 2, it in-
troduces larger noises. To tackle the problem, we innovatively
employ EMD to de-noise the aggregated signals. Unlike common
Fourier/Wavelet transform, EMD is a multi-resolution adaptive
method that requires no a priori knowledge. Although EMD has
been applied to disciplines like biomedical science [59, 61] and solar
physics [38], to the best of our knowledge, we are the first bringing
this algorithm to a novel usage on network data.

The key component of EMD is to decompose the raw signal into
a collection of intrinsic mode functions (IMFs) through an iterative
procedure called sifting [34], described as below:

(1) At iteration n, find the local extrema in the signal f(¢), where
f(t) is the raw time series of server S; at the initial iteration.

(2) Fit the local maxima and minima with an upper and a lower en-
velope using B-spline function, denoted respectively as Ey (t)

568

Y. Zhang et al.

and Ej,,,(t), and compute the mean envelope Egyq(t) as the
arithmetic average of Eyp(t) and Ejy,, (1).

(3) Assign the residual signal as the difference between the signal
and the mean envelope, i.e. R(t) = f(t) = Equg(2).

(4) Check if the residual signal satisfies the stopping criterion
>t (Mt)(_—[fz(t))z < €, where € = 0.05. When satisfied, we assign
the IMF imf ,(t) < R(t), f(t) « f(t)—imf,(t),andn =n+1.
Otherwise, we update the signal with f(t) < R(t).

(5) Next, we repeat steps from 1 to 4.

We adapt the sifting process to our scenario. We characterize the

communication pattern of server S; with its first extracted IMF,

denoted as I}, for subsequent analysis. Figure 3¢ shows an example

case of extracted I;.

l.l l A it il
Lmumhm .l..Ju.ln.mmmmmJn

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

o O oo

Connections

(a) Example of fine-grained time series.

_ 10
5
Sos MMWWWMM
*

0000 0300 0600 09:00 1200 1500 18:00 21:00 00:00

Time

(b) Aggregated time series.

0.2
£ 00 WM%WWWM
-0.2

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time

(c) Extracted first IMF.

Figure 3: Time series construction, aggregation and pattern
decomposition for “www.youtube.com”.

Periodicity uncovery. Next, we adopt two signal processing
techniques - Discrete Fourier Transform (DFT) analysis and Auto
Correlation Function (ACF) verification - to detect periodic activi-
ties [33, 64, 82].

We first employ the permutation-based approach [33] to identify
candidate periods. Let I’ be a random permutation of the original
signal Ij. The random shuffling process destroys any periodicity
residing in I}, and thus even the maximum power of IJ’., denoted as
Pimax» does not indicate any periodicity. We repeat the permutation
100 times, and define the power threshold (pr) as the 95th largest
Pinax (95% confidence level). Next, we extract any frequencies with
power exceeding the threshold pr in the periodogram P(f;) of
the original signal I;, and compute their corresponding period
candidates P. The original signal is considered non-periodic when
no valid frequency is found. We further filter out period candidates
caused by high frequency noise, by removing any periods P; < Imin,
where Iy,ip, is the minimum time interval between two consecutive
timestamps in the original time-series.

The final step is to verify the candidate periods # using ACF that
measures the similarity between a time series and a delayed copy
of itself. For each candidate period $; € $, we consider it the true
period of the original signal if its ACF(%;) is the local maximum.
The original signal I; without any valid periods found after the



Global Analysis with Aggregation-based Beaconing Detection across Large Campus Networks

ACF verification process is considered as a non-periodic signal, and
will be discarded.

4.2 Algorithm Evaluation

We conduct two sets of experiments (synthetic signal and real-

world traffic evaluations) to compare the periodicity detection per-

formance of our new algorithm with several representative stud-

ies [4, 14, 19, 32, 33, 37, 88], involving four classic methodologies

(Table 2):

o STATS-based [88]: A statistic-based detection algorithm that com-
putes the standard deviation and the mean of time intervals.

e UPNSCA [37]: A pure DFT-based beaconing detection algorithm.

o BAYWATCH [33]: An algorithm combining periodogram analysis,
ACF, and assumption testing.

o RobustPeriod [84]: A periodicity detection methodology leverag-
ing wavelength transformation (WLTrans).

Table 2: A comparison of recent representative works.

Paper Statistics | DFT/PSD | ACF | WLTrans | EMD
14, 32, 88] v
4] v

[
[
[19, 37]
[
[

33] v
84]
This

ANRNRNAN

v
v v
v v

We implement STATS-based, UPNSCA, and BAYWATCH using Python,
and use an unofficial open-source RobustPeriod Python implemen-
tation [63] in the following experiments.

4.2.1 Synthetic data evaluation. Due to the absence of ground

truth in real-world data, we follow the standard evaluation pro-

cess [33, 64, 82, 84] to assess the accuracy of the algorithm using
synthesized data. We simulate three types of noises to emulate net-
work disruptions and adversary counter-measurement strategies,

e.g., injecting randomness and dropping connections, using a time

series with a 10-minute period as the baseline.

o Gaussian Noise (G) introduces randomness by shifting the beacon-
ing activity time using a noise drawn from Gaussian distribution
N (0, 02), with the standard deviation ¢ varying from 0% to 50%
of the original periods P.

o Insertion Noise (I) injects random events following a Poisson
process distributed around the original beaconing activity within
a time span varying from 0% to 20% of period P. We introduce
this noise based on the observation [33] that, in real-world traffic,
each beacon consists of a cluster of multiple connections within
a short period, rather than a single connection.

o Omission Noise randomly drops each connections with the prob-
ability O, simulating logging failures or attackers intentionally
disrupting connections to destroy periodic pattern.

We generate 100 independent time series for aforementioned noise

types, and measure the detection rate y; = {35 for all algorithms,

where m is the number of time series successfully detected under
each noise configuration.

Results. Figure 4 illustrates performance of periodicity detection
algorithms against various noise levels for 10 minutes periodicity.

569

ACSAC °23, December 04-08, 2023, Austin, TX, USA

The detection rates of STATS-based and UPNSCA drop dramatically
to 0 with a low noise level (2%) in all three setups, showing the
inability of the two algorithms to identify periodicity with even
tiny manipulation. Our algorithm outperforms all other algorithms
in all experimental setups.

4.2.2  Real-world traffic evaluation. We next evaluate the above
methods using one month (June 2020) of real-world HTTP traffic
collected at Campusl.

Results. The unofficial implementation of RobustPeriod [63]
typically requires around one minute to process a single time series
(while ours completes the task in just 0.03 seconds). Given the daily
volume of more than 58,000 HT TP FQDNSs, we deem it unfeasible for
practical real-world applications and therefore exclude it from our
assessment of real-world traffic. Our method detects 13,839 unique
periodic FQDN5s (27.6% more as compared to BAYWATCH). Both
STATS-based and UPNSCA detect 0 periodic domains suggesting
their incapability of detecting periodicity in noisy real-world traffic.

Case study. Figure 5 shows the real-world beaconing activi-
ties from a malvertising campaign discovered in Campus1 (details
in Section 7), where our algorithm detects either a 4-minute or
10-minute periodicity for the campaign-related domains. We note
that these time intervals are not strictly periodic but rather dis-
tributed around the actual periodicity. This observation highlights
the importance of designing noise-tolerant periodicity detection
algorithm and further demonstrates the robustness of our system.

Takeaway. Our periodicity detection algorithm outperform re-
cent and classic periodicity detection methods in both experiments,
demonstrating its effectiveness in identifying periodic signals in
real-world campus network.

4.3 Efficacy of Global Analysis

We demonstrate the effectiveness of global analysis by running our
proposed algorithm on daily HTTP and TLS traffic collected at two
campus networks from June 2020 to April 2021. Note that we focus
on detecting all periodic domains instead of malicious ones in this
section. We will identify malicious periodic domains in Section 6.

Dataset notations. We construct four datasets as illustrated in
Figure 6. In "Local" (LC1/LC2), traffic is analyzed separately at the
two campus networks. In "Global" (GC1/GC2), traffic is aggregated
on shared domains (if any) across the campus networks. Take GC1
dataset as an example, GC1 contains time series for domains (i)
only observed at Campus 1 and (ii) observed at both Campus 1 and
2, where the traffic is aggregated to construct the time series. Note
that the GC1 dataset has the same number of domains as the LC1
dataset, but each domain’s global time-series may differ from the
local time-series due to the process of aggregation.

Experimental setup. We deploy our proposed method on time
series reconstructed in aforementioned four network datasets. To
mimic the daily operations of a SOC, we collect and analyze the
data every 24 hours during the 10 months period (June 2020 to April
2021). Our periodicity detector is deployed in a virtual machine
with a 16-core 2.1GHz Intel Xeon Processor and 64GB memory. On
a daily basis, the entire detection takes around 2 hours to identify
periodic domains at both campuses.

Results. As shown in Table 3, we detect significantly more
periodic domains in the "Global" datasets where time series are



ACSAC °23, December 04-08, 2023, Austin, TX, USA

e STATS-BASED UPNSCA o

oNhO®C

Detection Rate
[eNeoNeoNoNeN

30
Gaussian Noise Ratio (%)

10 20 40 50 0

BAYWATCH o

50
Omitting Probability (%)

Y. Zhang et al.

RobustPeriod e Our Proposed

—o—9

4 8 12 16 20
Insertion Noise Ratio (%)

100 0

Figure 4: Comparison with existing algorithms. All subfigures have a shared y-axis representing the detection rate. In each
of the three configurations, both STATS-based and UPNSCA detection rates exhibit a significant decline when subjected to
low noise levels (2%). In the insertion noise simulation (on the right), both RobustPeriod and our proposed method achieve a
100% detection rate. However, our algorithm excels in accurately identifying the periodicity as 10 minutes, while RobustPeriod

erroneously reports it as 5 minutes.

Percentage
o o
N e

o
o

20 40
Minute

30

o

10

Figure 5: Time intervals observed in a malvertising cluster.

Local | Global
Lc1 i -
| CopusiiiEampus2 >

Figure 6: Dataset notation. Domains observed exclusively in
one campus is not shared to the other campus.

GC2

aggregated across two campuses. Specifically, we detect 43.13%
and 66.48% more periodic domains in GC1 and GC2, respectively,
as compared to using time series from a single local network. Note

Table 3: Average count of distinct FQDNss per day.

LC1 LC2 GC1 GC2
Periodic 12,246 9,190 17,528 15,310
Total 514,777 357,644 514,777 357,644

that domains observed exclusively in one campus are not shared
with the other campus. Therefore, the global datasets (GC1/ GC2)
contains the same number of FQDNss as the local ones (LC1/ LC2).
The global detection benefits from the aggregation of FQDNSs that
are mutually visited by the two campus networks. We quantify the
improvement by measuring the maximum spectrum power of time-
series in LC1 and GC1 datasets. We find that more signals in the
global dataset have higher spectral power (Figure 7), indicating a
stronger dominant frequency in the signal and a higher probability
that the signal is periodic. This suggests that the time-series at each
individual network is likely inaccurate due to the incomplete profile
of network communication patterns.

570

E‘ r :"1 [__Qist

o GC1

£ %

o -

& 0.00 : |_| ] b - ,
10! 10! 10° 10° 107

Max Power Spectrum Density (V#+2/Hz)

Figure 7: Maximum spectrum power comparison.

Takeaway. By aggregating signals across campus networks, we
are able to detect 43% and 66% more periodic domains compared
to detecting within Campus 1 or Campus 2 alone, respectively,
suggesting the effectiveness of global analysis.

5 LEARNING AND RANKING PIPELINE

From Section 4.2.2, we see that more than 15K periodic FQDNs
are detected daily in both campus networks. As it is impractical
to manually investigate such a large number of cases for mali-
cious activities, we develop a semi-supervised learning and ranking
pipeline that ranks daily periodic domains from the most to the
least suspicious, addressing challenges below.

Limited ground-truth labels. Given that real-world campus
traffic lacks ground truth labels [30], we use VirusTotal [81] as an
alternative to label a small portion of the dataset. In particular, we
sample and query about 15% of all periodic domains in the starting
phase of our training pipeline. VirusTotal is a threat intelligent
platform that provides integrated malware labels, and is widely
adopted in research community [93]. Lacking ground-truth labels
is a common issue in the security domain that downgrades model
performance [1]. To this end, we develop an active-learning pipeline
to continuously learn from experts and improve model performance
throughout the time.

Highly-imbalanced datasets. Network data is intrinsically
highly-imbalanced; it mostly comprises benign or unknown connec-
tions with very few confirmed malicious cases. In total, we obtain
more than 200K valid responses from VirusTotal, of which only 2.8%
were flagged as malicious. Such highly-imbalanced datasets lead to
critical training issues like model bias in favor of the majority (be-
nign) class. We tackle this challenge by introducing a self-training
phase prior to the active-learning pipeline in order to automatically
re-balance the label distribution.



Global Analysis with Aggregation-based Beaconing Detection across Large Campus Networks

ACSAC °23, December 04-08, 2023, Austin, TX, USA

The final model in the self-training phas

| Dataset MI Model |

1. Periodicity detection

Unknown periodic

Self-Training Initiation Phase \ Daily Active-Learning Deployment Phase \
elis

the initial deployment model. Model

3. Run existing model to get predictions

5a. Model is retrained based on feedbacks

Updating Predicting

network activities

| Pseudo-labels |<—‘ Predictions |
Sampling

Features

1

2. Extract features

| Data;ases (labels, history, graph, etc.)

| Top Ranked
Prediction Results
4. Top-ranked

l Oracle
[ ]
]
Analyst
predictions are

queried on VirusTotal

- AN

5b. Newly labeled samples are updated

or manually analyzed /

Figure 8: Two-phase learning and ranking pipeline. In the initiation phase, we employ self-training technique [83] with our
new sampling strategy. We then deploy the model trained in self-training phase in active-learning framework to continuously

improve the detection performance.

5.1 Feature Extraction

We integrate historical and topological data, along with our novel
periodicity-based features, to provide a distinctive understanding
of domain behavior and extract a comprehensive set of 70 features
(elaborated in Appendix D), which we explain as follows:

o Periodicity-based features. To the best of our knowledge, we
are the first to track the reputation of each periodicity and com-
pute the overall statistics to depict behavior of domains with
similar temporal patterns.

e Graph-based features. We utilize the Neo4j database [57] to
construct a network graph by connecting periodic FQDNs via
shared IPs and second-level domain names. For each periodic
FQDN, its graph-based features summarize the neighboring be-
havior, such as the topological distance between one domain and
its nearest malicious neighbors.

o Historical features. For both graph-based and periodicity-based
features, we measure their historical statistics using a 10-day
and 30-day sliding window respectively. These window sizes
are determined to maintain the databases in a reasonable size
without degrading the computing performance.

o Other features. We also extract widely adopted features such
as entropy and domain popularity scores.

5.2 Pipeline Description

An overview of our two-phase learning and ranking pipeline for
detecting malicious beaconing activities is illustrated in Figure 8. In
the initial phase, we employ CReST [83], a self-training technique,
along with our novel sampling strategies, to address the imbalanced
dataset challenge. In the subsequent phase, we implement an active-
learning framework, typically used when ground truth labels are
limited [70], to continuously update the model and detect daily
malicious beaconing activities.

Model definition. We use a 4-class random forest classifier [15]
in both phases. Each class corresponds to the number of VirusTotal
engines (#MalEng) that detects a specific domain as malicious (i.e.,
classes 0-3). All domains with #MalEng >= 3 are classified as class 3.
Given our observation that some benign websites are mis-classified
as #MalEng = 1 on VirusTotal, we consider a domain malicious
when its #MalEng >= 2. In other words, the higher the #MalEng is,
the more likely that the domain is malicious.

571

Self-training phase. We employ CReST [83] training process as
shown in Figure 8 on the left. Our initial dataset consists of 10-day
periodic domains, comprising a total of 44K unique FQDNSs, out
of which 106 domains are malicious based on labels from Virus-
Total (#MalEng >= 2). Prior study [83] observes that training the
model on a highly-imbalanced dataset generates high-precision
predictions for the minority classes. Utilizing this property, we
improve the model performance by iteratively retraining it with
“pseudo-labels” sampled from predictions of non-dominant classes.
To mitigate mislabeling issues of VirusTotal, we develop a new sam-
pling strategy: (i) the sampling rate & = 1 is applied to predictions
with #MalEng >= 2, as larger classes indicate a more malicious be-
havior, (ii) @ = 0.05 is used for non-benign samples (i.e. class 1), and
(iii) o = 0 is set for benign samples (i.e. class 0). We iteratively train
the model till no further “pseudo-labels” are predicted or sampled,
and deploy the trained model in the next active-learning phase. We
demonstrate the efficacy of our self-training process in Appendix A.

Active-learning phase. We design a daily active-learning frame-
work (Figure 8 on the right) to reduce model performance degrada-
tion caused by the lack of ground-truth labels. The iterative process
is: (i) we perform periodicity detection on collected network data
daily, (ii) we extract features of the periodic FQDNs and run the
model for prediction, (iii) based on prediction results, we rank the
FQDNs and send top-ranked suspicious ones to the oracle for feed-
back, and (iv) we retrain the model and update databases based on
the feedback. Specifically, the ranking algorithm is based on two
criteria: (i) the prediction probability of an FQDN being malicious
(predicted as class 2 or 3), and (ii) whether this FQDN has been seen
and verified in the past. For example, a new FQDN predicted as class
3 with high model confidence will be assigned the highest priority
when sent to the oracle. Our oracle consists of automated VirusTo-
tal querying and manual verification, performed by two domain
experts. When the prediction result differs from the VirusTotal label
(e.g., predicted as malicious while labeled as benign on VirusTotal),
the case will be sent to the domain experts for manual verification
through online security reports such as MalwareBytes [53] and
ThreatCrowd [79]. The two domain experts will compare their find-
ings for consistency. We evaluate the pipeline including verification
process in Section 6.1.



ACSAC °23, December 04-08, 2023, Austin, TX, USA

In summary, self-training phase is performed only once dur-
ing the initiation, while active-learning and ranking pipeline are
executed and updated continuously each day.

6 EVALUATION

We evaluate our beaconing detection system on 10 months (June
2020 to April 2021) traffic from two campus networks in both local
and global setups, as follows:

o User-centric performance: Given the resource constraint in
real-world SOC operations, the primary goal is to minimize False
Positives and to maintain a reasonable number of cases for man-
ual verification. In other words, it is more important to prioritize
truly malicious activities for SOC analysts instead of targeting to
minimize False Negatives. Such preference has been confirmed
in recent studies that interviewed security analysts [3, 39].

e Overall model performance: we supplement the above evalua-
tion by obtaining labels for all domains, which enables evaluation
on overall model performance using metrics including accuracy,
precision and recall. However, given the sheer amount of traffic,
it is unrealistic to query all domains on VirusTotal for the whole
10 months. Thus, we randomly sampled 10% data from Jan. to
Apr. 2021 (last 3 months of evaluation where the model is more
stabilized) for this evaluation.

In addition, we analyze the model performance with its most impor-

tant features to provide further insights. Furthermore, we quantify

the pipeline’s capability on detecting new malicious domains ahead

of VirusTotal (Section 6.2).

Note that we do not compare our final results to the aforemen-
tioned four periodicity detection algorithms. STATS [88] and UP-
NSCA [37] fail to identify any beaconing domains in real-world
campus network; BAYWATCH [33] uses HTTP URL to classify ma-
licious activities, making it infeasible for TLS traffic (the dominant
traffic in campus); and RobustPeriod [84] does not perform any
anomaly detection and runs way too slow on large volume datasets.

6.1 Global Pipeline v.s. Local Pipeline

We run two active-learning pipelines on our datasets, defined as:

o Global pipeline: aggregating traffic signals and computing fea-
tures using global datasets (GC1/GC2).

o Local pipeline: aggregating traffic signals and computing features
only within each campus network, i.e., LC1/LC2.

We use 20 days of traffic to build graph database, and 10 days for self-

training initiation. Starting 2020-07-01, the daily traffic is processed

through the two active-learning pipelines.

Runtime. Zeek logs are generated in real time at the network
border, anonymized and transferred to the data center on a daily
basis, where we perform our daily analysis in 3-4 hours (2 hours for
periodicity detection, and 1 hour for feature generation and model
prediction).

Results. Figure 9 shows the detection results for both local
(LC1) and global (GC1) pipelines during the 9-month period in
Campusl. We observe similar results for Campus 2, which is shown
in Appendix B. Three drops (2020-09-26, 2020-12-05, and 2020-12-
23) in the figure are due to network/machine failures during the
data collection. We also notice the lower volume of traffic during
summer and winter breaks.

572

Y. Zhang et al.

Each line in the graph corresponds to the following:

o (Global) Detected cases: total number of detected domains per
day using the global pipeline.

o (Global/Local) Malicious cases (verified): among the detected
cases, the number of cases that have been verified as malicious
on VirusTotal as of March 2022.

o (Global/Local) Malicious cases (original): among the detected
cases, the number of cases that were labeled as malicious on
VirusTotal on or close to the day of detection.

User-centric performance (detected cases and FP). Table 4
summarizes average daily statistics of detection results for both
local and global pipelines. The global pipeline detects an average of
65.32% more malicious domains per day than the standalone local
pipeline with an accuracy of 93.49%. On a daily average, 3-5 false
positive cases in top-ranked results cannot be verified by the time
of detection, corresponding to 7% and 6% of top-ranked alerts in
local and global pipelines, respectively.

At the end of evaluation, the local pipeline detects 1,147 unique
malicious domains, among which 610 (53.1%) were not flagged on
VirusTotal at the time of detection but are updated as malicious
later in time. The global pipeline identifies 1,387 unique malicious
domains, among which 781 (56.3%) were not flagged on VirusTotal
at the time of detection but are updated as malicious later. In total,
the global pipeline detects 240 unique malicious domains that are
invisible in the single network evaluation.

Table 4: Average daily detection.

Local Pipeline  Global Pipeline  Diff.

Detected 46.93 77.15 30.22
Malicious (Original) 28.79 42.44 13.65
Malicious (Verified) 14.84 29.69 10.22
Malicious (Total) 43.63 72.13 28.50
Unknown 3.30 5.02 1.72
Accuracy 92.97% 93.49% -

User-centric performance (cases for manual verification).
We measure the number of cases in the global pipeline that require
manual verification to evaluate the level of necessary human in-
volvement in our experiments. On average, 10 cases are reported
to analysts (oracle) for further investigation per day. Throughout
the experiments, on 73% of the days, the pipeline generates 10 or
fewer cases for manual verification.

Table 5: Global pipeline scores.

Accuracy Precision Recall
Original Analysis 0.9957 0.9464 0.9969
Retrospective Analysis 0.9701 0.9675 0.9701

Overall model performance. We report model performance in
Table 5. As mentioned previously, we randomly sampled 10% of all
domains from the last 3 months (Jan-Apr 2021) to query VirusTotal
due to the sheer number of domains in our dataset. Original analysis
shows the average daily model scores of the global pipeline model
based on VirusTotal query results during Jan-Apr 2021. We further
conduct a retrospective analysis in December 2022, roughly 2 years
after the original detection, to re-query the same set of domains.



Global Analysis with Aggregation-based Beaconing Detection across Large Campus Networks

Il (Global) Detected cases
125 Il (Global) Malicious cases (verified)

I (Global) Malicious cases (original)
(Local) Malicious cases (original)

ACSAC °23, December 04-08, 2023, Austin, TX, USA

(Local) Malicious cases (verified)

100

75

Counts

50

25

%020-07

2020-08

2020-09 2020-10

2020-11

ol ket

2020-12 2021-01 2021-02 2021-03 2021-04

Figure 9: Comparison of active-learning and ranking based detection. X-axis shows the date, and y-axis shows the count of
FQDNSs. Three drops (2020-09-26, 2020-12-05, and 2020-12-23) are due to network/machine failures during the data collection.
The red area illustrates the daily detected cases by the global pipeline. The light blue area depicts the count of cases that can be
verified on or close to the day of detection, and the dark blue area shows the amount of cases that can be verified as of March
2022. Yellow and orange lines are the baseline results in the local pipeline.

We can see that the model scores remain high. Although only 10%
data is sampled, we calculate the margin of error below 1% with
95% confidence interval.

Table 6: Most important 10 features.

Rank Global Local
1 avglen2malFQDN avgMalEng
2 minlen2malFQDN maxMalEng
3 maxlen2malFQDN max_ipDomMalEng
4 dom_level avglen2malFQDN
5 subdom_entropy minMalEng
6 dom_subcent minlen2malFQDN
7 occ malENG_ratio
8 freq maxMalEng
9 cisco_max_period malFQDN_ratio

—_
(=1

hist_malscore_mean_period cntFQDN

*Detailed feature descriptions can be found in Appendix D.

Model interpretation. Table 6 lists the key features ranked
by their Gini importance. The features presented in bold depict
domain behavior at a broader topological and temporal scale, while
the remaining features focus more on small-scale behavior. For in-
stance, avglen2malFQDN measures the average topological distance
between one periodic FQDN and all connected malicious nodes
within four hops in the graph database. On the other hand, avg-
MaxEng only calculates the maliciousness of FQDNs that share the
same second-level domains (one-hop neighbors). The global model
also assigns greater weights on the periodicity features such as
cisco_max_period and hist_malscore_mean_period that measure the
popularity and historical maliciousness of the detected domain’s
period. Given that the global pipeline significantly outperforms
the local pipeline, these observations emphasize the importance on
characterizing topological and temporal patterns of domains for
enhanced identification of suspicious beaconing activities.

6.2 Assessing VirusTotal’s Searching Delay

Previous research [60] illuminate the differentiation between Virus-
Total’s querying and scanning mechanisms, while also quantifying
the inherent delay within VirusTotal through active scanning of

573

38 phishing websites. More specifically, a search request involves
querying the VirusTotal database for its latest scan results, whereas
a scan request triggers vendors to scan the requested website. Nev-
ertheless, conducting active scans for every domain becomes im-
practical within a campus environment, primarily due to the sub-
stantial volume of network traffic and budgetary constraints. In
practice, campus Security Operations Centers (SOCs) typically com-
mence their investigations by first identifying suspicious targets
and subsequently performing VirusTotal searches to gather addi-
tional information.

The operational dependence on VirusTotal has prompted us to
investigate the extent of detection delay when using VirusTotal’s
search mechanism.

v First Detection ® Last Benign Query m  First Malicious Query
202111 L i
2021-09 @ m ] upper bound Q@
2021-07
2021-05

()
2021-03 ® T® .
2021-01 lower bound | \% v
2020-11 Ly.
2020-09 v v
2020-07

domA domB domC domD domE domF

Figure 10: Example of early detection. We use short names
for domains here and show actual domain names in Table 8.

Methodology. To answer the forementioned questions, we re-
trieve three important dates of domains that fall within the category
represented by the dark blue area in Figure 9. These domains were
not initially identified as malicious by VirusTotal at or immediately
after our system’s detection, but were later updated as malicious.
We explain the three dates as follows:

o First Detection Date: the date when our system first detected
the domain as malicious.

o Last Benign Query Date: the latest date that we receive a
benign label from VirusTotal for a given domain.

o First Malicious Query Date: the date when we initially observe
the domain classified as malicious on VirusTotal.



ACSAC °23, December 04-08, 2023, Austin, TX, USA

We acknowledge that acquiring the precise date when a domain
shifts from benign to malicious on VirusTotal poses challenges, pri-
marily because we are unable to perform daily queries continuously
due to query limitations.

With the three important dates, we can compute the upper bound
and the lower bound to provide an estimate on the number of days
that VirusTotal lags behind our system. This estimation is presented
in Figure 10 and is described as follows:

e Lower bound: the difference between the First Detection Date

(yellow triangle) and the Last Benign Query Date (blue circle).

o Upper bound: the difference between the First Detection Date

(yellow triangle) and First Malicious Query Date (red square).

In other words, for a given malicious domain, the lower bound
measures the minimum number of days that our system detects
ahead of VirusTotal, while the upper bound measures the maximum.

@ 100| B upper_bound
5 3 lower_bound
[e]
(@]
=z 50
[=]
(e
e

0

0 100 200 300 400 500
# Days

Figure 11: Searching delays of VirusTotal.

Results. We successfully retrieved the three important dates for
509 distinct malicious domains detected by our system. Our failure
on retrieving the remaining cases is due to the lack of Last Benign
Query as those domains return with a “malicious” label in the first
query on VirusTotal. Table 7 shows statistics on the upper and lower
bound, and Figure 11 shows the histogram for all 509 domains. On
average, the number of days that VirusTotal lags behind our system
falls between 211 and 414 days.

Table 7: Statistics on the upper and lower bound.

Min. Max. Mean Stdev.
Lower Bound 15 374 211.44 70.35
Upper Bound 248 526 41445  65.63

Takeaway. VirusTotal’s search mechanism exhibits an average
delay of at least 211 days in comparison to our system.

7 CASE STUDIES

We now take a deeper look into malicious cases detected by our
system. We start with dissecting the 6 example domains shown in
Figure 10 that are detected by our system earlier than VirusTotal,
shown in Table 8. We find that they belong to different categories
or malware families (identified by online threat intelligence plat-
forms), with the top two being NjRAT and Malvertising, which we
investigate next.

Malvertising network. Our system detects 46 domains belong-
ing to the same malvertising cluster. The 46 domains periodically
connect to two IPs, 216.21.13.14 and 216.21.13.15, which are found
to be malicious by threat intelligence platforms [46, 47]. All the 46

574

Y. Zhang et al.

Table 8: Verified malicious detections.

Short Domain Name #. MalENG Category
domC  regul[...]Janr{dot}top 8 NjRAT
domE  omareeper{dot}com 7 NjRAT
domD  dmnsg{dot}com 5 Malvertising
domB  outseeltor{dot}com 3 Fraud
domA catest[...]ray{dot}com 3 Adware
domF  6v5f31{dotjcom 1 Browser hijacker

domains are DGA-formatted, with an average lifetime of 1 day. The
complete set of domain names are shown in Appendix C Table 10.
Our system successfully uncovers either a 4-minute or 10-minute
periodicity for the majority of these domains, as discussed in Sec-
tion 4.2, demonstrating the robustness of our system in detecting
periodicity even in the presence of noises.

NjRAT. We detected an NjRAT [45] and riskware-involved clus-
ter, consisting of 65 distinct malicious domains and 52 distinct IPs
in 4 subnets (/24) hosted in Netherlands and the United Kingdom.
Among the 65 domains, 30 (46%) are already identified as malicious
by VirusTotal since the beginning, while 33 (51%) are first detected
by our pipeline and later verified through VirusTotal and manual
analysis. We show the detailed cluster in Figure 14 in Appendix C.

8 RELATED WORK

Prior work focusing on detecting botnet C&C communications
through periodic behavior fall into three categories: statistical anal-
ysis, spectral analysis, and machine-learning based approaches
with temporal features. Statistical analysis [25, 28, 29, 32, 72] de-
tects beaconing activities by computing statistics of time intervals
between consecutive connections, whereas spectral studies [4, 6,
33, 37] analyze the time-series in frequency domains utilizing DFT
and periodogram. Researches that adopt machine-learning tech-
niques [12, 14, 51, 78] extract features from communication patterns
and combine artificial intelligence to classify periodic activity. Be-
sides beaconing, periodicity detection has also been widely studied
in signal processing and data mining areas to identify similarities
in data over time [21, 22, 51, 52, 64].

Though the lack of ground-truth labels remains a serious but
unexplored issue in network security, similar problems have drawn
attention in semi-supervised learning area. Assuming that the
ground-truth labels can always be obtained from teachers (oracles),
researchers studying active-learning proposed various querying
strategies to improve model performance [20, 31, 41, 44, 70, 71],
from which some techniques have also been adopted in network
intrusion detection and binary analysis [26, 27, 50, 69, 80, 87]. How-
ever, none of above studies demonstrate the model capability in
dealing with enormous amount of data captured from large-scale
campus networks. Meanwhile, other semi-supervised learning ap-
proaches [10, 11, 48, 49, 55, 67, 73, 85, 86] developed strategies such
as pseudo-labels to improve data quality without reaching to ex-
ternal resources. Although these algorithms have made significant
improvements in other research areas like computer vision, careful
design is required to adopt such techniques in network attack de-
tection. Besides above techniques, unsupervised classic clustering
methods, such as K-Nearest Neighbors (KNN), are also commonly



Global Analysis with Aggregation-based Beaconing Detection across Large Campus Networks

used to detect suspicious network activities in case of insufficient
labels [2, 68, 76, 77].

9 DISCUSSIONS

Applicability. Although our system is evaluated on Zeek HT TP
and SSL logs, it is generally applicable to other types of log and
traffic, e.g., UDP [74], as the core component of our beaconing
detection is based on time-series analysis on aggregated signals.
The beaconing detection algorithm can also be adapted to various
sampling frequencies and time scales to conduct hourly, daily, or
even weekly detection.

DGA. Attackers can leverage Domain generation algorithm
(DGA) to evade beaconing detection. In an extreme case, the C&C
server may use different hostnames for each connection, forcing
the system to generate a new time-series for each DGA domain.
However, such aggressive DGA behavior is rare in real-world sce-
narios as it increases the probability of C&C servers being detected.
In fact, researchers [13] have found that DGA domains typically
last for 1.2 days on average, which is more than sufficient for our
detection.

Privacy concerns in sharing campus traffic. While we have
successfully arranged data sharing between two campuses and we
believe such agreement can be extended to include more campuses,
we understand that some campuses may not be willing to share raw
Zeek logs due to privacy concerns. Our detection relies on aggre-
gated time series for external FQDNs, which means that campuses
can run our aggregation algorithm internally first, and only share
the aggregated time series which do not reveal any information on
individual connections. Such time series will then be aggregated
further across campuses.

Limitations. Our beaconing detection relies on the presence of
periodic beaconing activities (despite being incomplete, irregular,
or noisy), which is common in C&C communications. We cannot
detect all possible malicious domains or bot activities, especially
when the C2 communication is completely random. However, we
argue that our system is an effective approach in many cases: 1)
periodic beaconing is common in the majority of the botnets and
malwares [36], and 2) time-series analysis is a general method that
do not heavily rely on traffic metadata that require deep packet
inspection (DPI), which usually is not possible at campus networks.

Another limitation of the system is the reliance on the accuracy
of the “teacher” labels during the active-learning pipeline. Although
we have done our best in performing manual investigation when
there is discrepancy between the detection and the VirusTotal la-
bels, we are limited by the information we have access to and there
may still exist cases which are falsely labeled. One potential im-
provement is tighter collaboration with the SOC analysts, who have
access to more restricted/protected data that can help provide more
context to determine whether a newly-observed suspicious activity
is indeed malicious.

10 CONCLUSION

Our novel approach for detecting and ranking malicious beaconing
activities in large campus networks by utilizing aggregated signals
and innovative time-series analysis has demonstrated remarkable
efficacy. Through extensive evaluation in real-world scenarios, we

575

ACSAC °23, December 04-08, 2023, Austin, TX, USA

identified a significant increase in beaconing detection when com-
pared to single-network analysis. We believe that our work sheds
light on the efficacy of global analysis and we hope to draw the
attention of the community towards building a data sharing and
defending consortium.

ACKNOWLEDGMENTS

We thank the anonymous referees for their valuable comments and
helpful suggestions.

This work is supported by the National Science Foundation (NSF)
under Grant No. CNS-2154962 and CNS-2319421. The research re-
ported in this document/presentation was performed in connection
with contract number W911NF18-C-0019 with the U.S. Army Con-
tracting Command - Aberdeen Proving Ground (ACC-APG) and
the Defense Advanced Research Projects Agency (DARPA). The
views and conclusions contained in this document/presentation
are those of the authors and should not be interpreted as present-
ing the official policies or position, either expressed or implied, of
ACC-APG, DARPA, or the U.S. Government unless so designated
by other authorized documents. Citation of manufacturer’s or trade
names does not constitute an official endorsement or approval of
the use thereof. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] Sebastian Abt and Harald Baier. 2014. Are we missing labels? A study of the
availability of ground-truth in network security research. In 2014 third interna-
tional workshop on building analysis datasets and gathering experience returns for
security (badgers). IEEE, 40-55.

[2] Mohiuddin Ahmed and Abdun Naser Mahmood. 2015. Network traffic pattern
analysis using improved information theoretic co-clustering based collective
anomaly detection. In International Conference on Security and Privacy in Commu-
nication Networks: 10th International ICST Conference, SecureComm 2014, Beijing,
China, September 24-26, 2014, Revised Selected Papers, Part II 10. Springer, 204-219.

[3] Bushra A Alahmadi, Louise Axon, and Ivan Martinovic. 2022. 99% False Positives:
A Qualitative Study of {SOC} Analysts’ Perspectives on Security Alarms. In 31st
USENIX Security Symposium (USENIX Security 22). 2783-2800.

[4] Giovanni Apruzzese, Mirco Marchetti, Michele Colajanni, Gabriele Gambigliani
Zoccoli, and Alessandro Guido. 2017. Identifying malicious hosts involved in
periodic communications. In 2017 IEEE 16th International Symposium on Network
Computing and Applications (NCA). IEEE, 1-8.

[5] Ionut Arghire. 2022. QBot Malware Infects Over 800 Corporate Users in New,
Ongoing Campaign. https://www.securityweek.com/qbot-malware-infects-
over-800-corporate-users-new-ongoing-campaign/.

[6] Basil AsSadhan, José MF Moura, and David Lapsley. 2009. Periodic behavior
in botnet command and control channels traffic. In GLOBECOM 2009-2009 IEEE
Global Telecommunications Conference. IEEE, 1-6.

[7] Avast. 2023. Andromeda under the microscope.
andromeda-under-the-microscope.

[8] Avast. 2023. The Zeus Trojan — What It Is, and How to Remove and Prevent it.
https://www.avast.com/c-zeus.

[9] Michael Bailey, Evan Cooke, Farnam Jahanian, Yunjing Xu, and Manish Karir.

2009. A survey of botnet technology and defenses. In 2009 Cybersecurity Applica-

tions & Technology Conference for Homeland Security. IEEE, 299-304.

David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han

Zhang, and Colin Raffel. 2019. Remixmatch: Semi-supervised learning with distri-

bution alignment and augmentation anchoring. arXiv preprint arXiv:1911.09785

(2019).

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver,

and Colin Raffel. 2019. Mixmatch: A holistic approach to semi-supervised learning.

arXiv preprint arXiv:1905.02249 (2019).

Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda, and Christo-

pher Kruegel. 2012. Disclosure: Detecting Botnet Command and Control

Servers through Large-Scale NetFlow Analysis. In Proceedings of the 28th An-

nual Computer Security Applications Conference (Orlando, Florida, USA) (AC-

SAC ’12). Association for Computing Machinery, New York, NY, USA, 129-138.

https://doi.org/10.1145/2420950.2420969

https://blog.avast.com/

=
=

—_
—_

[12


https://www.securityweek.com/qbot-malware-infects-over-800-corporate-users-new-ongoing-campaign/
https://www.securityweek.com/qbot-malware-infects-over-800-corporate-users-new-ongoing-campaign/
https://blog.avast.com/andromeda-under-the-microscope
https://blog.avast.com/andromeda-under-the-microscope
https://www.avast.com/c-zeus
https://doi.org/10.1145/2420950.2420969

ACSAC °23, December 04-08, 2023, Austin, TX, USA

[13]

[14

[15]
[16

(18]

[19

[20

[21

[22

[23]

[24

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34

o
)

[36]

[37]

[38]

Leyla Bilge, Engin Kirda, Christopher Kruegel, and Marco Balduzzi. 2011. EX-
POSURE: Finding Malicious Domains Using Passive DNS Analysis.. In Ndss.
1-17.

Yessine Borchani. 2020. Advanced malicious beaconing detection through AL
Network Security 2020, 3 (2020), 8 — 14. https://doi.org/10.1016/S1353-4858(20)
30030-1

Leo Breiman. 2001. Random forests. Machine learning 45 (2001), 5-32.

CISA. 2020.  Qbot/Qakbot Malware Report. https://www.cisa.gov/
stopransomware/qbotqakbot-malware-report.

Angelo Comazzetto. 2011. Botnets: The dark side of cloud computing. Technical
Report. Technical Report, Bostan, USA.

AT&T Cybersecurity. 2021.  Stories from the SOC - Beaconing Activ-
ity. https://cybersecurity.att.com/blogs/security-essentials/stories-from- the-
soc-beaconing-activity.

Yael Daihes, Hen Tzaban, Asaf Nadler, and Asaf Shabtai. 2021. MORTON: Detec-
tion of Malicious Routines in Large-Scale DNS Traffic. In European Symposium
on Research in Computer Security. Springer, 736-756.

Sanjoy Dasgupta. 2005. Analysis of a greedy active learning strategy. Advances
in neural information processing systems 17 (2005), 337-344.

Mohamed G Elfeky, Walid G Aref, and Ahmed K Elmagarmid. 2005. Periodicity
detection in time series databases. IEEE Transactions on Knowledge and Data
Engineering 17, 7 (2005), 875-887.

Mohamed G Elfeky, Walid G Aref, and Ahmed K Elmagarmid. 2005. WARP: time
warping for periodicity detection. In Fifth IEEE International Conference on Data
Mining (ICDM05). IEEE, 8-pp.

Center for Internet Security. 2022. Top 10 Malware September 2022.
/[www.cisecurity.org/insights/blog/top- 10-malware-september-2022.
Sean Gallagher. 2021. Nearly half of malware now use TLS to conceal commu-
nications. https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-
now-use-tls-to-conceal-communications.

Frederic Giroire, Jaideep Chandrashekar, Nina Taft, Eve Schooler, and Dina
Papagiannaki. 2009. Exploiting temporal persistence to detect covert botnet
channels. In International Workshop on Recent Advances in Intrusion Detection.
Springer, 326-345.

Nico Gornitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. 2009. Active learning
for network intrusion detection. In Proceedings of the 2nd ACM workshop on
Security and artificial intelligence. 47-54.

Nico Goérnitz, Marius Kloft, Konrad Rieck, and Ulf Brefeld. 2009. Active Learning
for Network Intrusion Detection. In Proceedings of the 2nd ACM Workshop on
Security and Artificial Intelligence (Chicago, Illinois, USA) (AlSec "09). Association
for Computing Machinery, New York, NY, USA, 47-54. https://doi.org/10.1145/
1654988.1655002

Guofei Gu, Phillip A Porras, Vinod Yegneswaran, Martin W Fong, and Wenke
Lee. 2007. Bothunter: Detecting malware infection through ids-driven dialog
correlation.. In USENIX Security Symposium, Vol. 7. 1-16.

Guofei Gu, Junjie Zhang, and Wenke Lee. 2008. BotSniffer: Detecting botnet
command and control channels in network traffic. (2008).

Jorge Luis Guerra, Carlos Catania, and Eduardo Veas. 2022. Datasets are not
enough: Challenges in labeling network traffic. Computers & Security 120 (2022),
102810.

Yuhong Guo and Russell Greiner. 2007. Optimistic active-learning using mutual
information.. In IJCAI Vol. 7. 823-829.

Mackenzie Haffey, Martin Arlitt, and Carey Williamson. 2018. Modeling, analysis,
and characterization of periodic traffic on a campus edge network. In 2018 IEEE
26th International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS). IEEE, 170-182.

Xin Hu, Jiyong Jang, Marc Ph Stoecklin, Ting Wang, Douglas L Schales, Dhilung
Kirat, and Josyula R Rao. 2016. BAYWATCH: robust beaconing detection to
identify infected hosts in large-scale enterprise networks. In 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 479-490.

Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih,
Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, and Henry H. Liu. 1998. The
empirical mode decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series analysis. Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences 454, 1971 (March 1998), 903-995.
https://doi.org/10.1098/rspa.1998.0193

Dan Hubbard. 2022. Cisco Umbrella, The Cisco Umbrella 1 Million.
//umbrella.cisco.com/blog/cisco-umbrella- 1-million/

Ngoc Anh Huynh, Wee Keong Ng, and Hoang Giang Do. 2016. On periodic
behavior of malware: experiments, opportunities and challenges. In 2016 11th
International Conference on Malicious and Unwanted Software (MALWARE). IEEE,
1-8.

Ngoc Anh Huynh, Wee Keong Ng, Alex Ulmer, and Jérn Kohlhammer. 2016.
Uncovering periodic network signals of cyber attacks. In 2016 IEEE Symposium
on Visualization for Cyber Security (VizSec). IEEE, 1-8.

Hybrid-Analysis. 2023. Hybrid-Analysis. https://www.hybrid-analysis.com.

https:

https:

576

[39

[40

[41

[42

[44]

[45

[46

[47

(48

[50

[51

[60

[61

(62

[63]

Y. Zhang et al.

SANS Institute. 2019. Common and Best Practices for Security Operations
Centers: Results of the 2019 SOC Survey. https://www.sans.org/media/analyst-
program/common- practices-security-operations- centers-results-2019-soc-
survey-39060.pdf.

Interpol. 2020. ASEAN Cyberthreat Assessment 2020. https://www.interpol.int/
content/download/14922/file/ ASEAN_CyberThreatAssessment_2020.pdf.

Rong Jin and Luo Si. 2012. A bayesian approach toward active learning for
collaborative filtering. arXiv preprint arXiv:1207.4146 (2012).

Kaspersky. Last accessed: 2023. What’s behind APT29? https://www.kaspersky.
com/enterprise- security/mitre/apt29.

Sheharbano Khattak, Naurin Rasheed Ramay, Kamran Riaz Khan, Affan A. Syed,
and Syed Ali Khayam. 2014. A Taxonomy of Botnet Behavior, Detection, and
Defense. IEEE Communications Surveys Tutorials 16, 2 (2014), 898-924. https:
//doi.org/10.1109/SURV.2013.091213.00134

Punit Kumar and Atul Gupta. 2020. Active learning query strategies for classi-
fication, regression, and clustering: a survey. Journal of Computer Science and
Technology 35, 4 (2020), 913-945.
Malwarebytes Labs. 2023. Backdoor.NJRat.
detections/216-21-13-15/.

Malwarebytes Labs. 2023. Detections, 216.21.13.14. https://blog.malwarebytes.
com/detections/216-21-13-14/.

Malwarebytes Labs. 2023. Detections, 216.21.13.15. https://blog.malwarebytes.
com/detections/216-21-13-15/.

Samuli Laine and Timo Aila. 2016. Temporal ensembling for semi-supervised
learning. arXiv preprint arXiv:1610.02242 (2016).

Dong-Hyun Lee et al. 2013. Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks. In Workshop on challenges
in representation learning, ICML, Vol. 3. 896.

Yang Li and Li Guo. 2007. An active learning based TCM-KNN algorithm for
supervised network intrusion detection. Computers & security 26, 7-8 (2007),
459-467.

Zhenhui Li, Bolin Ding, Jiawei Han, Roland Kays, and Peter Nye. 2010. Mining
periodic behaviors for moving objects. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1099-1108.
Zhenhui Li, Jingjing Wang, and Jiawei Han. 2012. Mining event periodicity from
incomplete observations. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining. 444-452.

MalwareBytes. 2023. MalwareBytes. https://www.malwarebytes.com/.

Trend Micro. 2014. Threat Encyclopedia - CONFICKER. https://www.trendmicro.
com/vinfo/us/threat-encyclopedia/malware/conficker.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. 2018. Virtual
adversarial training: a regularization method for supervised and semi-supervised
learning. IEEE transactions on pattern analysis and machine intelligence 41, 8
(2018), 1979-1993.

Jose Nazario and Thorsten Holz. 2008. As the net churns: Fast-flux botnet
observations. In 2008 3rd International Conference on Malicious and Unwanted
Software (MALWARE). IEEE, 24-31.

Neo4j. 2023. Neo4j Graph Data Platform. https://www.neo4j.com/.

Alastair Nottingham, Molly Buchanan, Mark Gardner, Jason Hiser, and Jack
Davidson. 2022. Sentinel: A Multi-institution Enterprise Scale Platform for Data-
driven Cybersecurity Research. In 2022 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, 252-257.

Ram Bilas Pachori. 2008. Discrimination between ictal and seizure-free EEG
signals using empirical mode decomposition. Research Letters in Signal Processing
2008 (2008).

Peng Peng, Limin Yang, Linhai Song, and Gang Wang. 2019. Opening the blackbox
of virustotal: Analyzing online phishing scan engines. In Proceedings of the
Internet Measurement Conference. 478-485.

Andrea Pigorini, Adenauer G. Casali, Silvia Casarotto, Fabio Ferrarelli, Giuseppe
Baselli, Maurizio Mariotti, Marcello Massimini, and Mario Rosanova. 2011.
Time-frequency spectral analysis of TMS-evoked EEG oscillations by means of
Hilbert-Huang transform. Journal of Neuroscience Methods 198, 2 (2011), 236-245.
https://doi.org/10.1016/j.jneumeth.2011.04.013

Phillip Porras, Hassen Saidi, and Vinod Yegneswaran. 2009. An analysis of
conficker’s logic and rendezvous points. Computer Science Laboratory, SRI Inter-
national, Tech. Rep 36 (2009).

Aria Ghora Prabono. 2022. Unofficial Implementation of RobustPeriod: Time-
Frequency Mining for Robust Multiple Periodicities Detection. https://github.
com/ariaghora/robust-period

Tom Puech, Matthieu Boussard, Anthony D’Amato, and Gaétan Millerand. 2019.
A fully automated periodicity detection in time series. In International Workshop
on Advanced Analysis and Learning on Temporal Data. Springer, 43-54.
Check Point Research. 2020. Exploring QBot’s latest attack methods.
//research.checkpoint.com/2020/exploring-qbots-latest-attack-methods.
A. Restrepo and L.P. Chacon. 1998. On the period of sums of discrete periodic
signals. IEEE Signal Processing Letters 5, 7 (1998), 164-166. https://doi.org/10.
1109/97.700917

https://blog.malwarebytes.com/

https:


https://doi.org/10.1016/S1353-4858(20)30030-1
https://doi.org/10.1016/S1353-4858(20)30030-1
https://www.cisa.gov/stopransomware/qbotqakbot-malware-report
https://www.cisa.gov/stopransomware/qbotqakbot-malware-report
https://cybersecurity.att.com/blogs/security-essentials/stories-from-the-soc-beaconing-activity
https://cybersecurity.att.com/blogs/security-essentials/stories-from-the-soc-beaconing-activity
https://www.cisecurity.org/insights/blog/top-10-malware-september-2022
https://www.cisecurity.org/insights/blog/top-10-malware-september-2022
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications
https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-use-tls-to-conceal-communications
https://doi.org/10.1145/1654988.1655002
https://doi.org/10.1145/1654988.1655002
https://doi.org/10.1098/rspa.1998.0193
https://umbrella.cisco.com/blog/cisco-umbrella-1-million/
https://umbrella.cisco.com/blog/cisco-umbrella-1-million/
https://www.hybrid-analysis.com
https://www.sans.org/media/analyst-program/common-practices-security-operations-centers-results-2019-soc-survey-39060.pdf
https://www.sans.org/media/analyst-program/common-practices-security-operations-centers-results-2019-soc-survey-39060.pdf
https://www.sans.org/media/analyst-program/common-practices-security-operations-centers-results-2019-soc-survey-39060.pdf
https://www.interpol.int/content/download/14922/file/ASEAN_CyberThreatAssessment_2020.pdf
https://www.interpol.int/content/download/14922/file/ASEAN_CyberThreatAssessment_2020.pdf
https://www.kaspersky.com/enterprise-security/mitre/apt29
https://www.kaspersky.com/enterprise-security/mitre/apt29
https://doi.org/10.1109/SURV.2013.091213.00134
https://doi.org/10.1109/SURV.2013.091213.00134
https://blog.malwarebytes.com/detections/216-21-13-15/
https://blog.malwarebytes.com/detections/216-21-13-15/
https://blog.malwarebytes.com/detections/216-21-13-14/
https://blog.malwarebytes.com/detections/216-21-13-14/
https://blog.malwarebytes.com/detections/216-21-13-15/
https://blog.malwarebytes.com/detections/216-21-13-15/
https://www.malwarebytes.com/
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/conficker
https://www.trendmicro.com/vinfo/us/threat-encyclopedia/malware/conficker
https://www.neo4j.com/
https://doi.org/10.1016/j.jneumeth.2011.04.013
https://github.com/ariaghora/robust-period
https://github.com/ariaghora/robust-period
https://research.checkpoint.com/2020/exploring-qbots-latest-attack-methods
https://research.checkpoint.com/2020/exploring-qbots-latest-attack-methods
https://doi.org/10.1109/97.700917
https://doi.org/10.1109/97.700917

Global Analysis with Aggregation-based Beaconing Detection across Large Campus Networks

[67]

[68]

[69]

[70
[71]

3
0

[73]

[74]

(75]

[76]

[77

[78

[79]
[80]

[81]
[82]

[83

[84

[85]

[86]

[87]

[93]

Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen. 2016. Regularization with
stochastic transformations and perturbations for deep semi-supervised learning.
Advances in neural information processing systems 29 (2016), 1163-1171.
Suseela T Sarasamma, Qiuming A Zhu, and Julie Huff. 2005. Hierarchical Ko-
honenen net for anomaly detection in network security. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics) 35, 2 (2005), 302-312.
Naeem Seliya and Taghi M Khoshgoftaar. 2010. Active learning with neural
networks for intrusion detection. In 2010 IEEE International Conference on Infor-
mation Reuse & Integration. IEEE, 49-54.

Burr Settles. 2009. Active learning literature survey. (2009).

Burr Settles, Mark Craven, and Soumya Ray. 2007. Multiple-instance active
learning. Advances in neural information processing systems 20 (2007), 1289-1296.
Andrii Shalaginov, Katrin Franke, and Xiongwei Huang. 2016. Malware beaconing
detection by mining large-scale dns logs for targeted attack identification. In 18th
International Conference on Computational Intelligence in Security Information
Systems. WASET.

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini,
Ekin D Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. 2020. Fixmatch:
Simplifying semi-supervised learning with consistency and confidence. arXiv
preprint arXiv:2001.07685 (2020).

DO SON. 2018. New malware uses specially crafted UDP protocol for C&C
Communications.  https://securityonline.info/new-malware-uses-specially-
crafted-udp-protocol-for-cc-communications/.

STINGAR. 2023. Shared Threat Intelligence for Network Gatekeeping and Auto-
mated Response. https://stingar.security.duke.edu/.

Ming-Yang Su. 2011. Using clustering to improve the KNN-based classifiers for
online anomaly network traffic identification. Journal of Network and Computer
Applications 34, 2 (2011), 722-730.

Iwan Syarif, Adam Prugel-Bennett, and Gary Wills. 2012. Unsupervised clustering
approach for network anomaly detection. In International conference on networked
digital technologies. Springer, 135-145.

Florian Tegeler, Xiaoming Fu, Giovanni Vigna, and Christopher Kruegel. 2012.
Botfinder: Finding bots in network traffic without deep packet inspection. In
Proceedings of the 8th international conference on Emerging networking experiments
and technologies. 349-360.

ThreatCrowd. 2023. ThreatCrowd. https://www.threatcrowd.org/.

Jorge L Guerra Torres, Carlos A Catania, and Eduardo Veas. 2019. Active learning
approach to label network traffic datasets. Journal of information security and
applications 49 (2019), 102388.

VirusTotal. 2023. VirusTotal. https://www.virustotal.com/.

Michail Vlachos, Philip Yu, and Vittorio Castelli. 2005. On periodicity detection
and structural periodic similarity. In Proceedings of the 2005 SIAM international
conference on data mining. SIAM, 449-460.

Chen Wei, Kihyuk Sohn, Clayton Mellina, Alan Yuille, and Fan Yang. 2021. Crest:
A class-rebalancing self-training framework for imbalanced semi-supervised
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 10857-10866.

Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min Ke, and Huan Xu.
2021. RobustPeriod: Robust Time-Frequency Mining for Multiple Periodicity
Detection. In Proceedings of the 2021 International Conference on Management of
Data. 2328-2337.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong, and Quoc V Le.
2019. Unsupervised data augmentation for consistency training. arXiv preprint
arXiv:1904.12848 (2019).

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. 2020. Self-
training with noisy student improves imagenet classification. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 10687~
10698.

Kai Yang, Jie Ren, Yangiao Zhu, and Weiyi Zhang. 2018. Active learning for
wireless IoT intrusion detection. IEEE Wireless Communications 25, 6 (2018),
19-25.

Yi-Ren Yeh, Tang Chen Tu, Ming-Kung Sun, Shih Ming Pi, and C-Y Huang. 2018.
A malware beacon of botnet by local periodic communication behavior. In 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
Vol. 2. IEEE, 653-657.

Zeek. 2023. An Open Source Network Security Monitoring Tool. https://zeek.org/.
Zeek. 2023. Zeek Dynamic Protocol Detection. https://docs.zeek.org/en/master/
logs/dpd.html.

Hossein Rouhani Zeidanloo and Azizah Abdul Manaf. 2009. Botnet command
and control mechanisms. In 2009 Second International Conference on Computer
and Electrical Engineering, Vol. 1. IEEE, 564-568.

Kim Zetter. 2014. Sony Got Hacked Hard: What We Know and Don’t Know So
Far. https://www.wired.com/2014/12/sony-hack-what-we-know.

Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and Modeling the Label Dynamics of Online
Anti-Malware Engines.. In USENIX Security Symposium. 2361-2378.

577

ACSAC °23, December 04-08, 2023, Austin, TX, USA

A SELF-TRAINING EVALUATION

We conducted an evaluation on 10-day GC1 dataset to demonstrate
the effectiveness of self-training by comparing it with an active-
learning and a supervised-machine learning pipeline (baseline). By
the end of the experiment, we measured the dataset label distribu-
tion, as shown in Figure 12. The self-training pipeline successfully
detects 11.5% and 46.2% more malicious (#MalENG >= 2) domains
comparing to the active-learning pipeline and baseline, respectively.

44022 43974 43967 -
mmm Baseline

Active-learning
mm  Self-training

10"
o
@
[v}
3
g
% 10°
S 463 478 469
o
[&]
? 94
s BE
0 1 2 3
#MalENG

Figure 12: Class label distribution after 10 days training.

B LEARNING AND RANKING RESULTS

Figure 13 shows the active-learning and ranking results we obtained
at Virginia Tech (Campus2) network. Similarly, we observe that
the global pipeline outperforms the local pipeline throughout the
whole evaluation process. As listed in Table 9, on a daily average,
the global pipeline detects 19.47 more malicious domains than the
local pipeline, nearly 54.3% of the total malicious activities detected
by the standalone framework.

Table 9: Average daily detection.

Local Pipeline  Global Pipeline  Diff.
Detected 39.17 58.69 19.52
Malicious (Original) 23.94 38.01 14.07
Malicious (Verified ) 11.93 17.33 5.4
Malicious (Total) 35.87 55.34 19.47
Unknown 3.30 3.36 0.06

C CASE STUDY SUPPLEMENTS

Malvertising domains. Table 10 lists all 46 domains we found in
the malvertising campaign as described in Section 7. All 46 domains
are DGA-formatted with a 1-day DNS lifetime.

njRAT cluster. Figure 14 shows the network topology of the de-
tected njRAT related cluster, consisting of 65 distinct malicious
domains and 52 distinct IPs in 4 subnets (/24) hosted in Nether-
lands and the United Kingdom. We use red nodes to represent IP
addresses, light blue nodes for malicious domains with an initial
“malicious" label, dark blue nodes for pipeline-verified domains, and
purple nodes for manual-verified domains. As discussed previously,
among the 65 domains, 30 (46%) are with an original “malicious” la-
bel, and 33 (51%) are identified by our pipeline and are later verified
through VirusTotal and manual analysis.


https://securityonline.info/new-malware-uses-specially-crafted-udp-protocol-for-cc-communications/
https://securityonline.info/new-malware-uses-specially-crafted-udp-protocol-for-cc-communications/
https://stingar.security.duke.edu/
https://www.threatcrowd.org/
https://www.virustotal.com/
https://zeek.org/
https://docs.zeek.org/en/master/logs/dpd.html
https://docs.zeek.org/en/master/logs/dpd.html
https://www.wired.com/2014/12/sony-hack-what-we-know

ACSAC °23, December 04-08, 2023, Austin, TX, USA

Il (Global) Detected cases
Il (Global) Malicious cases (verified
I (Global) Malicious cases (original

120

100

80

60

Counts

02020-07 2020-08

2020-09

2020-10

)
)

2020-11

Y. Zhang et al.

(Local) Malicious cases (original)
(Local) Malicious cases (verified)

J

v |

2020-12

2021-01 2021-02 2021-03 2021-04

Figure 13: Comparison of active-learning and ranking based detection. X-axis shows the date, and y-axis shows the count of
FQDNs . Four drops are due to network/machine failures during the data collection. The red area illustrates the daily detected
cases by the global pipeline. The light blue area depicts the count of cases that can be verified on or close to the day of detection,
and the dark blue area shows the amount of cases that can be verified as of March 2022. Yellow and orange lines are the baseline

results in the local pipeline.

Table 10: Case study - malvertising domain names.

Domain Name Domain Name
jewuzktevijp{dotjcom tgvbwjbnxz{dot}com
oegdmfjoqyyt{dotjcom pcdodues{dot}com
baitbrdwk{dot}com comurzkcvnttopr{dot}com
uszaodwyaf{dot}com jeqwzssgks{dot}com
glgicmazu{dot}com gbcpicrtdje{dot}com
lgpumcja{dot}com xcsypkknp{dot}com
luqafzbdscd{dot}com qggypucwewn{dot}com
kfuiprtjugntp{dot}com sflywdvzyh{dot}jcom
sghneencmysrk{dotjcom vnbugnmwqf{dot}com
eailczoszdrz{dot}com zvxnexzgihb{dot}com
kjvbobngoms{dot}com pvendecvyb{dotjcom
boahwswzuebmmg{dotjcom | dkypsidljq{dot}jcom
ebgfuphibj{dot}com jnxkfldio{dot}com
hqtlvmerpb{dotjcom durpygckli{dotjcom
hxlswibowjf{dot}com nkjomdiztdy{dot}com
hicltgxzl{dot}com dkdmygipll{dot}com
dlfclcey{dot}com ixhparehw{dot}com
ciqguphollyj{dotjcom etzhporcxprf{dotjcom
wvahelphpfnhyx{dot}com yhhbtavgpuo{dot}com
mgqsrkvepyzvnw{dot}com ueuodgnrhb{dot}com
shgbsdjatunl{dot}com krouekal{dot}com
rvedfxeljxo{dot}com dtjvwspznqgtwf{dot}com
cbpsdvozwsbf{dot}com umiyyusldc{dot}com

D FEATURES

We extracted 70 features, as listed in Table 11, to describe periodic
domains from historical, temporal (periodicity) and topological (net-
work graphs) characteristics. In general, features with an asterisk
were calculated based on the graph database, and features labeled
in blue were obtained based on historical information.

We describe our strategies on feature generation as follows, tak-
ing feature maxCisco and avg_ipDomMalEngRatio as two examples:

o maxCisco. We first updated our graph database with daily
Cisco Umbrella score [35]. For each FQDN, we obtain the

578

Figure 14: Case study - njRAT-related cluster topology.

maxCisco value by finding the maximum Cisco score of all
FQDNSs that were hosted on the same domain.
avg_ipDomMalEngRatio. For each verified malicious FQDN
in history, we recorded the number of anti-malware engines
that detected it as malicious, denoted as MalEng. Then for
each domain, we computed DomMalEng as the number of
MalEng connected to it via {Domain, FQDN} tuples. We de-
fine DomMalEngRatio as DomMalEng divided by the total
number of domains hosted on the specific IP. Let I be the
set of IPs that a FQDN was hosted on in one day, the fea-
ture avg_ipDomMalEngRatio was computed as the mean of
{DomMalEngRatio} for any IP € I.



Global Analysis with Aggregation-based Beaconing Detection across Large Campus Networks

ACSAC °23, December 04-08, 2023, Austin, TX, USA

Table 11: Features extracted for active-learning pipeline.

Feature Description | Feature Description
psd_ratio periodicity spectral power | freq freq. being visited in last 30 days
dom _illegal if domain in wrong format | occ occurrence in last 30 days

dom_sld_entropy

SLD entropy

max_ipMalDomRatio*

ratio of max and total
domain connected via IP

sub_dom_entropy

subdomain entropy

max_ipDomMalEngRatio®

ratio of max and total num. engines
detecting as malicious connected via IP

dom_entropy

domain entropy

min_ipMalDomRatio*

ratio of min and total
domain connected via IP

fqdn_entropy

fqdn entropy

min_ipDomMalEngRatio*

ratio of min and total num. engines detecting
as malicious connected via IP

ratio of avg and total domain

dom_level domain level count | avg_ipMalDomRatio™ .
connected via IP
dom_length domain length | avg ipDomMalEngRatio* ratio of avg and total um. engines detegtlng
as malicious connected via IP
. . « sum of engines detecting as
dom_tldent domain tld length | sum_ipDomMalEng malicious on domain hosted on IP
dom_sldent domain sld length | max_ipDomMalEng* max engines detecting as

malicious on domain hosted on IP

dom_sub_count

subdomain count

min_ipDomMalEng*

min engines detecting as
on domains hosted on IP

avg engines detecting as

cntMalFQDNs malicious neighbor fqdn count | avg_ipDomMalEng malicious on domain hosted on IP
cntIP IP count | minlen2malFQDN* o topology 1 ength to
nearest malicious fqdn
X . . max topology length to
cntFQDN neighbor FODN count | maxlen2malFQDN nearest malicious fqdn
sumMalEng* total num. engines détectlng avglen2malFQDN* avg topology }ength to
as malicious from neighbors nearest malicious fqdn
MalEng* max num. engines detecting hist mal . iod* min historical malicious score
maxialtng as malicious from neighbors 15t_mmalscore_min_perio for fqdn with same periodicity
. " min num. engines detecting . . max historical malicious score
minMalEng - . hist_malscore_max_period . o
as malicious from neighbors for fqdn with same periodicity
MalEne* avg num. engines detecting hist mal iod* meam historical malicious score
avgValtng as malicious from neighbors 15t_ma’score_mear_perio for fqdn with same periodicity
- . . . . S median historical malicious score
maxCisco max cisco score from neighbors | hist_malscore_median_period . L
for fqdn with same periodicity
ratio of domain with
minCisco* min cisco score from neighbors | hist_malscore_ratio_period* historical malicious score and
the total with the same periodicity
avgCisco* avg cisco score from neighbors | max_fqdn_period max num. of fqdn with the same periodicity
sumMal® sum history seen malicious fqdn from neighbors | min_fqdn_period min num. of fqdn with the same periodicity
maxMal” max history seen malicious fqdn from neighbors | mean_fqdn_period mean num. fqdn with the same periodicity
minMal* min history seen malicious fqdn from neighbors | std_fqdn_period std. num. of fqdn with the same periodicity
avgMal” avg history seen malicious fqdn from neighbors | min_period min detected periodicity

malENG_ratio*

ratio of engines detecting
as malicious from neighbors

max_period

max detected periodicity

malFQDN_ratio*

ratio of malicious and
total fqdn from neighbors

mean_period

mean detected periodicity

sum_ipDom*

sum of domain connected via IP

std_period

std. detected periodicity

%

sum_ipMalDom

sum of malicious domain connected via IP

cisco_min_period

min Cisco score on
domain with same periodicity

avg_ipDom”

avg. domain connected via IP

cisco_max_period

max Cisco score on
domain with same periodicity

avg_ipMalDom™*

avg malicious domain connected via IP

cisco_mean_period

mean Cisco score on
domain with same periodicity

max_ipDom*

max domain connected via IP

cisco_median_period

median Cisco score on domain
with same periodicity

max_ipMalDom*

max malicious domain connected via IP

cisco_ratio_period

ratio of count of domains with a cisco score
and total domains with same periodicity

min_ipDom*

min domain connected via IP

cisco_score

Cisco score

min_ipMalDom*

min malicious domain connected via IP

fqdn_popularity

local popularity score

TFeatures marked with * are measured in the graph database.

2Features labeled in blue are measured with the historical information.

3We refer to Cisco Umbrella 1 Million List [35] for the universal popularity score.
4We define the campus popularity as the ratio of the number of IPs visiting the domain to the total count of observed IPs at campus on each day.
SWe measure the frequency and occurrence of each periodic FQDN seen within last 30 days.

579




	Abstract
	1 Introduction
	2 Motivation and Challenges
	3 Dataset and System Architecture
	3.1 Campus Network Traffic Collection
	3.2 Beaconing Detection System Overview
	3.3 Threat Model

	4 Periodicity Detection
	4.1 Algorithm Description
	4.2 Algorithm Evaluation
	4.3 Efficacy of Global Analysis

	5 Learning and Ranking Pipeline
	5.1 Feature Extraction
	5.2 Pipeline Description

	6 Evaluation
	6.1 Global Pipeline v.s. Local Pipeline
	6.2 Assessing VirusTotal's Searching Delay

	7 Case Studies
	8 Related Work
	9 Discussions
	10 Conclusion
	Acknowledgments
	References
	A Self-training Evaluation
	B Learning and Ranking Results
	C Case Study Supplements
	D Features

