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DETECTING MALICIOUS BEACONING
COMMUNITIES USING LOCKSTEP
DETECTION AND CO-OCCURRENCE
GRAPH

BACKGROUND

The present invention relates generally to cyber security
and, more specifically, two processes, each using a different
graph data format and a community detection mechanism,
prioritize potential malicious beaconing activities from
existing, detected beaconing results, to reduce the number of
false positives in the cyber security analysis.

SUMMARY

In an exemplary embodiment, the present invention can
provide a computer-implemented method including receiv-
ing input data comprising bipartite graph data in a format of
source ID (e.g., MAC (Media Access Control) address) data
versus destination ID (e.g., IP (Internet Protocol) address)
data and timestamp information, the source ID data com-
prising an identification of devices within a targeted infra-
structure and the destination 1D data comprising an identi-
fication of external destination servers possibly involved in
malicious beaconing activities; providing the input bipartite
graph data into a first processing to detect malicious bea-
coning activities using a lockstep detection method on the
input bipartite graph data, as executed by a processor on a
computer, to detect possible synchronized attacks against a
targeted infrastructure, each synchronized attack comprising
a set of devices in the targeted infrastructure communicating
with a same set of external destination servers within a
specific time window; and the input bipartite graph data is
provided into a second processing executed by the proces-
sor, the second processing initially converting the bipartite
graph data into a co-occurrence graph format that indicates
in a graph format how devices in the targeted infrastructure
communicate with different external destination servers over
time, the second processing detecting malicious beaconing
activities by analyzing data exchanges with the external
destination servers over a plurality of the time windows,
using the data in the co-occurrence graph format.

Other exemplary embodiments provide a system and a
computer program product that implement this computer-
implemented method.

BRIEF DESCRIPTION OF THE DRAWINGS

Aspects of the invention will be better understood from
the following detailed description of exemplary embodi-
ments of the invention with reference to the drawings, in
which:

FIG. 1 shows an overview of an exemplary embodiment
of the present invention;

FIG. 2 shows details of the steps of the exemplary
embodiment shown in FIG. 1;

FIG. 3 depicts a cloud computing node according to an
embodiment of the present invention;

FIG. 4 depicts a cloud computing environment according
to an embodiment of the present invention; and

FIG. 5 depicts abstraction model layers according to an
embodiment of the present invention.

DETAILED DESCRIPTION

The invention will now be described with reference to
FIGS. 1-5, with FIGS. 3-5 demonstrating a non-limiting
exemplary implementation as a cloud service.
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Cyber security threats, such as Advanced Persistent
Threats (APTs) and targeted attacks, are sophisticated and
extremely challenging to detect, as explained in, for
example, “BAYWATCH: Robust Beaconing Detection to
Identify Infected Hosts in Large-Scale Enterprise Networks”
by Hu, et al., an article having a listing of authors including
various of the co-inventors of the present invention. The
content of this reference is hereby incorporated herein by
reference.

Such APT attacks involve three phases. In a first phase,
one or more devices within a target infrastructure is/are
initially compromised. In the second phase, a communica-
tion channel is established that enables the threat actor to
remotely control the compromised devices within the target
infrastructure. The third phase involves the execution of the
mission of the attack, such as access to and exfiltration of
sensitive data or disturbance of a process within the target
infrastructure.

Thus, once one or more devices in the target infrastructure
have been infected in an APT attack, the adversary then
establishes a stealthy communication channel between the
malware process and the adversary’s command and control
(C&C) infrastructure located outside the perimeter of the
target infrastructure. However, relative to the problem being
addressed by the present invention, such network interac-
tions from the infected devices within the targeted infra-
structure also provide a defender with an opportunity to
detect the presence of the APT attack by detecting the
beaconing behavior when the malware in the infected infra-
structure device reaches out to the C&C infrastructure on a
regular basis to confirm its presence in the target infrastruc-
ture and to get further instructions.

Beaconing can be described as a regular sequence of
requests or beacons, sometimes highly periodic, sometimes
not. Depending upon the attacker’s strategy, the frequency
of sending beacons might be slow and stealthy, or fast and
aggressive.

Detection of beaconing activity is not trivial, and regular
beaconing behavior may not be malicious, since some
network behavior that resembles beaconing is actually a
mundane and legitimate activity, such as regular update
checks verifying software versions or antivirus signatures,
license checks, and e-mail or news polling, etc. In contrast
to benign activity that repeatedly accesses the same server-
side infrastructure, malicious campaign activity typically
involves a high domain churn, since malicious actors are
attempting to evade blacklists that would occur if they
remain on the same server for extended periods.

One conventional and effective solution using this detec-
tion strategy, as described in the above-identified publica-
tion, focuses on an eight-step filtering process. This system,
referred to therein as “BAYWATCH?”, detects periodic call-
back signals between a compromised machine and a com-
mand and control server for identifying infected hosts in
large-scale enterprise networks. The BAYWATCH system
has been demonstrated to reliably identify beaconing behav-
ior and separate legitimate beaconing from malicious bea-
coning. However, large amounts of beaconing signals are
generated each day (for example, 50 k/day), which may
include false positives, such as benign software updates.

The present invention addresses this problem of prioriti-
zation in detecting malicious callback signals between a
compromised device in a target infrastructure and a com-
mand and control server by using two techniques 100, 102
that prioritize malicious beaconing activities to further filter
the large amount of potential beaconing data. Each of these
two processes has its own filtering capability and could be
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used separately and alone. However, in a preferred exem-
plary embodiment, the two techniques 100, 102 work
together as two processings executed in parallel, using the
same initial input data but entirely different processing
methods on the same input data, with data conversion
occurring to suit each technique. Such combination of
methods provides additional confidence than would result
from executing only one of the two methods alone. Although
each method uses different data processing, both processes
include a community detection mechanism for detecting
attack campaigns and infrastructure potentially controlled
by the same threat actors.

The present invention evolved from the recognition by the
present inventors that graph analytics can be used to assist
in more precisely identifying malicious activities from exist-
ing, detected beaconing behavior and to reduce false posi-
tives. There are at least three main ideas underlying the
present invention. First, the present inventors recognized
that beaconing signals that show synchronized activities
might be involved in the same attack campaign and more
highly malicious, thereby leading to using lockstep detection
as demonstrated in the first processing. Second, the present
inventors recognized that malicious beaconing signals might
communicate with the similar set of destination servers
when controlled by the same threat actors, thereby leading
to the novel application of community detection in both
processing, as well as developing the second processing
based on co-occurrence graph data. Third, the present inven-
tors recognized that malicious beaconing destination com-
munities might have different graphical structures from
those of benign beaconing destination communities, thereby
leading to the anomaly detection and classification of data of
the second processing in which data has been converted into
co-occurrence graph data.

As shown in FIG. 1, an exemplary embodiment of the
present invention is based upon input data as a listing of
potential beacon incidents, as output data from a beacon
detector module 104. Such listing of potential beacon inci-
dents could be provided, for example, by the system and
method described in U.S. Pat. No. 9,591,007, issued Mar. 7,
2017, the content of which is incorporated herein by refer-
ence. This patent 007 describes a system and method for
beacon detection as developed by various of the co-inven-
tors of the present invention.

FIG. 1 shows an overview of the two separate processes
100, 102 implementing an exemplary embodiment of the
present invention. Data 106 is provided into the two pro-
cesses 100, 102, as having been provided as output data by
the beacon detection module 104, such as described in U.S.
Pat. No. 9,591,007. This input data is then initially converted
into a graph format including source ID (e.g., MAC (Media
Access Control) address) data for the possibly infected
infrastructure devices versus destination ID (e.g., IP (Inter-
net Protocol) address) data for external domain servers
possibly serving as malicious agents. The input data also
includes timestamp information. This graph formatted data
becomes input data into both processes 100, 102.

In summary and as shown in FIG. 1, the first process 100
detects synchronized attacks in a targeted infrastructure by
first detecting locksteps and then detecting destination com-
munities from these detected locksteps. In the context of the
present invention, “synchronized-attacks” refers to attacks
detected by identifying a set of devices communicating with
the same set of destination servers within a specific time
window, demonstrating an attack campaign where these
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devices are infected with the same malicious software and/or
these destination servers are controlled by the same threat
actors.

The second process 102, referred to herein as the “all-
attacks process”, initially converts its input graph data into
co-occurrence graph format for evaluating weight/edge fea-
tures of the destination servers. In the co-occurrence graph
format, a node is a destination server and an edge between
two nodes denotes that a source device within the targeted
infrastructure communicates with these two destinations
(e.g., destination domain servers). An edge has higher
weight as more source devices communicate with any two
specific destination servers. Malicious and legitimate bea-
coning activities are distinguished in the co-occurrence
graph data by detecting anomalous communities in this
co-occurrence graph data to determine which communities
indicate possible churning of external servers. Specifically,
a community detection mechanism based on the weights of
edges between nodes is applied to the co-occurrence graph
data to decompose the graph into communities.

As noted, both the first and second processes 100, 102
include community detectors, albeit using different formats
of input data, since, as mentioned above, malicious actors
tend to frequently change malicious servers in order to avoid
being listed on a blacklist. The present inventors believe that
this present invention is the first time that such community
detection techniques have been used to improve the detec-
tion of targeted attack campaigns and their malicious infra-
structure. Community detection is used in the present inven-
tion to reveal more comprehensive view of lockstep
communities controlled by the same attacker even if only
partially overlapped locksteps are identified, and to distin-
guish malicious communities from benign communities
through anomaly detection.

Turning now to details of the first process, the term
“lockstep” in its common meaning describes the form of
military marching in which soldiers are close together and
all move forward together with the same foot at the same
time. In the context of the present invention, this term is
intended as a term of art as described in, for example,
“Catching Worms, Trojan Horses and PUPs: Unsupervised
Detection of Silent Delivery Campaigns” by Kwon, et al, the
contents of which are incorporated herein by references. In
this specific meaning, “lockstep” describes the coordinated
behavior that is possible to observe during silent delivery
campaigns on targeted infrastructures. A lockstep corre-
sponds to one or more delivery campaigns of the same
infrastructure, as indicated by repeated observations of syn-
chronized activity among a group of downloaders (or
domains) to retrieve payloads within a bounded time period.
Thus, the first stage 100A of the synchronized-attacks pro-
cess 100 of FIG. 1 is detecting locksteps by looking for
transmissions over pre-defined time windows from nodes of
a targeted infrastructure to the same set of destination IP
servers.

The community detection module 100B of the first pro-
cess 100 then evaluates which detected lockstep instances
are churning their destination servers, and finds lockstep
communities by evaluating edge weights among destination
nodes, with churning being suggested by locksteps having
larger edge weights. Similarly, the community detection
module 102B of the second process 102 is a community
detection mechanism that evaluates domain server churn by
evaluating edge weights on the co-occurrence graph data. In
a preferred exemplary embodiment, the community detec-
tion function is implemented as a fastgreedy community
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algorithm because it is efficient and edge weight-based
grouping is desirable to identify strongly connected com-
munities.

Although not important to the understanding of the pres-
ent invention, it is noted that a number of community
detection algorithms are known in the art. For example, in
addition to the fastgreedy community algorithm used in the
exemplary embodiment, other community detection algo-
rithms include the label propagation community algorithm,
the leading eigenvector community algorithm, the spinglass
community algorithm, the walktrap community algorithm,
and the edge betweenness community algorithm. Therefore,
it should be clear that the present invention could utilize
other community detection algorithms, and the present
invention is not intended as being limited to the use of any
specific community detection algorithm.

It is further noted that one of the ordinary skills in the art
would readily understand that, in the context of the present
invention as implemented on a computer in a preferred
embodiment, the word “module”, as used herein, means a set
of instructions, as stored on a non-transitory memory device,
and as intended to be selectively executed by a processor on
the computer to execute one of the functional components of
the present invention. The output of the community detec-
tion module 100B is then checked against a whitelist 100C
of known non-malicious domains.

The second process 102 begins by converting the input
bi-partite graph data into co-occurrence graph data in which
graph nodes are destinations and an edge is placed between
nodes if they communicated with the same source devices.
Edge weights are also maintained. To analyze this format,
features of egonets of candidate graphs are extracted so that
the anomaly detector & classification module 102B can
measure distribution statistics of the extracted features to
find out anomalies, with outliers of the weight/edge features
being legitimate beaconing signals, since non-malicious
servers will tend to show higher edge weights due to content
distribution networks (CDNs). Community detection is used
in the present invention to identify destinations involved in
the attack campaigns by filtering out legitimate servers.

Both processes 100, 102 then provide output results
100D, 102D of malicious beaconing activities, including
indication of detected communities.

FIG. 2 shows additional details of steps of the exemplary
embodiment of FIG. 1, as further demonstrating the pro-
cessing steps of the two processes 100, 102. In step 200,
records from the beaconing detection module 106 are parsed
in order to extract source and destination IDs, timestamps,
and, if available, corresponding domain names. In step 202,
domain-IP (Internet Protocol addresses) relationships are
integrated, using information from DNS (Domain Name
System) if such information was not available from the
beaconing detection records.

In step 204, the source/destination data is used to con-
struct bipartite graphs (see 106 in FIG. 1), in which, for
example, the left side nodes are source IDs (e.g., source IPs,
and MACs (Media Access Control)) and the right side nodes
are destination IDs (e.g., destination IPs, and domain
names). The bipartite graph data becomes input data for both
processes 100, 102 of FIG. 1. For purpose of explaining the
mechanism of the present invention and the problem being
addressed by the present invention, that of detecting bea-
coning signals in a target infrastructure, the left side nodes
(e.g., the white nodes in FIG. 1) represent machines in the
target infrastructure that have possibly been compromised,
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and the right-side nodes (e.g., the darker nodes) represent
remote servers potentially involved in the advanced persis-
tent threat (APT) attack.

The lockstep detection module 100A (FIG. 1) of the first
stage of the synchronized attacks process 100 involves three
steps 206, 208, 210 in FIG. 2. In step 206, bipartite graphs
at different time windows are extracted. In step 208, a
frequency pattern tree is constructed, from which the lock-
steps are extracted in step 210. This lockstep extraction
process is similar to the method described in the above-
identified article by Kwon, et al., except that the present
invention uses different input data from that described in
these references and includes timestamp information, e.g.,
source MAC-destination IP pairs from the reported beacon-
ing signals with timestamps.

Thus, compared to previous frequent pattern tree
approaches, such as described, for example, in Mondal, et
al., “BEAGr: Supporting Continuous Ego-centric Aggregate
Queries over Large Dynamic Graphs”, the present invention
also incorporates temporal information (e.g., timestamps),
which is a critical attribute to be able to detect locksteps at
certain time windows. That is, if similar locksteps are
observed over multiple time windows, it gives more confi-
dence in detection of coordinated attacks.

Similarly, relative to the method described in Kwon et al.,
the present invention provides some similar techniques in
some steps of the first process of the present invention, albeit
on different input data. However, the beaconing detection
input data of the present invention provides a stronger
indication of suspicious activity than does the accessed-by
relationship of a download event described in Kwon et al.
because regular beaconing signals over a certain time period
is an evident sign of suspicious running processes. Even
more significant, compared to Kwon’s method, the present
invention introduces the use of community detection 100B
as part of the analysis for malicious infrastructure potentially
controlled by the same threat actor. This use of community
detection to identity specific malicious campaigns is new in
the art.

The community detection module 100B of FIG. 1 is
implemented in FIG. 2 in steps 212 and 214, which, in a
preferred embodiment, is implemented by a fast greedy
community detection processing, detects destination com-
munities from the detected locksteps by identifying strongly
connected destinations from the lockset detection stage. The
fastgreedy community detection algorithm is efficient and
appropriate to group communities based on a parameter such
as edge weight, but the present invention is not limited to the
use of the fastgreedy community detection algorithm. Edge
weight becomes higher if there are more locksteps where
two or more nodes (destination servers or destinations)
appear in common. Thus, by evaluating edge weights, the
community detection module 100B reveals more compre-
hensive view of lockstep communities generated by the
same attacker by grouping partially overlapped locksteps
spanning over multiple time windows.

In step 212, the lockstep detection data is used to build
projection graphs of destinations, and, in step 214, commu-
nities are detected based on modularity and edge weight,
which are used to identify strongly connected nodes. For
example, modularity is a measure to find optimal commu-
nities where nodes within a module are densely connected
while nodes across different modules are sparsely con-
nected. Community detection of lockstep data is recognized
by the present inventors as being important in the context of
the present invention in that one of the results of the
synchronized attacks processing of the present invention is
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a listing of lockstep communities rather than a mere listing
of'locksteps. The present inventors consider that community
detection is a way to detect more complete set of malicious
infrastructure involved in attack campaigns and to provide
more confidence in detecting malicious activity.

Thus, a key benefit of listing lockstep communities rather
than merely locksteps is that more complete pictures of
coordinated attacks and malicious infrastructures can be
comprehended by combining (potentially) incomplete and
partially overlapped locksteps. For example, some devices
may be down or inactive during a certain time window, so
that those incomplete locksteps cannot be exactly matched
across different time windows. Community detection
enables the present invention to identify malicious infra-
structure controlled by the same threat actor/campaign even
as the actor/campaign moves to different domain servers or
servers enter/leave the network to, for example, attempt to
evade blacklisting since grouping of partially overlapped
locksteps provides more comprehensive view of coordinated
attacks.

In step 216 the listing of destinations of the community
detection module 100B is filtered by deleting those desti-
nations that are found on a whitelist that identifies legitimate
communities, such as cloud data backup services. The result
of the synchronized-attacks processing is a listing of mali-
cious/suspicious lockstep communities, where each commu-
nity represents a set of severs that are highly likely involved
in attack campaigns such as APT attacks. Corresponding
beaconing cases of the first process are reported as malicious
activity as part of step 228.

The second process 102 of FIG. 1, the all-attacks pro-
cessing, begins with a co-occurrence graph stage 102A, as
implemented in step 218 of FIG. 2, in which co-occurrence
graphs of destinations are built, as based on destinations
contacted by the same sources. Edges are placed between
destination nodes that communicated with the same source
devices, and the weights of the edges are measured based on
the number of source devices they communicate in common.
It should be clear that the data of this second process 102 is
listing of domain servers or sets of domain servers poten-
tially being churned by a malicious actor and that the more
churning occurring between the different domain servers
would provide lower edge weights relative to benign domain
servers that are densely connected, such as content distri-
bution networks (CDNGs).

The anomaly detection and classification module 102C of
FIG. 1 is implemented in FIG. 2 in steps 220-224. In step
220, egonets of the destinations and features from the
destinations (e.g., domain servers) are extracted. For each
egonet, the system analyses if an egonet is sparsely or
densely connected using the “ratio of #edge to #node” and
an average edge weight, by “total edge weight/#edges”.

As is well known in the art, an egonet, or ego network,
consists of a focal node (“ego”) and the nodes within n hops
from the ego, where n is an arbitrary but preset integer.
Therefore, by measuring the distribution statistics of the
extracted features, the destination features can be consoli-
dated into communities in step 222 and, in step 224, the
communities can be clustered based on the features. Thus,
the second processing also uses a community detection
technique, as modified for different input data involving
egonet features used to cluster/classify communities. The
rationale behind using the egonet parameters is that most
benign CDNs (content distribution networks) are highly/
densely connected in their infrastructure, whereas malicious
actors would churn their destination servers.
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For example, the present inventors have found that there
were many beaconing cases communicating with Amazon
cloud, and this method helps to exclude such highly likely
benign cases and prioritize the investigation of malicious
beaconing cases. In the small graph 102B of FIG. 1, mali-
cious communities would tend to be those communities that
are closest to the slanted line of data points due to low
weights, while benign communities would tend to be those
communities that are further from this slanted line, as
measured by distance along the vertical axis. That is,
although not a clear-cut result, the present inventors have
recognized that most benign communities had high edge
weight and were densely connected. Therefore, in an exem-
plary embodiment, the identification of malicious clusters in
step 226 could be implemented by finding a statistical
distribution of cluster distances along the vertical axis to
develop a threshold distance for distinguishing malicious
clusters from non-malicious clusters. Community detection
enables the present invention to identify more complete
pictures of infrastructure controlled by the same malicious
or legitimate organization, and clustering of communities
rather than individual servers provides more reliable classi-
fication results to filter out legitimate communities. Com-
munity detection is done in a similar way to the technique
used in lockstep processing. Then, anomaly detection is used
to filter out benign communities.

Exemplary Hardware Aspects, Using a Cloud
Computing Environment

The present invention may be a system, a method, and/or
a computer program product at any possible technical detail
level of integration. The computer program product may
include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention.

The computer readable storage medium can be a tangible
device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
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network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, con-
figuration data for integrated circuitry, or either source code
or object code written in any combination of one or more
programming languages, including an object oriented pro-
gramming language such as Smalltalk, C++, or the like, and
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
computer readable program instructions may execute
entirely on the user’s computer, partly on the user’s com-
puter, as a stand-alone software package, partly on the user’s
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user’s computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
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mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the Figures. For example, two blocks shown in
succession may, in fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions.

It is to be understood that although this disclosure
includes a detailed description on cloud computing, imple-
mentation of the teachings recited herein are not limited to
a cloud computing environment. Rather, embodiments of the
present invention are capable of being implemented in
conjunction with any other type of computing environment
now known or later developed.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:

On-demand self-service: a cloud consumer can unilater-
ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service’s provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa-
bility at some level of abstraction appropriate to the type of
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service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported, providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:

Software as a Service (SaaS): the capability provided to
the consumer is to use the provider’s applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (laaS): the capability provided
to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, stor-
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely
for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by
several organizations and supports a specific community that
has shared concerns (e.g., mission, security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on-
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard-
ized or proprietary technology that enables data and appli-
cation portability (e.g., cloud bursting for load-balancing
between clouds).

A cloud computing environment is service oriented with
a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure that includes a network of interconnected
nodes.

Referring now to FIG. 6, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10
is only one example of a suitable node and is not intended
to suggest any limitation as to the scope of use or function-
ality of embodiments of the invention described herein.
Regardless, cloud computing node 10 is capable of being
implemented and/or performing any of the functionality set
forth herein.

Although cloud computing node 10 is depicted as a
computer system/server 12, it is understood to be opera-
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tional with numerous other general purpose or special pur-
pose computing system environments or configurations.
Examples of well-known computing systems, environments,
and/or configurations that may be suitable for use with
computer system/server 12 include, but are not limited to,
personal computer systems, server computer systems, thin
clients, thick clients, hand-held or laptop circuits, multipro-
cessor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
minicomputer systems, mainframe computer systems, and
distributed cloud computing environments that include any
of the above systems or circuits, and the like.

Computer system/server 12 may be described in the
general context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12 may be
practiced in distributed cloud computing environments
where tasks are performed by remote processing circuits that
are linked through a communications network. In a distrib-
uted cloud computing environment, program modules may
be located in both local and remote computer system storage
media including memory storage circuits.

Computer system/server 12 is shown in the form of a
general-purpose computing circuit. The components of com-
puter system/server 12 may include, but are not limited to,
one Or more processors or processing units 16, a system
memory 28, and a bus 18 that couples various system
components including system memory 28 to processor 16.

Bus 18 represents one or more of any of several types of
bus structures, including a memory bus or memory control-
ler, a peripheral bus, an accelerated graphics port, and a
processor or local bus using any of a variety of bus archi-
tectures. By way of example, and not limitation, such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnects
(PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. Com-
puter systeny/server 12 may further include other removable/
non-removable, volatile/non-volatile computer system stor-
age media. By way of example only, storage system 34 can
be provided for reading from and writing to a non-remov-
able, non-volatile magnetic media (not shown and typically
called a “hard drive”). Although not shown, a magnetic disk
drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a “floppy disk™), and an optical
disk drive for reading from or writing to a removable,
non-volatile optical disk such as a CD-ROM, DVD-ROM or
other optical media can be provided. In such instances, each
can be connected to bus 18 by one or more data media
interfaces. As will be further depicted and described below,
memory 28 may include at least one program product having
a set (e.g., at least one) of program modules that are
configured to carry out the functions of embodiments of the
invention.
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Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of
example, and not limitation, as well as an operating system,
one or more application programs, other program modules,
and program data. Each of the operating system, one or more
application programs, other program modules, and program
data or some combination thereof, may include an imple-
mentation of a networking environment. Program modules
42 generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 12 may also communicate with
one or more external circuits 14 such as a keyboard, a
pointing circuit, a display 24, etc.; one or more circuits that
enable a user to interact with computer system/server 12;
and/or any circuits (e.g., network card, modem, etc.) that
enable computer system/server 12 to communicate with one
or more other computing circuits. Such communication can
occur via Input/Output (I/0) interfaces 22. Still yet, com-
puter system/server 12 can communicate with one or more
networks such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (e.g., the
Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of
computer system/server 12 via bus 18. It should be under-
stood that although not shown, other hardware and/or soft-
ware components could be used in conjunction with com-
puter system/server 12. Examples, include, but are not
limited to: microcode, circuit drivers, redundant processing
units, external disk drive arrays, RAID systems, tape drives,
and data archival storage systems, etc.

Referring now to FIG. 7, an illustrative cloud computing
environment 50 is depicted. As shown, cloud computing
environment 50 includes one or more cloud computing
nodes 10 with which local computing devices used by cloud
consumers, such as, for example, personal digital assistant
(PDA) or cellular telephone 54A, desktop computer 54B,
laptop computer 54C, and/or automobile computer system
54N may communicate. Nodes 10 may communicate with
one another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com-
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment 50 to offer infrastructure, platforms and/or
software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices 54A-N
shown in FIG. 7 are intended to be illustrative only and that
computing nodes 10 and cloud computing environment 50
can communicate with any type of computerized device over
any type of network and/or network addressable connection
(e.g., using a web browser).

Referring now to FIG. 8, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
7) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 8 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
software components. Examples of hardware components
include: mainframes 61; RISC (Reduced Instruction Set
Computer) architecture based servers 62; servers 63; blade
servers 64; storage devices 65; and networks and networking
components 66. In some embodiments, software compo-
nents include network application server software 67 and
database software 68.
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Virtualization layer 70 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers 71; virtual storage 72; virtual
networks 73, including virtual private networks; virtual
applications and operating systems 74; and virtual clients
75.

In one example, management layer 80 may provide the
functions described below. Resource provisioning 81 pro-
vides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may include application software licenses. Secu-
rity provides identity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement is
anticipated in accordance with an SLA.

Workloads layer 90 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro-
vided from this layer include: conversion of beacon detec-
tion data into a source MAC: Destination IP Graph data 91;
lockstep detection module 92; community detection module
93; co-occurrence graph conversion module 94; anomaly
detection and classification module 95; and the malicious
beaconing activities output modules 96 of the present inven-
tion, as components shown exemplarily in FIG. 1 that
implement the methods shown exemplarily in FIG. 2 and as
described in the corresponding text descriptions.

The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

Further, Applicants’ intent is to encompass the equiva-
lents of all claim elements, and no amendment to any claim
of the present application should be construed as a dis-
claimer of any interest in or right to an equivalent of any
element or feature of the amended claim.

What is claimed is:

1. A computer-implemented method, comprising:

receiving input data comprising bipartite graph data in a

format of source MAC (Media Access Control) address
data versus destination [P (Internet Protocol) data and
timestamp information, the source MAC data compris-
ing an identification of devices within a targeted infra-
structure and the destination IP data comprising an
identification of external destination servers possibly
involved in malicious beaconing activities;

providing the input bipartite graph data into a first pro-

cessing to detect malicious beaconing activities using a
lockstep detection method on the input bipartite graph
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data, as executed by a processor on a computer, to
detect possible synchronized attacks against a targeted
infrastructure; and

providing the input bipartite graph data into a second

processing executed by the processor, the second pro-
cessing initially converting the bipartite graph data into
a co-occurrence graph format that indicates in a graph
format how devices in the targeted infrastructure com-
municate with different external destination servers
over time, the second processing detecting malicious
beaconing activities by analyzing data exchanges with
the external destination servers over a plurality of time
windows to detect anomalies, using the data in the
co-occurrence graph format.

2. The computer-implemented method of claim 1, further
comprising:

providing, as input data, information of a listing of

potential beacon incidents as output data from a bea-
coning detector as input data; and

reformatting the input data into the bipartite graph data;

and

providing the bipartite graph data as input data into the

first processing and as input data into the second
processing,

wherein the co-occurrence graph includes nodes that are

destinations and an edge that is placed between the
destinations when communicated with a same source,
and

wherein weights of the edge is used to detect malicious

beaconing activities.

3. The computer-implemented method of claim 1, further
comprising:

merging results of the first processing and results of the

second processing; and

providing the merged results as output data from the

computer-implemented method.

4. The computer-implemented method of claim 1,
wherein the first processing further comprises:

extracting bipartite graphs at different time windows;

building a frequency pattern tree, wherein the frequency

pattern tree includes temporal information;

detecting lockstep patterns from the frequency pattern

tree; and
building projection graphs of destination based on the lock-
step patterns.

5. The computer-implemented method of claim 4,
wherein the first processing further comprises detecting
communities based on at least edge weights of the projection
graph data.

6. The computer-implemented method of claim 5,
wherein the first processing further comprises:

filtering out destinations based on a comparison with a

white-list; and

providing the filtered destination information as an output

of the first processing.

7. The computer-implemented method of claim 1,
wherein the second processing comprises extracting features
from egonets of destinations from data in the co-occurrence
graph format, each said egonet comprising a focal node
(“ego”) and nodes within n hops from the ego, where n is a
preset integer.

8. The computer-implemented method of claim 7,
wherein the second processing further comprises:

consolidating the destination features into communities;
clustering the communities;

identifying malicious clusters from the clusters of com-

munities; and
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providing the identified malicious clusters as an output of
the second processing.

9. The computer-implemented method of claim 1, as
implemented in a set of computer-readable instructions
tangibly embodied on a non-transitory memory device.

10. The computer-implemented method of claim 1, as
implemented as a cloud service.

11. An apparatus, comprising:

a processor; and

a memory device,

wherein the memory device stores a set of instruction

permitting the processor to execute a computer-imple-
mented method of:

receiving input data comprising bipartite graph data in a

format of source MAC (Machine Access Code) data
versus destination IP (Internet Protocol) data and time-
stamp information, the source MAC data comprising an
identification of devices within a targeted infrastructure
and the destination IP data comprising an identification
of external destination servers possibly involved in
malicious beaconing activities;

providing the input bipartite graph data into a first pro-

cessing to detect malicious beaconing activities using a
lockstep detection method on the input bipartite graph
data, as executed by a processor on a computer, to
detect possible synchronized attacks against a targeted
infrastructure; and
providing the input bipartite graph data into a second
processing executed by the processor, the second processing
initially converting the bipartite graph data into a co-occur-
rence graph format that indicates in a graph format how
devices in the targeted infrastructure communicate with
different external destination servers over time, the second
processing detecting malicious beaconing activities by ana-
lyzing data exchanges with the external destination servers
over a plurality of the time windows to detect anomalies,
using the data in the co-occurrence graph format.

12. The apparatus of claim 11, wherein the computer-
implemented method further comprises:

providing, as input data, information of a listing of

potential beacon incidents as output data from a bea-
coning detector as input data;

reformatting the input data into the bipartite graph data;

and
providing the bipartite graph data as input data into the first
processing and as input data into the second processing.

13. The apparatus of claim 11, wherein the computer-
implemented method further comprises:

merging results of the first processing and results of the

second processing; and
providing the merged results as output data from the method.

14. The apparatus of claim 11, wherein the first processing
of the computer-implemented method further comprises:

extracting bipartite graphs at different time windows;
building a frequency pattern tree, wherein the frequency
pattern tree includes temporal information;

detecting lockstep patterns from the frequency pattern

tree; and
building projection graphs of destination based on the lock-
step patterns.

15. The apparatus of claim 14, wherein the first processing
further comprises detecting communities based on at least
edge weights of the projection graph data.

16. The apparatus of claim 15, wherein the first processing
further comprises:

filtering out destinations based comparison with a white-

list; and
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providing the filtered information as an output of the first

processing.

17. The apparatus of claim 11, wherein the second pro-
cessing comprises extracting features from egonets of des-
tinations from data in the co-occurrence graph format, each
said egonet comprising a focal node (“ego”) and nodes
within n hops from the ego, where n is a preset integer.

18. The apparatus of claim 17, wherein the second pro-
cessing further comprises:

consolidating the destination features into communities;

clustering the communities;

identifying malicious clusters from the clusters of com-

munities; and
providing the identified malicious clusters as an output
of the second processing.

19. The apparatus of claim 11, as implemented as an
apparatus in a cloud environment.

20. A computer-implemented method, comprising:

receiving input data comprising bipartite graph data in a

format of source MAC (Machine Access Code) data
versus destination IP (Internet Protocol) data and time-
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stamp information, the source MAC data comprising
identification data of devices within a targeted infra-
structure and the destination IP data comprising iden-
tification data of external destination servers possibly
involved in malicious beaconing activities;
providing first output results by performing a lockset
detection evaluation of the bipartite graph data, as
executed by a processor on a computer, and a commu-
nity detection evaluation on results of the lockstep
detection evaluation;
providing second output results by converting the bipar-
tite graph data into a co-occurrence graph data format,
performing an anomaly detection and classification
analysis on the co-occurrence graph data, and perform-
ing a community detection evaluation on results of the
anomaly detection and classification analysis;
merging the first and second results; and
providing the merged results as output data of the computer-
implemented method.
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