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Recent cyber-attacks have used unknown malicious code or advanced attack techniques, such as zero-day attacks, making them
extremely difficult to detect using traditional intrusion detection systems. Botnet attacks, for example, are a very sophisticated
type of cyber-security threat. Malicious code or vulnerabilities are used to infect endpoints. Systems infected with this malicious
code connect a communications channel to a command and control (C&C) server and receive commands to perform attacks on
target servers. To effectively protect a corporate network’s resources against such threats, we must be able to detect infected systems
before an attack occurs. In this paper, an attack pattern chain algorithm (APChain) is proposed to identify infected systems in
real-time network environments, and a methodology for detecting abnormal behavior through network-based behavioral profiling
is explained. APChain analyzes the attribute information of real-time network traffic, connects chains over time, and conducts
behavioral profiling of different attack types to detect abnormal behavior. The dataset used in the experiment employed real-time
traffic accumulated over a period of six months, and the proposed algorithm was developed into a prototype for the experiment.
The C&C channel detection accuracy was measured at 0.996, the true positive rate at 1.0, and the false positive rate at 0.003. This
study proposes a methodology that can overcome the limitations of conventional security mechanisms and suggests an approach
to the detection of abnormal behavior in a real-time network environment.

1. Introduction by a botnet is to detect the C&C channel and eliminate the
infected system before the attack can be launched. However, a
number of major challenges exist in detecting C&C channels.
For example, attackers may regularly change the address of

the C&C server or use evasive methods such as proxy server

According to the 2016 Internet Security Report [1], targeted
attacks, such as spear phishing, increased by 55% in 2015
compared to the previous year. Notably, in 2015, attacks using

zero-day vulnerabilities increased by 125%. Every year, more
than 10 new zero-day vulnerabilities are reported. Moreover,
430 million new pieces of malicious code were discovered in
2015, a 36% increase from the year before. New vulnerabilities
include targeted attacks, smartphone threats, social media
scams, and Internet of Things (IoT) vulnerabilities.

In the past, attacks tended to extensively infect nonspe-
cific systems with malicious code; however, cyber-attacks that
attack targets with specific objectives, such as leaking impor-
tant information or destroying the system, are becoming
more common [2]. Attackers distributing malicious code can
control a remote host through a command and control (C&C)
channel and connect to backdoor networks to perform its
attacks. An effective way to detect hosts that are infected

traffic redirection. Additionally, because C&C channels use
HTTP or HT'TPS protocols to communicate, they are difficult
to distinguish from general web traffic, making it challenging
to establish a definitive countermeasure.

The research in [3, 4] identified botnet C&C channels in
an internal network without any prior information. However,
as mentioned in [5], because botnet attacks have distin-
guishable characteristics, an improved detection algorithm
is needed [6]. For example, the research in [3] detected
C&C channels by checking the active responses from a host
group at regular time intervals. However, to communicate
with the C&C server, a botnet attempts to make contact in
irregular connection cycles, presenting a problem for existing
methodologies employed to detect C&C channels. For that



reason, recent studies, including [4, 7-9], have switched their
focus to detecting abnormal behaviors of infected systems.

The effective detection of a botnet requires a detailed
understanding of the internal network environment and the
information service, as well as the configuration of multiple
network monitoring environments such as log analysis, file
integrity checking, registry monitoring, and rootkit detec-
tion. However, when configuring a host-based and network-
based consolidated monitoring environment in a corporate
network environment, resource utilization and performance
limitations are typically encountered. Setting up many rule
sets and excessive anomaly detection protocols to identify
botnets in a large volume network environment will increase
resource inefficiency and, in some cases, threaten the oper-
ability of the internal network. Because of these problems,
companies limit the rule sets for their information security
system or shut down their detection function. Therefore,
understanding the characteristics of a botnet, improving
resource efficiency, and providing stable detection perfor-
mance are important elements of any response to intrusions.

In this paper, in order to detect botnets, the attribute
information of network traffic is used to construct an attack
pattern chain algorithm (APChain) over time, and behavioral
profiling is conducted to detect abnormal activity. With this
method, real-time network traffic analysis, optimal resource
utilization, and encrypted packet attack detection are possi-
ble.

The remainder of the paper is structured as follows.
Section 2 reviews related work and current challenges, while
Section 3 presents a conceptual overview of the proposed
approach. Section 4 describes the system model for the
proposed algorithm’s architecture. Section 5 presents an
experimental evaluation of the approach using a real-time
traffic dataset. Finally, conclusions are drawn in Section 6.

2. Related Work

Botnets have become a major threat on the Internet and
extensive research has been conducted over the past several
years to detect them. Botnet detection can be classified
into two main types: vertical correlation [10] and horizontal
correlation [3, 11].

BotHunter [10] is an example of detection based on ver-
tical correlation. It observes a single machine and compares
its behavior with a model of bot behavior. It recognizes
correlated dialog trails consisting of multiple stages and rep-
resenting successful bot infection. Therefore, this strategy is
also referred to as “dialog correlation.” BotHunter is designed
to track two-way communication flows between internal
assets and external entities and consists of a correlation
engine driven by several malware-focused network detection
sensors. The BotHunter correlator links the dialog trail of
inbound intrusion alarms with those outbound communica-
tion patterns to detect infected local hosts. When a sequence
of evidence matches BotHunter’s infection dialog model, a
report is produced that captures all of the events relevant to
the local host’s role in the infection process.

BotHunter has some important limitations. For example,
it is restricted to the life cycle of the predefined infection
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model, and some stages, such as C&C communication,
provide only signature-based sensors. Thus, BotSniffer and
BotMiner are often used to complement BotHunter. They do
not necessarily require the observation of multiple different
stages within an individual host, nor do they require botnet-
specific signatures.

BotSniffer [3] and BotMiner [11] operate on the princi-
ple of horizontal correlation by observing correlations and
similarity across multiple hosts. Because horizontal correla-
tion detection strategies conduct preprogrammed activities
related to the C&C channel under the control of a botmaster,
bots within the same botnet will exhibit spatial-temporal
correlation and similarity. BotSniffer is designed to primarily
detect centralized C&C channels, and it monitors multiple
rounds of spatial-temporal correlation and the similarity
in activity responses from a group of hosts that share
a common centralized server connection such as IRC or
HTTP. BotSniffer can achieve the theoretical bounds for
false positive and false negative rates within a reasonable
detection time using statistical algorithms. BotMiner presents
a more general detection framework that is independent
of botnet C&C protocols and structure. It clusters together
similar communication traffic and similar malicious traffic
and performs cross-cluster correlation to identify hosts that
share similar communication and malicious activity patterns.
Therefore, these hosts are considered bots within the mon-
itored network. BotSniffer has an important limitation in
that it is restricted to the detection of botnets that primarily
use centralized C&C channels. With horizontal correlation,
it is difficult to detect a botnet in a small network environ-
ment and to classify hosts that are infected with different
characteristics of the botnet within the same network range.
In addition, BotHunter, BotSniffer, and BotMiner all usually
require a relatively long time to observe multiple stages of
botnet communication.

Other strategies for botnet detection have also been
proposed. In [12], specific traffic information is extracted
to run a learning module that can detect a C&C channel.
NetFlow’s records (flow size, client access patterns, and
temporal behavior) are used to identify the characteristics
of the traffic; using the learning module, reference values
are created to match the C&C channel characteristics. A
detection module then conducts matching to detect the
botnet C&C channel. In [13], attacks are detected by analyzing
ordinary HTTP requests and C&C channel characteristics
to detect HTTP-based C&C channels. To precisely differ-
entiate between C&C and legal domains, a CODDs-defined
approach is proposed. The proposed algorithm analyzes the
DNS information requests corresponding to these domains
during a particular time window.

In this paper, the APChain algorithm is proposed to detect
abnormal behavior. Abnormal behavior traffic is detected in
the initial stages with the goal of quickly eliminating systems
infected by malware. We configure port mirroring on the
backbone switch to create APChain in a real-time network.
Over a period of time, attribute information is linked to the
chain, and the results from APChain are then used to conduct
behavioral profiling to detect abnormal behavior.
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FIGURE 1: Conceptual diagram of the proposed methodology.

This study makes three main contributions. First, this
paper proposes an approach that differs from traditional
methods of botnet detection. The proposed methodology
constructs APChain using traffic attribute information and
detects abnormal behavior such as botnets through behav-
ioral profiling. Our system is able to detect new types of bot-
net and can improve its accuracy by modifying its behavioral
profiling algorithm. Second, botnets can have very flexible
C&C channels. They can use different protocols such as IRC
and HTTP and can encrypt content for C&C communication
[3, 10, 11, 14]. This paper proposes a detection scheme that
groups hosts with similar behavior over time. We are able to
determine the IP address of the C&C server, the connection
time, and connection count, among other parameters. As a
result, the proposed approach detects variable C&C channels
by tracking communication with the C&C server. Finally,
current detection techniques are based on the inspection
of network traffic. However, recent malware uses encrypted
C&C traffic or code obfuscation to evade these detection
techniques. The proposed methodology utilizes the attribute
information of the protocol header to overcome problems
associated with analyzing the payload of network traffic.
Therefore, it is possible to detect encrypted C&C channels
and to detect the abnormal behavior of obfuscated packets.

3. System Overview

In this section, we investigate the overall concept of the
proposed methodology, the configuration of APChain in
detecting abnormal behavior, and the behavioral profiling
process.

3.1. Overview of the Proposed Methodology. Recent cyber-
attacks are initiated by using advanced social engineering or
by sending a targeted e-mail to attack targets [15]. If a host
is infected by malicious code, an attempt to communicate
with a C&C server is made and a communications channel
is formed using Internet Remote Chat (IRC) or an HTTP
protocol. When a communications channel is established, the
host receives an attack command from the C&C server or
updates the binary file. At this time, APChain is configured

to monitor real-time traffic and detect abnormal behavior,
followed by behavioral profiling.

The methodology proposed in this paper is presented
in Figure 1. It consists of a five-step process to detect
abnormal behavior. First, real-time traffic is collected by the
flow collector and attribute information from the collected
traffic is extracted. Second, this traffic attribute information
is analyzed in order to configure APChain. APChain’s role
is to connect the features of the traffic attribute information
into a chain and to match this to abnormal behavior. Third,
behavioral profiling based on APChain is conducted. Fourth,
suspicious patterns are categorized and abnormal behavior is
detected. Finally, intrusion responses against the abnormal
behavior are executed, and network forensics for an audit trail
are conducted.

3.2. Attack Pattern Chain Algorithm (APChain). In order to
detect abnormal behavior, attribute information is extracted
from the DMZ or the internal backbone switch, and a chain is
configured that contains the attribute information over time.

3.2.1. Attribute Information for APChain. Network traffic
headers contain a variety of information such as the IP
addresses and protocols of the origin and destination. The
standardized extraction defined by the communication pro-
tocol enables efficient analysis. An 8-tuple {source IP, source
port, destination IP, destination port, protocol, access time,
MAC, URL}, which contains the fundamental attribute infor-
mation required to create APChain, is extracted from the
traffic header and payload, and a 10-tuple {SN, SGN, TIN,
CND, RATD, CNTI, RATD, CNTI, ACTTI, SCTTI} is created,
which provides additional attribute information based on the
extracted 8-tuple. The 8-tuple defines the network connection
between the origin and the destination systems, and the 10-
tuple is utilized as analysis data for the detection of a host’s
abnormal behavior.

3.2.2. Execution Results of APChain. The 8-tuple {source
IP, source port, destination IP, destination port, protocol,
time, MAC, URL}, collected through the network switch
of the experimental environment depicted in Figure 10, is
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used as input to create APChain. The results using the
APChain algorithm in Table 3 are expressed as Output=Input
U {SN, SGN, TIN, CND, RATD, CNTI, RATD, CNTI, ACTTI,
SCTTI}. Table 1 presents the APChain table created using the
traffic attribute information.

Figure 2 shows an example of APChain configuration for
the abnormal traffic behavior of a host infected by malicious
code.

For example, the intrusion server (217.11.xxx.78) connects
to the malicious server (12.5.xxx.48), which distributes mali-
cious code, infecting the host. The infected host periodically
communicates with the C&C server (106.23.xxx.129) and
updates the binary malicious code or receives an attack
command. At this time, to configure APChain to detect
abnormal behavior, port mirroring is configured on the
backbone switch, and network traffic attribute information is
extracted to create APChain. This traffic attribute information
is utilized to calculate additional attributes and added to
APChain.

When connections are made to a web server with the
same target address, they are defined in APChain by the
same group name, “GXXX53-PXXXX,” and, after they are
interconnected in the chain, behavioral profiling is conducted
to detect abnormal behavior.

3.3. Behavioral Profiling. Behavioral profiling analyzes attack
types based on their characteristics and categorizes any traffic

that exhibits abnormal behavior. Table 2 shows the behavioral
profiling algorithm using APChain.

The behavioral profiling algorithm in Table 2 consists of
case studies for three representative attack types. The first case
analyzes the RATD, CNTI, ACTTI, and SCTTI field values
of APChain and confirms whether there is communication
with a C&C server to detect a C&C channel. The second case
analyzes the URL, RATD, and CNTI fields of APChain and
checks for website tampering in order to detect pharming
attacks. The third case analyzes the RATD, CNTI, ACTTI,
and MAC fields of APChain and checks for IP-spoofing by
calculating the traffic frequency in order to detect IP-spoofing
DDoS botnets. Figure 3 presents the abnormal behavior
detection process of APChain-based behavioral profiling in
a real-time network environment.

3.4. Elimination of Whitelist-Based False Positives. In this
paper, we target the early detection of abnormal behavior
using APChain and behavioral profiling. However, because
the proposed methodology utilizes the attribute information
of network traffic, false positives may occur when normal
traffic is included in the detection results. For this reason, the
proposed algorithm exchanges data with the external system
or categorizes normal traffic such as web service calls based
on a whitelist and eliminates them from the analysis [16, 17].

The IP addresses registered on the whitelist are classified
into two types. The first type is those that are part of the
Internal Whitelist, which has packet attributes (e.g., Sip, Dip,
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TABLE 1: APChain table.

Attribute Type Description
SN Varchar Sequence number
SGN Varchar Sequence group number with the same destination IP
Sip Varchar Source IP
Sport Integer Source port
Dip Varchar Destination IP
Dport Integer Destination port
MAC Varchar Media Access Control address
PT Varchar Protocol
TS Date Time stamp
URL Varchar Uniform Resource Locator address
TIN Integer TIN subtracts the previous access time from the current
access time
CND is the cumulative number of times a connection is
CND Integer made to the same target IP address
RATD Integer RATD is the connection time interval to the same target
IP address
CNTI is the cumulative number of times a connection is
CNTI Integer made to the same target IP address over 30 minutes
ACTTI is the average connection time interval to the
ACTTI Integer same target IP address over 30 minutes
SCTTI Integer SCTTI is the standard deviation of the connection time

interval to the same target IP address over 30 minutes

TABLE 2: Behavioral profiling algorithm.

Algorithm 1. Behavioral Profiling

Input: Result of Function APChain (T): where T is a collection of network traffic.
Output: Results of abnormal behavior
Function Behavioral _Profiling (T):
H ={hy,---,h,, h,}, where h is the host infected
by malware
D={d,,---,d,,d,}, where d represents destination servers
R——RATD field value of APChain
C«—CNTI field value of APChain
A«—ACTTI field value of APChain
S«—SCTTI field value of APChain
while (not stop condition) do
if Abnormal_Behavior CeC then
M = {my,---,m,,m,,}, where m is the C&C server
/+the host attempts to connect to the C&C server=/
interval(H — M) € (A+S)
frequency(H — M) > C
if Abnormal_Behavior (Pharming) then
M = {m,,---,m,, m,}, where m is the fake website
/*the host connects to the fake websitex/
interval(H — M) < 6,
frequency(H — M) > Gj
(dn.Dip = dm.Dip) n (dnurl * dm.url)
if Abnormal_Behavior (DDoS) then
M = {my,---,m,, m,}, where m is the victim system
/*the host executes a DDoS attack/
interval(H — M) = 0
frequency(H — M) > 6,,
if Abnormal_Behavior (IP-spoofed DDoS) then
(hnmuc = hm.muc) n (hrLSip * hm.Sip)
frequency(H — M) > 6,
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TABLE 3: Attack pattern chain (APChain) algorithm.

Algorithm 2. Attack pattern chain (APChain)

/+ T «— set of packets /

Function APChain (T):
While (not stop condition) do

C «— 0/ Array for record of APChain */

for T is not @ do
Clny.sn < Sequence number [+ S00001 */
Ciny.sgn < Sequence group number /= G0000I +/
Ciu.sip < source IP [+ 58.203.xxx.xxx */
Ciny.spore < source port [ port number =/
Cio.pip < destination IP [+ 211.106.xxx.xxx/
Ciwy.pport < destination port [+ port number */
Cliymac < MAC address [+ D0-27-88-47-15-4B =/
Clyss < access time [ 2016.08.12 07:05:28 */
Cyunt < URL /% www.cnn.com =/

Clytin < (Clayat = Cino1y.ar) /* the cycle interval between the previous packet and the current packet */

Clyena < Call Function CND(C, T)
Clyrata < Call Function RATD(C, T)
Clwy.cnti < Call Function CNTI(C, T)
Clyaci < Call Function ACTTI(C,T)
Comsetti < S47t(Cooprata = Comaceri) 1 Comonti)

Function CND (C,T):

for T is not null do

if (C(n).srr:IP = C(ﬂ—l).srcu’) n (C(n).dstIP = C(n—l).dsth) then
accVal + = 1

return accVal

Function RATD (C,T):

if C(n)AsrcIP = C(n—l).srcIP n C(n)AdstIP = C(n—l)AdstIP then
interVal = C, ., - C

return interVal

n—m).at

Function CNTI (C,T):

for T is not null N (C o = Comy o) < 30(minute) do

if Cy srerp = Cintysrerp N Comastp = Cruoy.aserp then
accVal + = 1

return accVal

Function ACTTI (C,T):

for T is not null n (C,, ., — C, ) < 30(minute) do

n-m).at
if Ci srerp = Cinmty.srere N Cimyastip = Ciuny.aserp then
interVal + = Ci,y ot = Clppyar
accVal + = 1
return interVal/accVal

and interval) regularly exchanged between the internal and
external environments. When batch scripts such as crontab

are used in the communication with the external environ-
ment for data exchange, the Internal Whitelist compares and

analyzes the IP address, port, and execution cycle and saves
the analysis in a file.

However, it is difficult to detect abnormal behavior when
it is registered with the Internal Whitelist because it is
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Feature extraction from packet attributes
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FIGURE 3: Abnormal behavior detection using APChain and behavioral profiling.

categorized as trustworthy communication. Therefore, the
condition of (1) is periodically checked to detect the abnormal
behavior of the hosts registered in the Internal Whitelist;
any abnormal behavior detected will be excluded from the
Internal Whitelist.

if interval (Server,, «— Server,,) =0
then  normal network traffic 1)

otherwise abnormal network traffic

The second type of IP address is those associated with sites
on well-known Global Whitelists, such as those compiled
by antivirus software companies. Through the continuous
updating of the Global Whitelist, new C&C IP addresses are
added, and IP addresses and domain names are included.
Figure 4 outlines the elimination of whitelist-based normal
IP addresses from the behavior profiling process.

The elimination process for whitelist-based false positives
is shown in Figure 4. The traffic from January to June
2017 collected in the experimental environment presented
in Figure 10 is analyzed and whitelist-based IP addresses
involved in normal communication are eliminated from the
analysis.

3.5. Characteristics of Cé»C Channels and
Their Detection Method

3.5.1. Characteristics of Ce&»C Channels. Attackers use either
an encrypted communications channel or an alternative
communication method to hide C&C channels. When hosts
infected with malicious code establish an Internet-enabled
communications environment, a channel is created to com-
municate with a C&C server and, through this, the infected

host receives an attack command from the C&C server or
extracts vital data from the host on its internal network [7, 18—
20]. A C&C server can have at least 1 and up to N number of
C&C channels with hosts and involves repeated connection
and standby requests. Because the communication cycles
of C&C channels differ depending on the characteristics
of the malicious code, it is impossible to detect all C&C
channels in categorized regular time intervals. Even though
a C&C channel may exist between a host and a C&C server
according to the configuration conditions, this does not mean
that communication will always occur on a regular cycle.
Moreover, a host infected with malicious code downloads the
IP address of a new C&C server from the original C&C server
and creates a communication channel with this new server.
Figure 5 shows the connection and standby cycles of a C&C
channel connection to a Linux/Xor.DDoS botnet.

3.5.2. C&C Channel Detection Method. Analysis of the real-
time traffic occurring in the experimental environment
allowed us to categorize C&C channels into three types. The
first type either engages in socket communication with the
external server via the Internet to exchange data or uses
a file transfer program such as the File Transfer Protocol
(FTP) to exchange data with anonymous or authenticated
users. In instances such as this, in which data is exchanged
with the external system, a high connection frequency is
observed at regular time intervals. The second type is when
a connection is made to the website through browsers to
surf the web. The host connects to a specific website and
regularly requests a service or requests a random service
from an unspecified website. In the case where a service
is requested via a website, the connection frequency has
significant variation at random time intervals. The third
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type is when a host is infected by malicious code upon
connecting to a botnet or malicious code distribution site
and attempts to communicate with an external network.
The infected host configures a communication channel with
the C&C server and either receives an attack command or
updates the configuration file. When communication with a
C&C server occurs, the connection cycle varies according to
the characteristics of the malicious code and exhibits a high
connection frequency.

Further analysis of the network traffic characteristics over
time confirms that, according to the traffic type, a difference
occurs between the connection frequency and connection
time intervals. Figure 6 presents the connection frequency
and intervals for three types of traffic: a C&C channel used
to communicate with a C&C server, communication with an
external file exchange system to exchange data, and website
service requests made upon connecting to a website. If it were
possible to analyze the traffic collected in real time, as was
done in the experimental environment, it would be possible
to detect attacks that have singularities such as those of the
C&C channel.

In this paper, the following attributes are used to analyze
the characteristics of a C&C channel and its connection
frequency to configure APChain: CND, RATD, ACTTI, and
SCTTI. The time interval for the analysis of the traffic
attributes is set to 30 minutes. The reason for this is because
the average lead time for a host infected by malicious code
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FIGURE 6: Analysis of network flow characteristics over time.

to perform malicious activity is three hours. Therefore, the
goal is to detect abnormal behavior using the proposed
algorithm before the infected host can initiate malicious
activities.

3.6. Characteristics of Pharming. Pharming is a type of cyber-
attack in which specific domain names such as a cache DNS
server are configured to use a forged IP address. Users input
a normal website address to request a web service but are
instead connected to a fake site created by the attacker.
The fake site has the same form as the normal website and
obtains personal information such as a user’s login credentials
and account information. Therefore, an effective method
to detect pharming attacks is to identify real websites and
detect whether the DNS cache information has been falsified
or not.

The proposed methodology analyzes the traffic attribute
information over time and categorizes pharming attacks. For
example, when a host is infected by a pharming attack, even
if it were to request a normal website, as in Figure 7, a fake
website is delivered with a falsified domain name and, as (2)
shows, the number of calls to the fake website increases at a
specific point in time.
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In this paper, to detect pharming attacks, the URL and
IP address of the website the host is connecting to and
the connection time are analyzed to configure APChain.
APChain’s URL, Dip, CND, RATD, and CNTI are used as key
elements in behavioral profiling to detect pharming attacks.

3.7. Characteristics of IP-Spoofing DDoS Botnets. Because of
the increase in network bandwidth and the development
of hardware, recent DDoS attacks are generating larger
volumes of traffic incomparable to what has been seen in
the past [21, 22]. Malicious code such as IP-spoofing DDoS
botnets Linux.Shelldos and Linux.Xor.DDoS receives attack
commands from a C&C server and generates large volumes
of packets threatening to paralyze communications.

Although security systems such as firewalls are set up
to detect and block this type of attack, if a host infected
by malicious code were to manifest large numbers of DDoS
attacks, then even if a security system were to detect the
DDoS attacks and block them, the internal network could be
paralyzed due to the large volume of traffic. Therefore, if a
host infected by an IP-spoofing DDoS attack is not detected
and eliminated quickly, the internal network will be subject
to the threat for a very long period of time.

Figure 8(a) shows that the internal network is affected
by a large amount of traffic originating from a host infected
with a DDoS botnet. Figure 8(b) presents the traffic from
the internal network using PRTG software. The infected host
generates a large volume of traffic from the host to the
external server and failures occur on the internal network.
Figure 9 shows the packets generated from a host infected by
an IP-spoofing DDoS botnet.

In this paper, to detect IP-spoofing DDoS botnets, the
attributes of outbound traffic are analyzed, and the following
values are used to configure APChain: Sip, Sport, MAC, CND,
RATD, CNTI, ACTTI, and SCTTI. Additionally, behavioral

profiling is used to confirm whether IP-spoofing has occurred
or not and to identify the host IP infected by the botnet.

4. System Model

In this section, we outline the proposed algorithm for detect-
ing abnormal behavior and examine the abnormal behavior
detection methods according to attack type in the form of
case studies.

4.1. Collection of Network Traffic. Port mirroring is config-
ured to the backbone switch for the collection of real-time
network traffic. Port mirroring is set up to collect all of
the traffic routed from the backbone switch to analyze the
attribute information. Figure 10 presents a diagram outlining
the collection of real-time network traffic.

4.2. Extraction of Attribute Information. Attribute informa-
tion extracted from real-time traffic in the experimental
environment presented in Figure 10 is stored in the flow
log database (FLDB). The FLDB stores the features of the
attributes extracted from the traffic headers, both normal and
malicious traffic (e.g., Trojans, botnets, etc.) is included.

The collection of network traftic collected at the backbone
switch is represented as T={t}, -+, t,;, t,}, and the traffic
attribute information is defined as t={t,, t 501> Liime> tmac> =+ ">
t,.1}. The size of the attribute information stored in the FLDB
is F = Y, 1 and is cumulatively calculated if new attribute
information is stored in the FLDB. The protocol stack for
extracting packet attribute information is shown in Figure 11.

4.3. Attack Pattern Chain (APChain) Creation. The APChain
algorithm configures a chain of traffic attribute informa-
tion over time. Behavioral profiling using APChain is then
conducted to detect abnormal behavior. Table 3 shows the
algorithm used to configure APChain using traffic attribute
information extracted from the protocol stack (Figure 11).
The source IP, source port, destination IP, destination
port, access time, and MAC value are extracted from the
network traffic, and the URL information from the payload is
analyzed to configure APChain. Additionally, the connection
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FIGURE 10: Diagram of the experimental environment.

time and connection frequency of traffic that have the same
target IP address are calculated and stored within APChain.

APChain record is 102 Bytes in size, and the same number
of APChain records is created as the number of transfers
inbound to outbound. Figure 12 shows the results of APChain
creation using attribution information from the collected
traffic.

4.4. Abnormal Behavior Detection Using Behavioral Profiling.
In this section, we will review the process and algorithm
for behavior profiling using APChain and investigate the
detection of abnormal behavior using three case studies.

4.4.1. C&C Channel Detection [Case Study A]. Hosts are
infected with malicious code by malicious code distribution
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TABLE 4: The hypothesis for C&C channel detection.

Hypothesis 1. C&C channel detection

Given an environment:

LetT = {t,,--- ,t,_,t,}, where t represents the network traffic, and T, is the traffic currently being analyzed.
Let H = {hy,--- ,h,_;, h,}, where h represents a host infected by malicious code.
LetS = {s,---,s,1,$,}, where s represents a C&C server.

H=S, the infected host attempts to connect to the C&C server.

A host infected with a botnet creates a C&C channel in order to communicate periodically with the C&C server. As a result, the
frequency that a host connects to a particular system increases, and if this pattern is repeated often enough, it can be considered to be
unusual traffic. At this point, the host and the C&C server receive attack commands or update binary files while repeating the connection

requests and responses.

Therefore, the set (G) of C&C channels can be formed by detecting and grouping the requests from hosts connecting to the C&C server.

G={H, =S, H,=S,,---,H,,, = §,.,H, =S$,}

n=1>
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FIGURE 11: Protocol stack for feature vector extraction.

sites, phishing emails, or social networks. Infected hosts
attempt to connect to receive an attack command from a C&C
server, to update the C&C server list, or to update the binary
file. At this time, the C&C channel uses random ports higher
than the known ports and configures a channel with at least
one C&C server. Therefore, one method to effectively block
botnet attacks is to detect the communication channel with
the C&C server and eliminate it before the host infected by
malicious code can manifest an attack. The hypothesis that
we established for C&C channel detection is presented in
Table 4. C&C channel detection results are verified in the
experiments.

The commands used to trigger communication between
the host and the C&C server are included in a botnet, and the
communication method for the creation of the C&C channel
and connection cycle are configured. Therefore, if we can
detect hosts infected by malicious code connecting to a C&C
server, then we can block the attack before the actual attack
can be manifested.

In this paper, the following process is followed to detect
a C&C channel between a host infected by a botnet and a
C&C server. First, it confirms if the traffic to be analyzed
contains an IP address included as part of the whitelist-based
false positive elimination process. If the IP address is included

on the list, it is categorized as normal traffic, and if not,
it is analyzed to determine abnormal behavior. Second, it
calculates the frequency (CNTI) of the host connecting to
the target system and compares it with the threshold value.
If the CNTI value is higher than the threshold value, then it
concludes that communications are occurring regularly and
moves on to the next step. Third, it compares the connection
time interval (RATD) for traffic that has the same target IP
address with the average connection time interval calculated
every 30 minutes. At this time, the standard deviation of the
average connection time interval (SCTTI) is also calculated,
and if the connection time interval (RATD) is {(ACTTI —
SCTTI) + 6, < (RATD) > (ACTTI + SCTTI) = 0},
then the corresponding traffic is suspected to be a C&C
channel. Figure 13 displays the distribution of the connection
frequencies and connection cycles of traffic suspected to be
C&C channels. Finally, if the connection frequency of a bot
to a suspected C&C channel exceeds the threshold value, it is
categorized as abnormal traffic behavior.

Normal packets and abnormal packets can be categorized
by analyzing the network traffic collected in the experimental
environment shown in Figure 10, and traffic suspected as
being a C&C channel can be categorized according to the
hypothesis defined in Table 4.

ASUDOI'T SUOWWO)) dATEAI) d[qearidde oy £q PauIoA0S dIe SI[IIIE YO asn JO SI[NI 10§ ATeIqr] AUIUQ) A1 UO (SUONIPUOD-PUL-SULId}/W0d" A[1m’ ATeIqIaut[uo,/:sdiy) SuonIpuo)) pue swId L 3y 39S “[$707/21/S1] U0 Arerqr] aurquQ A1 “O[nyasyooH YdsIuyda L, £ 90L90L6/S10Z/SST1°01/10p/woa A Areqrauriuo//:sdpy woly papeoiumod ‘1 ‘8107 LE0T



12

5 spens) 5642 567 [ 0 1 1
BT opy

Security and Communication Networks

]
1
[

FIGURE 12: Results of the execution of the APChain algorithm.

—
1)
=]

+

& detect
+ * b4 ®
100 detect + 7
+
80 detect ot g
& [5) . - ¥
=1 d +
o) etect
E 60 - . b
(9] +
-
=40 - .
+
20| -
+
+
| 1 1 1 1 1 1 1 1 1 1 1 T i 1 1 1 1 1 1 1 1 1
S @ ,,m“’ '13;?«,“: NS 4}«‘1@1\%' \“J’\'a\ 9}\6 RS _‘_‘c“s’ﬁ" _‘;} g
S S A S $¢¢~7 ¢+¢ T
DTS gg @ TS TIPS aT ST 9T 97 et SN
O R N eSS T P T S e e CHGAS %“'abo'
AR G SN AN AN WV TIHT © 0T e

IP address

FIGURE 13: Categorization of abnormal traffic behavior suspected of
being a C&C channel.

Figure 13 presents the connection frequency between a
host and a suspected C&C channel. If APChain’s ACTTI is
A and SCTTI is S with APChain connection frequency as x,
then, for the traffic suspected as being a C&C channel, C is
C=fx | Ix,(A=-8) 20, <x>(A+S) =+ 0;}. Here, ACTTI
is used as the reference value for C&C channel detection. A
fixed value is not used; it varies according to the connection
cycle of the target IP address. Table 5 presents the algorithm
used to detect a C&C channel. The proposed algorithm was
developed into a prototype, and its performance is verified in
the experiment and evaluation sections of this paper.

4.4.2. Pharming Attack Detection [Case Study B]. Pharming
attacks target specific individuals or organizations and infect
them via spear phishing or malicious code distribution sites.
Pharming attacks falsify Windows environment files or DNS
addresses, so even if a host infected by pharming were to call a
fake site, the intrusion response system would categorize the
corresponding traffic as normal. The hypothesis for detecting
a pharming attack is shown in Table 6.

The algorithm to detect a pharming attack proposed in
this paper analyzes whether the site that the host connects to

TABLE 5: C&C channel detection algorithm.

Algorithm 3. C&C channel detection

/+ T «— set of packets s/
/% C «— set of APChain fields =/

Function Behavioral_Profiling (T):
While (not stop condition) do
C «— Call Function APChain (T)

for T is not null do
if (C,pi 20,)N(C,i < Gj) then
3IT(T is in the candidate group for abnormal traffic)
if (lcmtd -(C actti T .sctti)l ex) then
VT(T is abnormal traffic)
accVal + =1
if accVal > 0, then
VT(T is in the candidate group for a C&C channel)
if T ¢ Internal Whitelist (T) then
VT(T is a C&C channel)
return T is a C&C channel

cnti

is fake or not. For example, when the host attempts to connect
to a website with a specific IP address through different
domain names, it can be suspected of being a pharming
attack. The average time interval of the connection to a fake
website is RATD, and the frequency is CNTI. When the
threshold is y, traffic suspected as pharming, B is represented
as P = {x | x € threshold(y), (RATD < x) N (CNTI > x)}.
Table 7 presents the algorithm used to detect a pharming
attack through behavioral profiling.

4.4.3. IP-Spoofing DDoS Botnet Detection [Case Study C].
As advances in network infrastructure and hardware have
progressed, the large volume of traffic generated from a
small number of systems has become the main threat to the
stability of an internal network. In particular, if malicious
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TABLE 6: Hypothesis for detecting a pharming attack.

Hypothesis 2. Pharming attack detection

Given an environment:

,t,_1»t,}, where t represents the network traffic, and T, is the traffic currently being analyzed.

LetT = {t;,---
LetH = {hy,--- ,h,_,, h,}, where h is a host infected with malicious code.
LetS = {s,---,s,1,$,}, where s is a fake website.

H=S, the infected host connects to the fake website.

The user requests a legitimate website, but a host infected with pharming redirects the connection to a fake website. At that time, when
requesting the URL of the legitimate website, a connection to a specific destination IP address may be suspected as a pharming attack.

Therefore, we analyze requested URLs from hosts and compare them to the IP addresses of destination websites. The set (G) contains

hosts that request the same destination IP addresses.
G={H,=S$,H,=S,,---,H,_, = S§,_,H, =S,}

n— n-1>

TABLE 7: Pharming attack detection algorithm.

Algorithm 4. Pharming attack detection

/% T «— set of packets =/
/* C «— set of APChain fields =/

Function Behavioral_Profiling (T):
while (not stop condition) do
C «— Call Function APChain (T)
for T is not null do
if(C) pip = Cimy.pip) N Call Func n_gram (C) then
3IT(T is in the candidate group for pharming)
accVal+ = 1
if (accVal 2 0;) N (C,,; 2 0;) N (C, g 2 0) then
/+ Analysis of connections to websites suspected as

pharming and connections to a specific target
IP address =/

VT(T is pharming)

return pharming

Function n-gram(C):
if (n_gram(C, 1) € C(yop) ) then
/% Accuracy is increased using the n-gram algorithm =/

return true

codes such as Windows or Linux-related DDoS botnets are
not detected in time, then large volumes of traffic would
be generated on the internal network, and we would face
the threat of the entire network shutting down. Therefore,
it is imperative to detect and effectively eliminate hosts
infected with malicious code. However, it is not easy to detect
hosts that manifest IP-spoofing DDoS attacks, and related
research is limited. In this paper, APChain is configured, and
we propose a method to detect IP-spoofing DDoS botnets
through behavioral profiling. To maintain a communication
channel with a C&C server, a host infected with an IP-
spoofing DDoS botnet attempts to connect and, if successful,
moves to a standby state to receive attack commands. If the
host receives an attack command from the C&C server, it

generates a large volume of dummy packets to send to the
attack target destination. At this time, the source IP address
of the packet uses a spoofed IP address and dummy data
included in the payload and transfers them to the attack
target system. The proposed methodology uses APChain’s
connection frequency (CND), connection time interval, and
average connection time interval (ACTTI) values to conduct
behavioral profiling and detect DDoS attacks. The hypothesis
employed to detect IP-spoofing DDoS botnets is shown in
Table 8.

The algorithm proposed to detect IP-spoofing DDoS
botnets detects hosts that have different source IP addresses
but that have the same MAC address. For example, when
the traffic frequency for a host connecting to the target IP
address is CNTI and the average connection cycle is ACTTI,
if the threshold value is y, then the traffic is suspected to be
a DDoS attack, D, where D = {x | x € threshold, (CNTI >
0) N (ACTTI = 0)}. At this time, if the traffic has different
source IP addresses but the same MAC address, it is presumed
to be an IP-spoofing DDoS botnet.

The method used to detect an infected host is to search
for the MAC address suspected to be a spoofed IP address
in the MAC field of the APChain table and to extract the
record that was first registered in the APChain table to
confirm the source IP address. It is assumed that the host
with the same IP address as the source IP address is a botnet.
Table 9 summarizes the IP-spoofing DDoS botnet detection
algorithm using behavioral profiling.

5. Experimental Evaluation

The test bed was prepared as shown in Figure 10, and a
prototype was developed to evaluate the performance of the
proposed algorithm. Real-time network traffic collected from
the test-bed environment and datasets downloaded from the
Malware Capture Facility Project (MCFP) were used as data
for the experiment. The dataset included botnets that create
and utilize C&C channels.

In this section, the following four key aspects are covered:

(i) Explanation of the datasets used in the experimental
environment

(ii) Evaluation of the accuracy of the proposed algorithm
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TABLE 8: Hypothesis for detecting IP-spoofing DDoS botnets.

Hypothesis 3. IP-spoofing DDoS botnet detection

Given an environment:

LetT = {t,,--- ,t,_,t,}, where t represents the network traffic, and T, is the traffic currently being analyzed.
Let H = {hy,--- ,h,_,, h,}, where h is a host infected with malicious code.
LetD ={d,,--- ,d,_;,d,}, where d represents a target system for DDoS attack.

H=D, the infected host executes a DDoS attack on the target system.

A host infected with an IP-spoofing DDoS botnet receives an attack command from the C&C server and implements a DDoS§ attack, and
the origin IP address of the host attacking with DDoS is modified. At that time, a DDoS attack can be suspected if the host sends large
amounts of traffic to the destination system. Also, an IP-spoofing DDoS botnet can be categorized if a particular host has a different

origin IP address but the same MAC address.

Therefore, the set (G) consists of hosts that perform IP-spoofing DDoS attacks.

G={H,=D,H,=D,,---,H,_, = D,_,H, =D,}

n—=1>

TaBLE 9: IP-spoofing DDoS botnet detection algorithm.

TasBLE 10: Experimental environment.

Algorithm 5. IP-spoofing DDoS botnet detection Environment Description
/+T «— set of packets */ Servers =100 active servers in a server farm
/% C «— set of APChain fields */ Host =1,500 active hosts in the internal network
. 10 Gbps internal network and 2 Gbps external
Function Behavioral _Profiling (T): Bandwidth network
while (not stop condition) do Traffic flow = 530 GB of data monthly

C— Call Function APChain (T)
for T is not null do
if C_,,; = 0; then
if (C g =0) N (C Ly = 0) then
3T(T is in the candidate group for DDoS)
accVall +=1
if accVall > 0, then
VT(T is a DDoS attack)
if (Cioy sip € Cnemy.sip) N (Coomac € Coremmac) then
3T(T is IP spoofing)
accVal2+ =1
if accVal2 > 0, then
VT(T is an IP spoofing DDoS attack)
return Call Function infection_host (C,) 40> C)
)

Function infection_host (C ) ;4>
while (not stop condition) do
if (Ciy mac = C ) then
host_info «— C, gy

return host_info

(iii) Measurement of the performance of the developed
prototype
(iv) Effectiveness and accuracy of the experimental results

5.1. Experimental Environment and Performance. The experi-
mental test environment is divided into a server farm domain,
a user domain, and a branch office. Real-time traffic is col-
lected from the server farm domain and the user domain. The
intranet bandwidth is 10 Gbps, and the Internet environment

TaBLE 11: Characteristics of Dataset_I.

Environment Description

Period of traffic collection From January to June 2017
=150,000,000
=3185TB
=100 servers, 1,500 hosts

Botnet, normal

Number of records

Collected record size

Servers and Hosts
Flow type

bandwidth is 2 Gbps. The experimental environment for
performance evaluation is presented in Table 10.

The prototype was implemented in an environment con-
sisting of an Intel i7 8-core CPU, 16 GB of RAM, and an 8 TB
HDD with Java used as the programming language.

5.2. Test Dataset. The datasets used in the experiment are
network traffic collected in real-time from the test-bed envi-
ronment and traffic representing malicious behavior from the
MCEP [23, 24]. The datasets are explained below.

Dataset_1 collects traffic in real-time from the experi-
mental environment shown in Figure 10 and analyzes it. The
experimental environment comprises 100 servers and 1,500
hosts; the collected data includes network traffic from the
server farm and user domains. The dataset stored collected
traffic flow for a period of six months, from January 2017 to
June 2017. It includes malicious code that corresponds to the
attack types specified in the System Model section. The traffic
flow consists of 150,000,000 records and is 3.185 TB in size;
the characteristics are presented in Table 11.

The scenarios used in Dataset_1 are summarized in
Table 12. Dataset_1 includes header information (source IP,
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TABLE 12: Dataset 1.
Scenario Capture name Size Threat type
S01 KU-Malware-01 2.6 GB Bot
S02 KU-Malware-02 43 GB Bot
S03 KU-Malware-03 1.4 GB Bot
S04 KU-Malware-04 412 MB Bot
S05 KU-Malware-05 1.3 GB Pharming
S06 KU-Malware-06 54 GB Pharming
S07 KU-Malware-07 354 MB Pharming
S08 KU-Malware-08 43 GB DDoS bot
S09 KU-Malware-09 3.8GB DDoS bot
S10 KU-Malware-10 2.8GB DDosS bot
TaBLE 13: Dataset_2.
Scenario Capture name Size Bot
S11 CTU-Malware-13 305 MB Murlo
S12 CTU-Malware-42 5.75 GB Neris
S13 CTU-Malware-44 4.78 GB Rbot
S14 CTU-Malware-46 371 MB Virut
S15 CTU-Malware-47 3.05GB Menti
Si6 CTU-Malware-78 6.3 GB Zeus
S17 CTU-Malware-116 317 MB Kazy
Destination IP, Protocol, etc.), MAC address, and URL of 250 0.01
packets extracted from the network traffic. It includes both i
normal and malicious traffic. 200 L Let770:009
Scenarios S01and S02 are packets installed with malicious . . ‘ . Jlooos
code through a backdoor from a seized account in a system 2 0l o -
located in the DMZ that includes a communications channel b3 o e S 0007 N
with a C&C server. S03 has a web application system (WAS) % *" ) g
administrator account set up with initial values. After the S 100} LT e : 10006 =
system is seized by an attacker, a webshell is uploaded to e 10.005
install malicious code. S04, S05, S06, and SO7 are a scenario sl o
in which a host connected to a malicious code distribution 10.004
sites is infected with a malicious code. Scenarios S08, S09, Lo
and S10 involve a host infected with malicious code which 00' 00 200 600 800 1000 1200 1200 1600 1800 2008'003

is maintaining a communication channel with a C&C server
and conducting an IP-spoofing DDoS attack [25].

Dataset_2 is malicious code traffic distributed by the
MCEFP [23]. The MCEFP is a research project created by the
Czech Technical University ATG Group with the objective
of capturing, analyzing, and distributing malicious code
traffic, and it distributes datasets to assist in the development
of various detection methods. The malicious code traffic
distributed by the MCFP can be downloaded from its website
[1] and includes a PCAP file, netflow file, and readme file.
However, because the PCAP file contains personal informa-
tion, it does not provide all data. The PCAP file used in the
experiment targets traffic that contains information about the
C&C server. The MFCP dataset used in the experiment is

summarized in Table 13.
Dataset_2 in Table 13 is a Trojan horse that is installed

via user e-mail, messenger applications, or reference libraries.
Scenarios S12 and S13 are Neris bot and Rbot bot, and
scenarios S14 and S15 are Virut bot and Menti bot. The PCAP

Packets
-+ File Size (FS)
-+ Generating Time (GT)

FIGURE 14: Time and size for APChain table generation.

file used for the analysis contains both normal and botnet
traffic and was captured on the main router of the university
network.

5.3. APChain Creation. The configuration of APChain is
critical to detecting abnormal behavior and becomes an
important factor with regard to detection speed and accu-
racy. APChain extracts attribute information from real-
time traffic, performs additional analysis, and links attribute
information over time. Figure 14 shows the time (GT) to
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TABLE 14: Proof for the detection of C&C channels.

Proof 1. Detection of C&C channels

Given an environment,
Let H = {h,,---
Let S={s,5,, s

,h,_;,h,}, where h is a host infected with malware.

1> S,}> where s is a C&C server.

n—

If the connection cycle from the host to the destination system satisfies condition (x), then calculate the accumulated count (ac), and if
the accumulated count satisfies threshold (0), then this is defined as a C&C channel.

x=[(u-0)£0]<RN[(u+0)+ Gj] > R (where R is RATD field value of APChain)

U= Z,n:ly (=t )]y, 0= \ ZZ?; (e~ !4)2/”

if x=true, then ac = ZZ?{ 1 (where y is the record number of APChain)

true: Command and Control channel
if ac > 0,,

false: normal network traffic

At this point, if the host is not communicating with the C&C server, the host is not infected with a botnet. Accordingly, a host infected
with a botnet will maintain the C&C channel while periodically connecting to the C&C server.

Therefore, a C&C channel can be categorized if false positives are excluded from the set (C) of hosts suspected to be a C&C channel.

C={h,,--,h,} N false positive ¢ C
TaBLE 15: Experimental results for C&C channel detection.

Scenario Accuracy Precision Recall TP N FP FN
S01 1.0 1.0 1.0 3 431 0 0
S02 0.993 0.5 1.0 4 537 4 0
S03 0.996 0.6 1.0 3 642 2 0
S04 1.0 1.0 1.0 1 102 0 0
Sl1 1.0 1.0 1.0 1 12 0 0
S12 0.993 0.03 1.0 1 4174 27 0
S13 0.999 0.5 1.0 1 9988 1 0
S14 0.994 0.1 1.0 1 1536 9 0
S15 0.994 0.09 1.0 1 1535 10 0
S16 0.950 0.5 1.0 1 18 1 0
S17 0.922 0.1 1.0 1 94 8 0

generate APChain records by packet and the size (FS) of
APChain table.

According to the experimental results in Figure 14,
APChain algorithm requires a minimum storage capacity
of 102 Bytes to 115 Bytes per packet to generate APChain
table, and 100,000 packets require a storage capacity of 10.9
Mbytes. A minimum of 5 milliseconds and maximum of 8
milliseconds are needed to analyze the attribute information
of the packets and to generate record of APChain table.

As a result, if it takes 6 milliseconds overall to generate
APChain record, ACTTI and SCTTI fields account for 3 mil-
liseconds and 2 milliseconds. Therefore, in order to apply the
proposed methodology to a real-time network environment,
the calculation of the ACTTI and SCTTI fields of APChain
algorithm should be done effectively.

5.4. Performance Evaluation. In this section, the proposed
algorithm is applied to the attack types defined in the system
model in order to detect these attacks and evaluate its
performance.

5.4.1. C&C Channel Detection [Case Study A]. Hosts infected
by a botnet maintain a communication channel with a C&C
server, receiving either an attack command or updating the
configuration before the attack is initiated. Therefore, if it
were possible to detect the channel between the host infected
by malicious code and the C&C server before important
information is breached, it would then be possible to detect
or block attacks within the lead time needed for attacks to
succeed. According to this, the hypothesis used to detect
C&C channels is defined in Table 4, and the proof for the
hypothesis is provided in Table 14. The performance of the
proposed algorithm is verified using experiments, the results
of which are presented in Table 15.

The datasets used in detecting C&C channels employed
the scenarios S01, S02, S03, and S04 in Table 12 and SO08,
S09, S10, S11, SI2, S13, and S14 in Table 13. The C&C
channel detection algorithm defined in the System Model
section was implemented as a prototype to evaluate perfor-
mance. The goal of the proposed methodology is to detect
C&C channels using the APChain algorithm and behavioral
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TABLE 16: Experimental results for C&C channel detection according to the threshold value.

Category Accuracy Precision Recall FP rate

Threshold A (0, 240) 0.0156 0.0006 1.0 0.9850

{x | 0 < x > 240, x=frequency}

Threshold B (30, 240) 0.9998 0.8571 1.0 0.0001

{x |30 <x>240}

Threshold C (30, 720) 0.9856 0.0428 1.0 0.0143

{x]30 <x=>720}

Threshold D (90, 720) 0.9854 0.0289 0.6667 0.0143

{x 190 <x>720}

Threshold E (0, co) 0.0006 0.0006 1.0 1.0

{x0<x>o00}

profiling regardless of any changes to the C&C channel’s
communication cycle.

One of the steps in the life cycle of a botnet attack is
the creation of a communication channel with a C&C server.
The proposed algorithm analyzes inbound to outbound traffic
to configure APChain, and behavioral profiling is conducted
according to the attack type to detect attacks. At this time,
APChain’s SGN field is used as a reference value that is applied
to configure the same target IP addresses as a group and link
them into a chain. According to the experimental results in
Table 15, by using the proposed algorithm, the C&C channel’s
true positive rate is 1.0 and the false positive rate, which
indicates normal network traffic that is classified as a C&C
channel, is 0.003.

A true positive is when a C&C channel is detected and
determined not to be normal traffic and a true negative is
when normal traffic is detected and determined not to be
a C&C channel. A false positive detects normal traffic as a
C&C channel, and a false negative is when a C&C channel is
detected as normal traffic. In such instances, the accuracy is
0.996, the precision is 0.225, and the recall is 1.0.

Although the detection of the configuration of a com-
munication channel between a host infected by malicious
code and a C&C server has been the focus of several studies,
including [3, 7, 26], these detection methods may encounter
an increase in false positives or false negatives when the C&C
channel occurs irregularly. The methodology here proposes
the APChain algorithm to alleviate the existing problems by
using connection time intervals, frequencies, and standard
deviations to perform behavioral profiling and thus detect
abnormal behavior.

According to the test results displayed in Table 15, accu-
rate detection was made in scenarios S01, S04, and S11 while
detection errors occurred in S02, S03, S12, S13, S14, S15, S16,
and S17. The detection errors were false positives, in which
normal traffic was detected as C&C traffic. The reason why
these false positives occurred was because traffic inspecting
the service between the host and the external system was
present. However, false positives can be categorized as nor-
mal traffic through the elimination of whitelist-based false
positives (Section 3.4). We thus applied the Internal Whitelist
from Section 3.4 to S12, and the false positive rate decreased
by 56% from 27 to 15.

The experimental results for detecting a C&C chan-
nel according to the threshold value are presented in
Table 16.

In Table 16, category x indicates the frequency of packets
suspected of being a C&C channel. When the cumulative
frequency resides within the range of the minimum and
maximum values of the threshold given in Table 16, the
accuracy, precision, recall, and FP rate are calculated. The
accuracy for Threshold B (30, 240) is 0.9998, the precision is
0.8571, and the recall is 1.0. The accuracy of Thresholds C (30,
720) and D (90, 720) are similar to that of Threshold B (30,
240), but the recall and precision are lower than Threshold
A (0, 240). For Threshold C (30, 720), the accuracy, which
represents the accuracy of C&C channel detection, is higher.
However, the false positive rate, which indicates the rate at
which normal traffic is categorized as a C&C channel, also
increases. For Threshold D (90, 720), C&C channels were not
accurately detected, resulting in false negatives, and normal
traffic was categorized as a C&C channel, causing the false
positive rate to also increase. Consequently, the C&C channel
detection accuracy was the highest when the conditions
for Threshold B were selected; when the conditions for
Thresholds C (30, 720) and D (90, 720) were applied, both
the false negative and false positive rates increased.

Based on the monitoring of the connection cycle and
frequency between a host infected by malicious code and a
C&C server, it is found that the connection cycle varies and
the cumulative connection frequency is linear. Consequently,
detecting a C&C channel with the proposed algorithm
reduces detection errors while presenting an effective method
for detecting attacks.

5.4.2. Pharming Attack Detection [Case Study B]. Pharming
attacks either falsify a Domain Name Service (DNS) server
address or falsify a DNS cache file; in an attempt to connect to
a normal website, users instead are connected to a fake web-
site because of the falsified DNS server. Pharming attacks can
be detected by categorizing whether the host is connecting
to a normal site or to a fake site. Accordingly, the hypothesis
defined in Table 6 is used to detect a pharming attack, and the
proof of this hypothesis is provided in Table 17. The perfor-
mance of the proposed algorithm is verified experimentally
and the results are presented in Table 18.
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TABLE 17: Proof for the detection of a pharming attack.

Proof 2. Pharming attack detection

Given an environment:
Let H = {h,--- ,h,_;,h,}, where h is a host infected by malware.
Let S ={s;,$,,"* ,S,_1,S,}, where s is a web server.

Calculate the accumulated count if the destination system has the same IP address but different URLs when connecting from the host to
the destination system. At this point, if the accumulated count satisfies threshold (0), then it is defined as a pharming attack.

x = (hnAurl - Sn) n (hmAurl - Sn)

if x = true N (A, # Apm)> thenac = Y0 1
true: pharming attack

if ac > 6,
false: normal network traffic

At this point, if the URL and IP address requested by the hosts connecting to the destination system are different, then this is considered
normal service. However, there are some cases where the hosts infected with pharming request different URLs from the server but they

have the same IP address.

Therefore, the set (C) consisting of hosts requesting the same IP address but different URLs from the web server can be categorized as

being infected with pharming.
C={h,,---,h,}, where h is a host infected by pharming

TaBLE 18: Experimental results for pharming attack detection.

Scenario Accuracy Precision Recall TP TN FP FN
S05 0.994 0.6 1.0 3 382 2 0
S06 1.0 1.0 1.0 4 279 0 0
S07 0.996 0.4 1.0 4 1244 5 0

The datasets used in the experiment are applied to scenar-
ios S05, S06, and S07 in Table 12, and the algorithm defined
in Table 7 is implemented as a prototype. APChain field
values, Sip, Sport, Dip, Dport, URL, CND, RATD, and ACTTI,
are analyzed, and the characteristics of the host infected by
pharming are detected through behavioral profiling.

To detect a pharming attack, we conduct behavioral
profiling when APChain’s ACTTI value is higher than the
RATD value and the connection frequency, CND, increases.

In regard to the outbound traffic collected at the backbone
switch, the connection traffic from the host to the website
is analyzed, and traffic suspected to be exhibiting abnormal
behavior is categorized into a candidate group. The charac-
teristics of the pharming attack are analyzed, and behavioral
profiling is conducted to detect an attack.

According to the experimental results shown in Table 18,
the ratio for accurately detecting a host infected by a
pharming attack connecting to a fake website is 99.6%, with
three cases in which a host connecting to a normal website
is categorized as a host infected by pharming. To reduce
detection errors, URL comparisons are done using n-gram
indexing; when the URL address matching accuracy exceeds
80%, the address is categorized as the same URL address.
Table 19 shows the detection accuracy rates when n-gram
indexing and string matching are used.

5.4.3. IP-Spoofing DDoS Botnet Detection [Case Study C].
Hosts infected with malicious code such as the Linux-related
Xor.DDosS receive commands from a C&C server to perform
an IP-spoofing DDoS botnet attack on target systems in
the internal network. Hosts infected with malicious code
generate large numbers of falsified source IP addresses and

attempt to connect to an external attack system. At this time,
even if the internal network firewall detects a large volume
of SYN flooding attacks occurring outbound to inbound
and closes the port, if the hosts infected by the malicious
code cannot be eliminated, the bandwidth will be exhausted
by a large volume of packets. Therefore, the proposed
methodology can quickly detect DDoS attacks occurring
internally and identify and remove hosts that are part of
an IP-spoofing DDoS botnet. The proof for the hypothesis
used to detect an IP-spoofing DDoS botnet is provided
in Table 20. The performance of the proposed algorithm
is verified experimentally, with the results summarized in
Table 21

Scenarios S08, S09, and S10 were used from the experi-
mental dataset for the detection of IP-spoofing DDoS botnets
and the prototype algorithm was implemented for the exper-
iment.

For the outbound traffic collected from the backbone
switch, the traffic that leads to the DDoS attack on the host
is analyzed and the traffic suspected of abnormal behavior is
categorized as part of the candidate group. We link APChain
records over time and conduct behavioral profiling to detect
IP-spoofing DDoS botnet. At this time, if a DDoS attack is
detected, the Sip and MAC fields of APChain are analyzed to
find the host infected with the IP-spoofing DDoS botnet.

A true positive is the detection of an IP-spoofing DDoS
botnet and a true negative is the detection of normal traffic.
A false positive is erroneously detecting normal traffic as an

IP-spoofing DDoS botnet and a false negative is erroneously
detecting an IP-spoofing DDoS botnet as normal traffic. As
shown in Table 21, the detection of IP-spoofing DDoS botnets
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TABLE 19: Accuracy comparison between n-gram indexing and string matching.

Condition Accuracy Precision TP Rate FP Rate

n-Gram indexing 0.996 0.611 1.0 0.003

String matching 0.84 0.034 1.0 0.160

TABLE 20: Proof of the detection of an IP-spoofing DDoS botnet.

Proof 3. IP-spoofing DDoS botnet detection

Given an environment:
Let H = {hy, -+ ,h,_;,h,}, where h is a host infected by malware.
Let S={s, - ,s,_1>S,}, where s is a web server.

Calculate the accumulated count if the connection cycle from the host to the destination system satisfies condition (x), and it is defined
as DDoS if the accumulated count (ac) satisfies threshold (). If the IP address of the origin host is modified via forgery, it is detected as

an IP-spoofing botnet.

X = (hn.time - hm.time = 9) u (S

if x=true, thenac = Y, 1
true: DDoS attack

ntime — Sm.time = 0)

ifac > 6,,
false: normal network traffic
y= (hn.Sip # hm.Sip) n (hn.mac = hm.mac)
true: IP spoofing
if y> Gj,
false: normal IP

However, if DDoS occurs, the connection cycle is close to 0, and there is a large amount of network traffic. Therefore, calculate the
accumulated count threshold (6) when the traffic occurrence cycle is equal or similar to 0, or when the connection cycle of a particular
web server (S) is equal or similar to 0. On this occasion, if it satisfies the condition (ac> ), then it is categorized as a DDoS attack.

To detect an IP-spoofing DDoS botnet, the set (C) of the hosts with the same MAC address but different origin IP address is categorized

as the one infected with a botnet.

C=1{h,, -+ ,h,}, where h is a host infected with an IP-spoofing DDoS botnet.

TaBLE 21: Experimental results for IP-spoofing DDoS botnet detection.

Scenario Accuracy Precision Recall TP N FP FN
S08 1.0 1.0 4 457 0 0
S09 1.0 1.0 3 526 0 0
S10 1.0 1.0 3 1065 0 0

shows an accuracy and precision rate of 1.0 for scenarios S08,
S09, and S10.

According to the experimental results, the host infected
with malicious Xor.DDoS code generates more than one
million SYN flooding packets per minute and transmits about
64 GB of dummy traffic to the network.

5.5. Performance Ability. In this section, we measure the
detection time for the three types of attack. The datasets used
in the experiment are defined in Tables 12 and 13.

Figure 15(a) shows that SOI is the scenario in which the
most time is used to detect a C&C channel; the C&C channel
and the infected host were detected within an average time of
43 minutes. In S03, it takes an average of 13 minutes to detect
the C&C channel in the infected host. Based on these results,
it is possible to detect the C&C channel within the lead time,
after which the host can be infected with malicious code and
threatened.

In Figure 15(b), the time between the host that has been
infected with malicious code connecting to the fake site and
detecting the pharming attack is 31 minutes on average for

S05. For S06, it takes 42 minutes on average to detect the
pharming attack because the time interval for the host to call
the fake site is large. The experiment indicates that, when
the host infected by a pharming attack connects to a fake
site, detection is possible with the proposed algorithm and,
because the IP address of the target website can be changed,
detection accuracy increases when abnormal behavior is
detected more than three times.

According to Figure 15(c), when a host infected with mali-
cious code develops a DDoS attack, the generated outbound
traffic rapidly increases and the bandwidth of the internal
network is exhausted. In S08, the detection of a DDoS attack is
detected within 9 seconds, and IP-spoofing is detected within
60 seconds. In the test results for scenario S09, a DDoS attack
is detected when the host’s malicious code produces a large
amount of traffic, and IP-spoofing was detected within 75
seconds. The proposed methodology thus exhibits a DDoS
attack detection performance similar to that of an intrusion
detection system, and it is able to effectively detect a host
infected with IP-spoofing.
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FIGURE 15: Measurement of case study detection times.

In order to apply the proposed approach to a large-scale
network environment, it is necessary to efficiently implement
APChain algorithm and ensure sufficient hardware perfor-
mance to process a large number of packets. For example,
approximately 3.4% of the IP packets collected in al real-
time network are TCP traffic [27], and packets collected in
the experimental environment of Section 5.1 process traftic
of up to 100 TCPs per second. The proposed algorithm can
be applied to a real-time network environment, because it
requires 7 milliseconds per packet to generate one record of
APChain table.

In this paper, we exclude known communications that are
to send and receive messages by the protocols defined by the
FTP or Socket program to increase detection performance
and minimize resource consumption. Predefined known
communication is registered and managed in the Whitelist in
Section 3.4.

6. Conclusion and Future Work

Botnets are still a serious threat when it comes to cyber-
attacks, and attacks on specifically targeted systems go
beyond simple hacking. Attackers are employing a variety
of attack methods that utilize, for example, malicious code,
software vulnerabilities, and social engineering techniques
and, by introducing new attack techniques that bypass secu-
rity systems, they are making it difficult to detect attacks on
existing systems.

Because signature-based detection is not up to the task
of deterring new attack techniques, research on abnor-
mal behavior detection through behavior analysis and the
detection of malicious code based on virtual sandboxes
is underway. However, when traffic volume increases in a
large network environment, sandbox-based malicious code
detection becomes time consuming and increases resource
inefficiency. It is also not easy to detect and respond to
attacks when malicious code is obfuscated or when encrypted
communication is used with an external attacker. Therefore,
it is necessary to minimize the consumption of resources
in a large-scale network environment and to construct an
environment capable of effective infringement response even
when facing encrypted communication.

In this study, to detect abnormal behavior, we analyze
traffic attribute information, construct an attack pattern chain
algorithm (APChain), and conduct behavioral profiling. The
configuration of APChain analyzes the attribute information
of traffic collected in a real-time network environment and
stores it in a database. The attribute values stored in the
APChain table are organized into chains according to the
passage of time, and abnormal behavior profiling is then used
to detect malicious behavior.

The performance evaluation of the proposed algorithm
is analyzed with respect to three types of botnet attack.
First, C&C communication is detected through network-
based behavioral profiling, which is essential in the botnet life
cycle. The proposed methodology improves the limitations of

ASUDOI'T SUOWWO)) dATEAI) d[qearidde o) £q PauIoA0S dIe SI[IIIE YO asn JO SI[NI 10§ ATeIqr] AUIUQ) A1 UO (SUONIPUOD-PUR-SULI}/W0d" K[1m’ ATeIqIaut[uo,/:sdiy) SUonIpuo)) pue SwId L 3y 39S “[$707/21/S1] U0 ATeiqr] auiuQ A1 “O[nyasyooH YdsIuyda L £ 90L90L6/S10Z/SST 1 01/10p/ w0 K Areiqraur[uo//:sdpy woly papeoiumod ‘1 ‘8107 LE0T



Security and Communication Networks

C&C channel detection through existing behavior analysis,
proposes a methodology that can be effectively applied to a
large-scale network environment, and detects C&C channels
with an accuracy rate of 99.6%.

Second, by analyzing a pharming attack’s characteristics,
we construct APChain for real-time traffic and behavioral
profiling for abnormal behavior is conducted to detect an
attack. Pharming attacks are difficult to detect in traditional
security devices because the host sends a connection request
to a normal website and receives a service response, which
is not easy to detect with an endpoint system such as a
vaccine or a zombie PC detection solution. In this paper, the
experimental results show pharming attacks are accurately
detected using the proposed algorithm.

Third, it detects IP-spoofing DDoS botnets and dis-
covers and eliminates hosts that generate IP-spoofing. An
IP-spoofing DDoS botnet performs a DDoS attack against
a falsified source IP address of the host, and intrusion
prevention systems have difficulty blocking the relevant port.
If the wrong IP address is blocked, normal service may be
disrupted. Therefore, it is important for service continuity to
detect and eliminate a host infected with malicious code. In
this study, we analyze DDoS attacks by analyzing APChain
field values and categorize hosts infected by malicious code
by analyzing the APChain for the IP-spoofing of the hosts.
In the experiment using the proposed algorithm, the DDoS
attack was detected within 10 seconds, and the detection of
the host infected with the malicious code was possible within
60 seconds.

We propose the APChain algorithm and a behavioral
profiling algorithm to overcome the limitations of existing
botnet detection techniques. It proposes an effective abnor-
mal behavior detection method that reduces the number
of false positives and false negatives while using limited
resources and without having to change the configuration of
network resources.

In the paper, the proposed C&C channel, pharming,
and IP-spoofing DDoS botnet detection are based on the
network traffic between hosts and botnets. However, more
experiments and verification are needed to detect advanced
persistent threat (APT) attacks using C&C channel detection.
As part of our future work, we will conduct further studies
to detect the C&C channels for APT attacks and IoT botnets
using the proposed algorithm. For example, IoT devices
infected with malicious code through an IoT botnet will
communicate with the C&C server to receive an attack
command or download a new binary file. At this time, it will
be possible to detect the C&C channel using the proposed
methodology.

Appendix

A. The Behavior Model of Network
Traffic Using APChain

This appendix describes the characteristics of C&C channels
and IP-spoofing DDoS attacks using APChain for the datasets
defined in Section 5.2. The goal of this section is to analyze
the behavioral model of botnet attacks and present the
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FIGURE 17: Analysis of behavior model of IP-spoofing DDoS attack.

direction of research into the proposed methodology, which
detects C&C channels and IP-spoofing DDoS attack through
APChain algorithm and behavior profiling.

In Figure 16, each point represents the traffic flow between
the host and destination system. The x-axis represents the
flow of time at which the network traffic is collected to config-
ure APChain, the y-axis represents the IP address of the target
system, and the z-axis represents the port for connection from
the host to the destination system. The traffic flow represents
the normal traffic collected on the protocol stack in Figure 11
and the C2 (Command and Control) channel represents the
C&C communication between the host and the C&C server.

In Figure 17, the traffic flow represents normal traffic
collected on the protocol stack in Figure 11 before the IP-
spoofing DDoS attack occurs. The red point represents the
result of detecting an IP-spoofing DDoS attack, and the IP
address of the host is IP spoofed to conduct a DDoS attack.
At this time, the host infected with the bot attacks multiple
target systems.

B. APChain Implementation

(1) #Import packets from backbone switch

(2) # Process pre-processing for behavior profiling
3)

(4) THRESHOLD = 10.0
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(5)

(6)

7)

(8)

©)
(10)
(1)
(12)
(13)
(14)
(15)
(16)
7)
(18)
(19)
(20)
1
(22)
(23)
(24)
(25)

(26)
27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

(35)

(36)
(37)
(38)
(39)
(40)
(41)
(42)

(43)
(44)
(45)

ANALYSIS_TIME = 1800
24H_ANALYSIS_TIME = 86400

Function Main {
attributes[] «— packet

tuples = []

for i in rang(l, len(attributes)):
# Set the basic attribute information of packets
sn = Integer.toString(i);
sgn = Call Function SGN(attributes)
sip = source_ip in attributes|[]
sport = source_port in attributes[]
dip = destination_ip in attributes]
dport = destination_port in attributes|[]
mac = local_host_mac in attributes|]
pt = protocol in attributes(]
ts = time_stamp in attributes(]

url = destination_url in attributes|]

# Calculate additional
attribute information

information using

tin = ts-previous_time_stamp

cnd = Call Function CND(attributes)
ratd = Call Function RATD(attributes)
cnti = Call Function CNTI(attributes)
actti = Call Function ACTTI(attributes)
sctti = Call Function SCTTI(attributes)

# Insert tuples_values

tuples_values.append(sn, sgn, sip, sport, dip,
dport, mag, pt, ts, url)

tuples_values.append(tin, cnd, ratd, cnti, actti,
sctti)

# Insert tuples to APChain DB
APChain «— tuples

Function SGN(String|] attribute) {

Get the same group ID, if the destination IP of
packets is the same

: param dataset: attribute information of packets
: rtype: string
: return: Group ID such as “G-XXXX”

Security and Communication Networks

(46)  Extract the attribute_dip from attribute
(47)  Extract the apchain_dip from APChain table

(48) ifattribute_dip ==apchain_dip && attribute_sip ==
apchain_sip:

(49) return existing_SGN_value
(50) else:

(51) return new_SGN _value
(52) }

(53)

(54) Function CND(String[] attribute) {

(55)  Get the cumulative counts for packets of the same
SGN

(56) :param dataset: attribute information of packets
(57)  :rtype:int

(58) :return: The number of accesses

(59)  Extract the apchain_attribute from APChain table
(60) time_stamp «— attribute.time

(61) for i in range(time_stamp,
24H_ANALYSIS_TIME):

(62) if attribute.sgn == apchain_attribute.sgn:

time_stamp-

(63) return (apchain_attribute.cnd + 1)
(64)  return (initialization_value(1))

(65) }

(66)

(67) Function RATD(String[] attribute) {

(68)  Get the time interval for packets of the same SGN
(69) :param dataset: attribute information of packets
(70)  :rtype: date

(71)  :return: The time interval of accesses

(72)  Extract the apchain_attribute from APChain table

(73) time_stamp «— attribute.time

(74) for i in range(time_stamp, time_stamp-
ANALYSIS_TIME):

(75) if attribute.sgn == apchain_attribute.sgn:

(76) return (time_stamp-apchain_attribute.time)

(77)  return initialization_value(time_stamp)
(78) '}

(79)

(80) Function CNTI(String[] attribute) {

(81)  Get the cumulative counts for packets of the same
SGN

(82)  :param dataset: attribute information of packets
(83) :rtype:int

(84) : return: The number of accesses over a period of
time
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(85)
(86)
(87)

(88)
(89)
(90)
(91)
(92)
(93)
(94)

(95)
(96)
(97)

(98)
(99)
(100)
(101)

(102)
(103)
(104)

(105)

(106)
(107)
(108)
(109)
(110)
(111)

(112)
(113)
(14)

(115)
(116)
117)
(118)

(119)
(120)
(121)

Extract the apchain_attribute from APChain table
time_stamp «— attribute.time
for i in

range(time_stamp,  time_stamp-

ANALYSIS_TIME):

if attribute.sgn == apchain_attribute.sgn:
return (apchain_attribute.cnd + 1)

return initialization_value(1)

}

Function ACTTI(String[] attribute) {

Get the average of access time for packets of the

same SGN

: param dataset: attribute information of packets
: rtype: float

: return: The average of accesses time over a period

of time

Extract the apchain_attribute from APChain table
time_stamp «— attribute.time

apchain_ratd «— apchain_attribute.ratd

for i in

range(time_stamp,  time_stamp-

ANALYSIS_TIME):

if attribute.sgn == apchain_attribute.sgn:
if apchain_ratd >= THRESHOLD:
Calculate the accumulated RATD (acc_ratd)

from apchain_attribute

Calculate the number of times (acc_cnt) from

acc_ratd

return (acc_ratd / acc_cnt)

return initialization_value(access_time)

Function SCTTI(String][] attribute) {

Get the standard deviation of access time for

packets of the same SGN

: param dataset: attribute information of packets
: rtype: float

: return: The standard deviation of accesses time

over a period of time

Extract the apchain_attribute from APChain table
attribute_actti «— attribute.actti

apchain_ratd «— apchain_attribute.ratd

for i in

range(time_stamp,  time_stamp-

ANALYSIS_TIME):

if attribute.sgn == apchain _attribute.sgn:
if apchain_ratd >= THRESHOLD:

sum += Math.pow(apchain_ratd-

attribute_actti, 2)

23
(122) Calculate the number of times (acc_cnt)
(123)  return Math.sqrt(acc_ratd / acc_cnt)
(124) }
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