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Abstract—Traffic in today’s edge networks is diverse, exhibit-
ing many different patterns. This paper focuses on periodic
network traffic, which is often used by known network services
(e.g., Network Time Protocol, Akamai CDN) as well as by
malicious applications (e.g., botnets, vulnerability scanning). We
use a simple and flexible SQL-based approach as our com-
putational model for detecting periodic traffic, and apply it
to the analysis of seven weeks of Bro connection logs from a
campus edge network. Our results show that periodic traffic
analysis is effective for detecting P2P, gaming, cloud, scanning,
and botnet traffic flows, which often exhibit periodic network
communications. We present a classication taxonomy for periodic
traffic, and provide an in-depth characterization of this traffic
on our campus edge network.

I. INTRODUCTION

Traffic flows in modern edge networks are diverse and

voluminous, with many different patterns [8], [12], [23], [26].

These patterns can arise from users interacting with network-

based services, often in a diurnal fashion [18], or by automated

systems that respond to specific events [26]. Network operators

need an understanding of these patterns in order to differentiate

between normal and abnormal behaviors on their networks.

The pattern of interest in our work is periodic traffic,

in which communication events occur repeatedly at regular

intervals within a specified time frame. Periodic network traffic

is especially relevant in network security [4], [5], [9], [22],

since it may indicate anomalous [17] or malicious [29], [30]

activities. For example, many botnets are known to use peri-

odic communications for command and control channels [10],

[14], [15]. For this reason, periodicity detection is an important

component in many intrusion detection systems [7], [13], [19].

Periodicity analysis can use different types of network data,

such as netflow information [7], control plane information [2],

and application-level information [10]. Detection techniques

include statistical methods [20], spectral analysis [5], [9], and

autocorrelation [30], [35]. Detecting the absence of periodicity

is also important, when systems that should be producing

periodic traffic cease doing so [3].

Periodicity detection is a well-established area of research.

In most works, periodicity is represented as a numerical score

derived from metadata associated with a set of flows. Some

periodicity detection methods make a binary classification

of flows as periodic or not [2], [5], [35], by comparing

their periodicity score to a threshold value. Other techniques

consider periodicity as a continuous gradient [10], [13], in

which flows range from weakly to strongly periodic.

Despite substantial prior research on detecting periodic

traffic, relatively little effort has been devoted to understanding

the pervasiveness of periodic network traffic in edge networks.

For example, network security researchers sometimes evaluate

new detection techniques with artificially-generated datasets

that exclude legitimate periodic traffic [2], [5], [9], [20]. We

argue that simply detecting periodic traffic is insufficient, and

that deeper understanding is needed. Such analysis is usually

only a secondary consideration in prior research [12], [17],

[26], while it is the central focus in our work.

In this paper, we focus explicitly on the analysis and

characterization of periodic network traffic. We use a simple

and flexible SQL-based method to extract periodic traffic

from empirical connection-level summary data. We use our

empirical data analysis to illustrate how periodic traffic reflects

the typical operation of an edge network, as well as to identify

malicious traffic activities on the network.

The main contributions of our paper are: (1) the imple-

mentation of a flexible, procedural, and highly-parallelizable

computational model for the extraction of periodic network

traffic using SQL; (2) an evaluation of the sensitivity and

robustness of our SQL-based approach; (3) a taxonomical

classification of periodic network traffic based on its structural

properties; and (4) an in-depth characterization of the periodic

traffic composition on a modern campus edge network. We

also discuss the limitations of our approach, and some of its

technical challenges for scalability and robustness.

The main insights that emerge from our work are:

• a modular SQL-based approach provides a flexible and

powerful means by which to analyze periodic traffic;

• periodic traffic is pervasive in modern network appli-

cations, including gaming, CDN, P2P, and cloud-based

services, as well as malicious traffic;

• periodic traffic is diverse in its structural properties, and

often very transient in its existence, making it a challenge

to detect; and

• P2P applications account for about half of the periodic

traffic detected in our empirical study.

The remainder of this paper is organized as follows. Sec-

tion II discusses prior related work. Section III introduces

our empirical dataset. Section IV describes our method for

identifying periodic traffic. Section V gives an overview of our

traffic analysis results, and presents our traffic classification

taxonomy. Section VI characterizes the periodic traffic that

we observed. Finally, Section VII concludes the paper.



II. BACKGROUND AND RELATED WORK

The study of periodic behaviors is foundational in many sci-

entific disciplines, including astronomy [21], biology [34], and

computer science [25], [35]. In our context, we are interested

in periodicity that is present in network-level communication

patterns.

The simplest periodicity detection techniques use statistical

analysis on selected features of network traffic. Hubballi and

Goyal [20] proposed a method that computes the standard

deviation of the time between successive flows on the network.

If the value is below a threshold, the traffic is deemed

periodic; otherwise, it is not. This method was extended by

van Splunder [35] to analyze netflow data from a large edge

network. Eslahi et al. [10] used statistical methods to detect

periodic HTTP traffic.

Spectral analysis methods are also popular for periodicity

detection. AsSadhan and Moura [2] calculated the Discrete

Fourier Transform (DFT) for a time series and then generated

a periodogram, whose peak is then tested for significance.

Similarly, Heard et al. [18] used the Fast Fourier Transform

(FFT) to calculate a periodogram for time series connection

data. Huynh et al. [22] computed the FFT of a time series

of netflow records to produce a frequency spectrum analysis.

Chen et al. [9] augmented the DFT approach by incrementally

expanding the duration of the time series used, in order to find

periodic patterns. Bartlett et al. [5] used wavelets to transform

time series netflow data into the spectral domain for analysis.

Autocorrelation is another technique for periodicity detec-

tion. For example, van Splunder [35] calculated the autocor-

relation of a time series of netflow data to identify potential

periods. The periodicity of the traffic was then tested using

the method presented by Hubballi and Goyal [20]. Similarly,

Qiao et al. [30] used the circular autocorrelation function to

identify candidate periods, and assess the periodicity with

different algorithms. Gu et al. [15] calculated autocorrelation

on time series data, focusing on the number of peaks. Traffic

is considered periodic if the autocorrelation is strong enough.

While there has been considerable research on periodicity

detection, less attention has been devoted to understanding

periodic behavior. For instance, in their characterization of

video game traffic, Feng et al. [12] indicated that this traffic

was highly periodic. Periodicity also arises in some video

streaming services [31]. Nikaein et al. [26] identified peri-

odic traffic as a subset of machine-type communications. He

et al. [17] noted that periodic traffic can indicate network

congestion. While periodicity was observed in these specific

domains, it was not explored more broadly.

A few efforts have been made to understand periodicity in

general, but these studies are rather limited. Bartlett et al. [4],

[5] developed a periodicity detector, and identified several

broad classes of periodic traffic, including regular OS updates,

P2P traffic, and adware. Others used these insights to refine

periodicity detection [29], [30], though the characterization

of this traffic was not explored further. Heard et al. [18]

recognized the need to explore the composition of periodic

traffic. However, they only observed the traffic of a single

desktop computer for one week. Such a study is too small for

a comprehensive understanding of periodic traffic on a modern

edge network, such as a campus edge network.

III. EMPIRICAL DATASET

In this paper, we study the University of Calgary’s network,

as an example of a typical campus edge network. Our network

is used by 32,000 undergraduate/graduate students and 3,000

faculty/staff. Our data was collected from a mirrored stream

of all the traffic that passes through the edge routers on our

campus network. Data collection was conducted for a 7-week

period from January 1, 2017 to February 17, 2017. The winter

academic term started on January 8, and the mid-term break

occurred on February 18, so classes were in session throughout

most of the data collection period.

Figure 1 shows a stacked graph view of our edge network

usage during our measurement period. Inbound traffic (upper

axis) peaks daily near 4 Gbps, while outbound traffic (lower

axis) rarely exceeds 1 Gbps. Traffic volumes are highest on

weekdays when students are on campus. TCP is the dominant

transport protocol, with UDP a distant second.

Fig. 1. Traffic profile on University of Calgary network.

This traffic was processed in real-time into connection

summaries using Bro [28], which is an open-source network

security monitoring tool often used for intrusion detection. The

connection-level metadata was recorded for all TCP, UDP, and

ICMP traffic. Our logs included over 15 billion connection

summaries, resulting in a 3.5 TB dataset. Each connection

summary represents communication from a sending host hs

to a receiving host hr, where one of the hosts is on the

campus network, and the other elsewhere on the Internet.

(Our monitor does not see connections between hosts within

our network.) Relevant fields from the connection-level data

were then loaded into a Vertica1 database, and analyzed

for periodicity using SQL queries, as described in the next

section. An important feature of Vertica is that it automatically

exploits parallelism in query execution, without any extra

effort required from the network analyst. We used the (free)

community edition of Vertica on a three-node compute cluster

to analyze our dataset.

IV. PERIODIC TRAFFIC MODEL

This section discusses the modeling methodology that we

used to detect periodic traffic in our empirical data. For ease

1https://www.vertica.com/



of exposition, we draw upon the terminology from simulation

modeling to describe our approach [24]. Specifically, we start

from a high-level conceptual model, which is then refined into

a specification model, followed by a computational model.

Finally, we discuss several extensions of the model, as well

as its sensitivity and robustness.

A. Conceptual Model

Conceptually, periodic traffic is simple. It consists of re-

peated occurrences of an “event” at regularly-spaced time

intervals. For example, the event could be the occurrence of a

packet transmission or a network connection attempt.

Figure 2 shows several pedagogical examples of periodic

and non-periodic traffic. These graphs are time series represen-

tations, showing the timing of connections along the horizontal

axis, as well as the byte volumes sent (lower half of plot) and

received (upper half) on each connection.

Figure 2(a) shows the periodic communication pattern be-

tween two NTP servers (one on campus, one elsewhere),

communicating daily for 48 days. Since the NTP service is

for time clock synchronization, one would expect a strongly

periodic pattern in the communications, and that is indeed

what is observed. This pattern is distinctly different from the

non-periodic traffic illustrated in Figure 2(b). In the latter

graph, two transport-level endpoints initiate connections at

seemingly arbitrary points in time over a span of three hours.

This pattern is non-periodic.

Despite the simplicity of the periodic traffic concept, there

are many variations on its patterns. Figure 2(c) shows a pair of

entities that initiate connections every half-hour for 3 hours.

This traffic has periodic structure. However, Figure 2(d) shows

a different pair of communicants that initiate contact only three

times (rather than six) within the same 3-hour duration of

observation. Whether this is deemed periodic or not depends

on how you define periodicity, which is what we discuss next.

B. Specification Model

Several decisions are necessary to define period traffic

precisely. These decisions involve the number and type of

network events to be detected, the time duration over which

detection is to be performed, the minimum and maximum

periods to be detected, and the laxity with which periodicity

is to be considered. Table I summarizes our definitions.

TABLE I
DEFAULT PARAMETER VALUES FOR PERIODICITY DETECTION

Item Setting

Network event Connection attempt

Minimum number of events 4

Minimum period 10 seconds

Maximum period 12 days

Variance threshold (laxity) θvar < 0.5

In our work, we define network events at the connection

level, rather than the packet level. For TCP, a connection

attempt involves a SYN packet being transmitted from one

transport-level endpoint (i.e., source IP address and port) to

another (i.e., destination IP address and port). Depending

on the application, connection attempts may or may not be

answered by the recipient; this does not matter in our defini-

tion. Successive connection attempts may use a different port

number, either at the source or the destination, but not both, so

that at least one of the transport-level endpoints (i.e., address-

port pair) remains the same. An analagous definition can be

used for connection-less UDP-based traffic, as well as for

network-level ICMP echo traffic, by treating packets between

new communication endpoints as a connection initiation.

We are interested in the timing relationship between con-

nection attempts. We require at least four connection attempts

(i.e., three full periods of the periodic pattern) in order to

assess the variability in the connection inter-arrival time. In our

current implementation, we restrict the period to be no shorter

than 10 seconds, and no longer than 12 days. However, these

are easily settable configuration parameters in our model.

The final parameter in our periodic traffic model is the laxity

for the periodicity detection. We use a parameter θvar as a

threshold for the variability permitted in the periodic pattern.

Setting θvar = 0 is the strictest definition of periodicity, with

exactly periodic behavior, while setting θvar > 0 allows some

laxity in the timing between events. Note that θvar can be

defined in several ways, including variance of the connection

inter-arrival times, relative variance of the connection inter-

arrival times (i.e., coefficient of variation), and so on. We

use absolute variance as our default, but also consider relative

variance in our work [16].

C. Computational Model

To extract periodic traffic from our empirical data, we use

an SQL-based implementation of the periodicity detection

method proposed by Hubballi and Goyal [20]. Algorithm 1

below shows the pseudo-code for our computational model,

the details of which are described in the following paragraphs.

1Algo r i t hm 1 : P e r i o d i c T r a f f i c E x t r a c t i o n
2
3WITH
4M AS (
5SELECT
6hs | | ’ / ’ | | hr | | ’ / ’ | | port | | ’ / ’ | | proto AS key , ts
7FROM c o n n e c t i o n t a b l e
8) ,
9c o u n t s AS (
10SELECT key AS id , COUNT( key ) AS n
11FROM M
12GROUP BY i d
13) ,
14pruned AS (
15SELECT M . key , c o u n t s . id , M . t s AS t s
16FROM M , c o u n t s
17WHERE M . key = c o u n t s . i d
18AND c o u n t s .n BETWEEN θmin AND θmax

19) ,
20d i f f s AS (
21SELECT key , t s−p r e v t s AS d i f f
22FROM (
23SELECT key , t s ,
24LAG( t s , 1 ) OVER (
25PARTITION BY key



(a) Network Time Protocol (NTP) (b) Non-periodic traffic (c) Continuous periodic traffic (d) Transient periodic traffic

Fig. 2. Examples of periodic and non-periodic patterns in network traffic.

26ORDER BY key ASC, t s ASC) AS p r e v t s
27FROM pruned
28)
29AS sub0
30GROUP BY key , t s , p r e v t s
31ORDER BY key
32) ,
33summary AS (
34SELECT key , AVG( d i f f ) AS Per iod ,
35VAR SAMP( d i f f ) AS V
36FROM d i f f s
37GROUP BY key
38)
39
40SELECT key , Pe r iod , V
41FROM summary
42WHERE V < θvar ;

Our analysis starts with Bro’s connection-level2 summaries.

Bro defines each connection using a standard 5-tuple: source

IP and port, destination IP and port, and transport protocol.

Each connection summary produced by Bro includes this 5-

tuple, as well as a timestamp indicating when the first packet

in the connection was seen, plus other additional information,

such as the number of bytes transferred.

Our analysis requires only a subset of the fields in each

connection summary record. We denote each connection as

c = (ts, proto, hs, hr, port), where the port is the destination

port on the “server” end of the connection summary record.

That is, regardless of the server’s location, we focus on

successive connections issued by a host (on different ports)

when contacting a particular transport-level endpoint (i.e.,

server/port). When referring to an attribute of a specific

connection, we use dot notation. For example, ci.ts refers to

the timestamp of connection ci.
We define a candidate connection set to be a set S of n

connections S = {c1, c2, ...cn} all with the same hs, hr,

protocol, and port. Within each set S, the connections are

timestamp-ordered (i.e., ci.ts ≤ ci+1.ts for all 0 < i < n)

Periodicity detection begins by grouping all connections

into distinct connection sets based on their attributes. This pro-

duces a set M = {S1, S2, ...Sm} of m connection sets, where

m is the number of distinct hs/hr/protocol/port combinations.

We then prune the connection sets, since many sets contain

either too few or too many connections to manifest periodicity.

To do this, we specify a minimum period (pmin) and maximum

2A description of the format of Bro’s conn log is available at https://www.
bro.org/sphinx/scripts/base/protocols/conn/main.bro.html#type-Conn::Info

period (pmax) for periodicity detection within a duration T .

From these values, we calculate θmin = T/pmax, as well as

θmax = T/pmin. The cardinality nj of each connection set

Sj ∈ M is then calculated, and any Sj with nj < θmin or

nj > θmax is removed from M .

After the pruning step, for each set Sj ∈ M , we calculate

the elapsed time between successive connections ci ∈ Sj , for

0 < i < n. We denote this as Dj = {d1, d2, ....dn−1} where

di = ci+1.ts − ci.ts. Finally, for each set Dj of timestamp

differences, we calculate the sample variance V arj . If V arj
is below a specified threshold θvar, then the connection Cj is

classified as periodic. Otherwise, it is not.

An example of an SQL-like query that implements this

process is presented in Algorithm 1. While there may be more

computationally-efficient ways to extract the same informa-

tion, we prefer this step-by-step procedural formulation for its

intuitive simplicity. The modular structure also makes it easy

to explore parameter sensitivity, by recording the cardinality

of the sets generated at each intermediate step. Furthermore,

Vertica automatically exploits the inherent parallelism in the

query execution.

The WITH query in Algorithm 1 contains multiple clauses.

The first clause (lines 4-7) constructs M , the set of m candi-

date connection sets. The second clause (lines 9-12) computes

the cardinality of each connection set, used for pruning in

the third clause (lines 14-18). The fourth clause (lines 20-31)

calculates the time differences between successive connections

within a set. The fifth clause (lines 33-37) calculates the mean

and variance of the time differences. Finally, the SELECT

clause at the end (lines 40-42) retrieves the sets that satisfy

the variance threshold.

D. Model Sensitivity

To understand how our model parameters affect the results,

we evaluated the effect of tuning the variance threshold.

Figure 3 illustrates how the variance threshold affects peri-

odic traffic detection on one day’s worth of traffic. For these

sensitivity tests, we set pmin = 10 seconds and pmax =
21, 600 (6 hours). This means that a candidate connection set

must contain at least four events (i.e., three periods) in order

to be considered for periodicity analysis.

As the variance threshold increases, the percentage of

connection sets classified as periodic also increases. Figure 3

shows that the detection rate increases quickly when θvar < 1,

and then grows slowly until θvar = 10. When θvar > 10, the



Fig. 3. Sensitivity to variance threshold.

detection rate increases rapidly before leveling off again. The

rapid increase beyond θvar = 10 suggests that many non-

periodic connection sets are being classified as periodic (i.e.,

false positives).

To reduce false positives in our periodic traffic detection, we

used Figure 3 as a guide to select θvar = 0.5 as our arbitrary

variance threshold. For our data analysis, we set pmin = 10
seconds and pmax = 1, 036, 800 (12 days), again to ensure that

at least three full periods are observed. These settings are used

in all remaining analyses in the paper. Further rationale for

these settings, and additional experiments with other settings,

are provided in [16].

E. Baseline Model Results

Table II on the next page provides a statistical summary

of our empirical dataset. Logs are collected hourly, but we

analyze them at different granularities: hourly, daily, and

the full 7-week duration. At each granularity, we report the

number of connections observed, the number of candidate

connection sets (before pruning), and the number of instances

of periodic traffic.

Table II shows that the periodic traffic constitutes only

a tiny fraction of the aggregate network traffic. However,

these periodic signals provide surprisingly valuable insights

into network operations and malicious traffic activities, as

demonstrated throughout the rest of the paper.

Tradeoffs exist for periodicity detection at different time

granularities. Hourly logs are “cleaner”, with less churn in the

set of active users/devices in the network. However, it is not

possible to detect long-period or long-duration periodic traffic

in a short log. Furthermore, many of the same periodicities

appear in successive log files of short duration, and should

not be counted multiple times. We thus need to merge the

results from individual logs to produce longer periodic traffic

instances without duplicates.

As the log duration is increased, however, periodicities can

become obfuscated, due to transient connectivity, mobility of

users, diurnal effects, network outages, data collection issues,

or other disruptions to the traffic patterns. Fortunately, the

analysis of a long-duration log enables the identification of

intermittent periodicities, which can be detected, merged, and

aggregated appropriately.

The final row of Table II shows that our overall analysis

more than doubles the number of periodicities detected, com-

pared to analyzing a single composite log (first row of data in

Table II). The rest of the paper focuses on these 244K instances

of periodic traffic, representing 2,462,352 connection events.

V. PERIODIC TRAFFIC TAXONOMY

This section provides a taxonomical classification of peri-

odic traffic, as illustrated in Figure 4.

A. Network Traffic Overview

The aggregate traffic from which we extract periodic traffic

is complex. As Table II shows, periodic traffic is only a

tiny component of the overall network traffic at any given

timescale. Thus, identifying this traffic is challenging.

Table III provides an overview of the traffic composition on

our edge network, For this summary, we provide a breakdown

of the aggregate traffic at the protocol and protocol/port level.

At the protocol level, Table III shows that the aggregate traffic

(on a connection basis) is 73% TCP, 23% UDP, and 4% ICMP.

At the port level, we classify ports as system, user, or dynamic

ports, based on the IANA3 definition. Table III shows that

most of the aggregate traffic uses system ports, for well-known

protocols such as HTTP, HTTPS, DNS, or ICMP.

TABLE III
PROTOCOL/PORT ANALYSIS FOR NETWORK TRAFFIC.

Protocol Port All Traffic Periodic Traffic

System 55% 22%
TCP User 17% 18%

Dynamic 1% 5%

System 17% 3%
UDP User 5% 42%

Dynamic 1% 4%

ICMP - 4% 6%

Our goal is to understand the periodic traffic ecosystem. To

this end, we examined all periodic traffic originating from or

directed to our network, doing so at both the protocol and

protocol/port levels.

Table III shows that the protocol breakdown for periodic

traffic differs significantly from that for the aggregate traffic.

UDP is the most prevalent protocol for periodic traffic (49%),

followed by TCP (45%) and ICMP (6%).

We investigated why the periodic traffic differed so greatly

from the aggregate traffic. We found that some hosts were in-

volved in anomalously many periodic communications. These

hosts were generally specific services, such as the Akamai

CDN node on our campus network, and P2P applications,

including P2P botnets. These services produced much of the

periodic traffic in the user/dynamic port ranges, and primarily

3https://www.iana.org/assignments/service-names-port-numbers/service-
names-port-numbers.xhtml



TABLE II
STATISTICAL SUMMARY OF EMPIRICAL DATASET AND PERIODIC TRAFFIC DETECTED.

Time Num Total Connections Candidate Connection Sets Periodic Traffic Connections Periodic Traffic Instances
Granularity Logs Min Mean Max Min Mean Max Min Mean Max Min Mean Max

7 Weeks 1 15.2 B 5.1 B 1,312,157 115,655

1 Day 48 225 M 317 M 405 M 99 M 125 M 163 M 25,905 51,299 206,345 2,046 5,019 7,614

1 Hour 1,152 6 M 13.2 M 27 M 3.7 M 5.9 M 13 M 321 2,137 52,642 37 187 988

Merged 1 15.2 B 18 B 2,462,352 244,569

Aggregate Traffic

Non-Periodic

Irregular
244,337 (99.9%)

Outbound
169,187 (69.2%)

Alive
151,187 (61.8%)

P2P
67,157

(27.5%)

Non-P2P
84,030

(34.3%)

Periodic

Dead
18,000 (7.4%)

P2P
10,893

(4.5%)

Non-P2P
7,107

(2.9%)

Inbound
75,150 (30.7%)

Alive
21,669 (8.8%)

P2P
4,217

(1.7%)

Non-P2P
17,452

(7.1%)

Dead
53,481 (21.9%)

P2P
34,143

(14%)

Non-P2P
19,338

(7.9%)

Regular
232 (0.1%)

Outbound
88 (0.04%)

Alive
83 (0.03%)

P2P
0

(0%)

Non-P2P
83

(0.03%)

Dead
5 (0.01%)

P2P
0

(0%)

Non-P2P
5

(0.01%)

Inbound
144 (0.06%)

Alive
99 (0.04%)

P2P
0

(0%)

Non-P2P
99

(0.04%)

Dead
45 (0.02%)

P2P
0

(0%)

Non-P2P
45

(0.02%)

Fig. 4. Taxonomical classification of periodic traffic detected on our campus edge network.

used UDP. Their presence skews the protocol distribution for

periodic traffic.

The protocol/port combinations for periodic traffic also

differ substantially from those for the aggregate traffic. TCP

periodic traffic was almost evenly-divided between system

ports (22% of all periodic traffic) and user ports (18%), unlike

the aggregate TCP traffic, which was mostly on system ports

(55%). As in the aggregate traffic, TCP/80 and TCP/443

are the most popular well-known protocol/port combinations,

representing 95% of all periodic traffic in the system port

range. Port usage in the user range varies widely, though ports

such as TCP/5223 (Apple’s Push Notification Service) show

lots of periodic traffic.

For UDP, periodic traffic is more prevalent in the user port

range than the system port range. This differs greatly from

the aggregate traffic, and suggests that relatively little of this

periodic traffic is for well-known services. UDP periodic traffic

is widely distributed across user/dynamic ports, but within the

system port range, it is heavily concentrated on 53 (DNS), 137

(NetBIOS), and 443 (HTTPS over UDP).

Inspection of the ICMP traffic indicates that it is more

prominent and varied in the periodic traffic than in the aggre-

gate traffic. For ICMP, ‘Echo Reply’ and ‘Host Unreachable’

messages are both prominent in the periodic traffic. To a

lesser extent, but still noticable, are ICMP ‘Port Unreachable’

messages. The volume and variety of this ICMP periodic traffic

indicates a lot of scanning activities.

The main observation from this initial overview is that the

composition of periodic traffic is quite different from that of

the aggregate traffic. In particular, there are notable differences

in the relative usage of TCP and UDP, and in the types of

ports being used. As will be shown later, these differences

arise primarily from the presence of P2P applications.

B. Regularity

In the simplest case, periodic behavior is persistent and con-

tinuous, occurring at regular intervals for the entire duration of

the log. We define periodic traffic to be regular if its lifespan

is within two periods of the length of the observational period.

The lifespan is defined as the elapsed time between the first

and last observed connection attempts.

Two examples of regular periodic traffic in our edge network

are NTP and our Akamai CDN node. NTP creates an easily

identifiable periodic pattern, as seen earlier in Figure 2(a). Our

Akamai node exhibits periodic traffic using multiple protocols.

For example, it uses ICMP echo queries to ping other Akamai

nodes periodically to monitor Internet latencies, which are later

reported to a central server.

In our 7-week log, we observed 232 instances of regular

periodic traffic, with 228 of these having protocol/port combi-

nations in the system port range. The most prominent of these

was NTP, representing 112 instances of periodic traffic. Other

well-known protocols were HTTP, HTTPS, DNS, NetBIOS,

SSDP, and SNMP.

HTTP periodicity can be classified into two broad cat-

egories: update checks, and data posts. Update checks are

probes that periodically check for updates from a server. On

our edge network, we found many types of update checks (e.g.,

software, operating systems, anti-virus, databases, security cer-

tificates). Conversely, data posts involve periodically uploading

data to a server. We observed several different examples of

data posts, including backups and logging.



The remaining regular periodic traffic instances were pri-

marily from scanning activities. In our dataset, 8 out of 11

DNS periodicities, 8 out of 17 NetBIOS instances, and all of

the SSDP and SNMP periodic traffic came from Internet-scale

scanning projects at Ruhr University [32].

Regular periodic traffic tends to have long periods with intu-

itive values, such as daily (49%) and weekly (41%) patterns.

The longest period observed was 8.8 days; this was a Web

proxy validating a cached object.

Contrary to the simple regularity discussed above, we found

that the vast majority of periodic traffic is transient and

irregular. This irregularity happens since computers can have

transient Internet connectivity, change IP addresses, be re-

booted, or be shut off overnight. In addition, some applications

only generate periodic traffic part of the time.

Transient periodicities are to be expected on a modern edge

network, which services a myriad of devices and purposes.

The majority of the devices on our network are for personal

use, and are therefore more likely to follow usage patterns that

produce irregular periodic traffic. Thus, having many transient

periodicities on an edge network like ours is normal.

Network middleboxes, such as DHCP and NAT, can cause

irregular periodicities too. For example, a DHCP server dy-

namically assigns IP addresses, so that at a different point

in the logs, the same laptop may have a different IP, and

the previously observed IP may represent a different laptop.

This DHCP churn is quite common and has several underlying

causes [27]. As another example, a NAT box relays/forwards

traffic from multiple other hosts on a network. This causes

irregularity since the traffic from multiple hosts becomes

interleaved on connection records with a common IP address.

The main insight from this regularity analysis is that the vast

majority of periodic traffic is irregular. As shown in Figure 4,

only 0.1% of the periodic traffic satisfied the strict definition

of regularity, while 99.9% was irregular in some way. The

reasons for this include user behavior, network middleboxes,

and P2P applications.

C. Directionality

Although periodic traffic often involves two-way communi-

cation, it implicitly has a directional orientation, which we

define relative to our edge network. Specifically, outbound

periodic traffic originates from a host on our edge network,

while inbound ones originate from outside our network.

Outbound periodic traffic exhibits protocol/port usage sim-

ilar to the aggregate traffic in Table III. This traffic typically

corresponds to well-known services, with system port usage

concentrated on ports 80 and 443. TCP periodic traffic on

user/dynamic ports was generated almost entirely by our

Akamai node and a Sality P2P botnet that we discovered

on our network due to its use of periodic communications.

UDP periodic traffic on system ports was primarily NTP and

Google’s QUIC protocol (UDP/443). For user/dynamic ports,

the UDP instances were mostly P2P, gaming, and Akamai-

related traffic.

The protocol/port usage of inbound periodic traffic differs

significantly from that for outbound. The few TCP period-

icities on system ports were primarily for University-related

services, however there was also periodic scanning for Telnet-

capable hosts. TCP periodic traffic on user/dynamic ports

used a wide range of ports, and were primarily related to

external services interacting with hosts on our edge network.

UDP periodic traffic in the system port range was primarily

NTP-related. However, there was also significant DNS and

NetBIOS traffic. The periodicities in the dynamic port range

were mostly related to P2P traffic and our Akamai node.

ICMP periodicities were more prominent in inbound traffic

than outbound traffic. These instances included our Akamai

node, regular echo requests, and scanning.

Figure 4 shows that regular periodic traffic was mostly

inbound. These instances primarily involved services offered

by hosts on our edge network. By contrast, irregular periodic

traffic was mostly outbound. This traffic was generated primar-

ily by end-user applications, in particular P2P applications.

Many of the services and peers that end-user applications

interact with reside outside our edge network.

The key observation here is that there are structural differ-

ences in the composition of inbound periodic traffic and out-

bound periodic traffic. These differences include the volume

and variety of periodic traffic, as well as the protocol and port

usage. The underlying reasons for the differences include the

network services being offered, the applications being used,

and user behavior on the network.

D. Liveness

Another attribute of periodic traffic is whether the con-

nection attempt elicits a response or not. The terms unidi-

rectional (one-way) or bidirectional (two-way) periodic traffic

are sometimes used to describe this characteristic. However,

we instead use the term liveness to refer to this attribute, to

avoid confusion with directionality. If the originator receives

zero bytes from the responder over the lifespan of the periodic

traffic, we classify it as dead. Otherwise, we consider it alive.

Liveness is an important feature, since Internet traffic that has

no recipient is often useful for identifying odd behaviors [6].

Figure 4 shows that the majority of the periodic traffic

that we observed showed liveness. Such traffic is clearly most

useful when both hosts are aware that the other is receiving

the probe. These instances have protocol/port usage patterns

similar to the overall pattern, particularly for TCP.

Despite most periodic traffic instances being alive, we

observed surprisingly many dead instances: 71,531 (29%).

Many of these, particularly on the system ports for TCP and

UDP, were scanning hosts for specific services, such as HTTP,

HTTPS, Telnet, NetBIOS, DNS, NTP, and SNMP. Those in

the user/dynamic port ranges were typically related to specific

services or applications. Almost all of the TCP periodic traffic

in this range was generated by service vendors attempting

to communicate with hosts on our network. A very small

proportion was related to P2P applications. Conversely, the

dead UDP instances in this range were almost entirely related



to P2P traffic. There were also a few scanning for specific

(vulnerable) services like SSDP.

The prevalence of dead (unidirectional) periodic traffic is

related to churn. If a host establishes communication with a

vendor/peer, and later changes IP address or sleeps, it can no

longer respond. These dead instances continue for some time

until the vendor/peer decides to halt communication with the

inactive host.

Many ICMP instances in this category were related to host/-

port scanning. A total of 6,269 dead ICMP periodicities had

error return codes of either host, network, or port unreachable.

The rest had return codes indicating that the ICMP request was

prohibited.

As shown in Figure 4, the majority of unidirectional pe-

riodic instances are inbound. This is intuitive based on the

observations above. The larger proportion of dead, inbound,

irregular periodicities is also sensible considering that many

are related to P2P applications and service vendors. However,

there is one notable anomaly. Our Akamai node produced

many unidirectional periodic instances over ports 80, 443,

11640, and 12347. In total, this single host produced 5,877

dead outbound instances of periodic traffic. This behavior

likely indicates some stale configuration information.

In summary, the main observation from this analysis is that

most periodic traffic (about 70%) involves bidirectional com-

munication, while the rest (about 30%) is only unidirectional.

The latter category results primarily from scanning activities,

churn in P2P applications, and possibly stale network config-

uration information.

E. P2P Traffic

P2P applications generated lots of periodic traffic, so we

used P2P as another attribute for classification. We used

heuristic techniques to identify P2P applications, and packet

payload captures to confirm our hypotheses [16].

Some hosts on our network were involved in a lot of

periodic traffic. A few of these hosts (such as our Akamai

node) were identified as specific legitimate services. However,

many internal hosts were exchanging probes with a globally

distributed set of hosts. Further investigation demonstrated that

many of these were related to P2P applications. We were

able to positively identify four P2P applications: BitTorrent,

PPStream, the ZeroAccess botnet, and a strain of the Sal-

ity P2P botnet. We first noticed the latter (Sality) due to

its periodic communications, presumably to share neighbor

information, or other tasks related to maintaining the P2P

network. We then identified that it was related to Sality by

comparing its behavior to Sality’s known behavior [11], and

checking IP addresses in the Virus Tracker4 database. These

P2P applications were primarily on Bring Your Own Device

(BYOD) subnets.

A deeper study of these P2P applications, and their periodic

traffic, led to two observations. First, the identified P2P

applications tend to use a specific port or limited range of

4https://virustracker.net/

ports for this traffic. Second, these P2P applications generated

traffic with specific periods, or a small set of periods. Other

researchers have had similar findings [1], [5], [33].

In our empirical dataset, P2P applications accounted for

48% of all periodic traffic instances detected. In most P2P

applications, each peer generates a periodic probe to each other

known peer. For a large P2P network, the total number of

probes is high. P2P probes are often conducted using UDP on

user/dynamic ports. This is why UDP is the most frequently-

observed transport protocol for periodic traffic, especially on

user/dynamic ports.

Figure 4 shows the prevalence of P2P periodic traffic. P2P

probes were all irregular, and were prominent in both inbound

and outbound traffic. In both cases, P2P traffic made up the

majority of the unidirectional periodicities. This is likely due

to churn in P2P networks, when peers go offline without

informing the network. Even if they did inform the network,

there would be a delay for that information to propagate.

For non-P2P applications, the periodic traffic had similar

protocol/port usage as the aggregate traffic. The majority of

the periodicities are TCP-based and concentrated in the system

port range, though the user/dynamic ports are used more often

than in the aggregate traffic. UDP is less prevalent in non-P2P

periodic traffic, and no ICMP periodicities were P2P-related.

The key takeaway from this analysis is that approximately

half of the periodic traffic on our campus edge network is from

P2P applications. These applications are diverse and ubiqui-

tous, typically using UDP for their periodic communication,

and doing so using well-defined periods and a limited range

of ports.

VI. PERIODIC TRAFFIC CHARACTERIZATION

In this section, we present an in-depth characterization of

the periodic traffic that we detected. We focus on structural

properties, temporal characteristics, subnet-related differences,

vendor-specific properties, and visual characteristics.

A. Structural Characteristics

To identify clusters in the periodic traffic, we produced

scatterplots of the period and port. Figure 5 presents these

results, using logarithmic scales on both axes. Figure 5(a)

shows the scatterplot for all periodic traffic, while Figure 5(b)

shows the results for non-P2P periodic traffic. Blue denotes

TCP traffic, and red denotes UDP. Individual points are drawn

with low opacity, thus the more opaque an area is, the more

instances of periodic traffic it represents.

Figure 5 shows three different types of visual clustering:

points, horizontal bands, and vertical bands.

Points represent specific services that generate periodic

traffic using a specific port. Darker points are formed when

many instances share the same period and port number. For

instance, the point for UDP/12350 with a period of 9 minutes

is for Skype5, while the point for TCP/5223 with a 15-minute

period represents Apple’s Push Notification Service.

5Skype is transitioning from a classic P2P design to a centralized Microsoft
Azure service [37]. Both appear in our logs. Skype can also use dynamic ports.



(a) All Periodic Traffic (b) Non-P2P Periodic Traffic

Fig. 5. Period/port scatterplots for periodic traffic. Red is for UDP, while blue is for TCP. Darker points represent greater intensity of periodic traffic.

Horizontal bands indicate specific services that use a range

of different ports. Different applications use different port

ranges, so the length of horizontal bands can vary. Since

the ports vary, these applications typically use ports in the

user/dynamic port range. As a result, the horizontal bands tend

to appear on higher-numbered ports, as seen in Figure 5.

These horizontal bands arise from specific network appli-

cations. This becomes apparent when comparing Figure 5(a)

and (b). In Figure 5(a), there are multiple horizontal bands for

(red) UDP periodic traffic. These horizontal bands diminish in

Figure 5(b), when P2P applications are removed. Horizontal

bands are not exclusive to P2P applications, though. In Fig-

ure 5(b), for example, there is a clear horizontal band across

TCP ports 45,000-65,000 with a period of 9 minutes. This

band represents periodic traffic generated by Google Hangouts.

Vertical bands indicate commonly used ports, but not spe-

cific applications. For example, vertical bands appear at ports

80 (HTTP), 123 (NTP), 443 (HTTPS), and 1900 (SSDP).

Inspection of the periodic traffic within these bands reveals

that they represent several distinct applications. For example,

inspection of the HTTP logs showed that many different

applications generated periodic traffic on these ports, and those

with different periods were unrelated to one another.

In Figure 5(b), the three vertical bands for port numbers

beyond 10,000 were generated by the Akamai node on our

edge network. These instances were all directed to other

Akamai nodes, and are used for internal testing and reporting.

B. Temporal Characteristics

Periodic traffic has two salient temporal attributes: period

(time between successive connections) and lifespan (time

between the first and last connections).

Figure 6 shows CDFs of the period and the lifespan for

the periodic traffic that we observed. Figure 6(a) includes all

periodic traffic, while Figure 6(b) excludes P2P traffic. The

upper line (blue) is for the period. The lower line (green) is

for the lifespans. Both are measured in seconds. Note that the

horizontal axis is log scale, and that the vertical dashed lines

denote one minute, one hour, and one day periods.

The observed periods span a wide range, with the shortest

being 10 seconds (recall Table I), and the longest being 8.8

days. Despite this large range, periods are concentrated at the

lower end of the distribution, with periods up to 1 minute

representing 40% of all instances, and periods under one

hour comprising 97%. One-minute periods were common,

especially for P2P applications. The most frequent longer

periods were 15, 30, 50, and 60 minutes. Periods longer than

one day were quite rare (< 0.1%).

The lifespans for periodic traffic also tend to be short, but

have a broad range. The shortest was only 30 seconds, based

on our parameter settings in Table I, and the longest was 47.9

days. About 6% have a lifespan under 1 minute, and 71% have

a lifespan under one hour. Lifespans vary more widely than

periods, but there is a significant peak around 10 minutes for

P2P. About 30% of the lifespans exceed one hour.

From this analysis, we conclude that “typical” periodic

traffic has short periods and lifespans. Short lifespans can be

due to the applications, or reflect normal end-user behavior.

End-users tend to start and stop applications, relocate, or shut

down their devices, particularly in a BYOD environment. This

behavior contributes to the short(er) lifespans.

C. Subnet-based Analysis

Figure 7 shows a breakdown of the periodic traffic observed

on several different subnets within our campus network. We

selected the five busiest managed subnets from our department

(based on connections), the five busiest wireless BYOD sub-

nets, and the five busiest wired BYOD subnets for comparison.

Figure 7(a) is for outbound periodic traffic, while Figure 7(b)

is for inbound periodic traffic. On each graph, the subnet

numbers are anonymized, but are in the same position in each

graph for comparison.

Figure 7 shows several differences in the periodic traffic

observed in managed and unmanaged (BYOD) subnets.

The managed portions of the network produce relativity

few instances of outbound periodic traffic. Those that do

exhibit periodic traffic differ depending on what the subnet

is used for. Subnet 1 houses key infrastructure servers such as
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Fig. 6. CDFs of periods and lifespans for periodic traffic.

(a) Outbound Periodic Traffic

(b) Inbound Periodic Traffic

Fig. 7. Subnet-based analysis of periodic traffic.

DNS and Web servers, and produces only a few instances of

periodic traffic, all of which are on system ports. Subnet 2 has

periodic traffic directed primarily toward managed services,

while subnet 3 has periodic traffic mainly related to games

and end-user applications. Subnet 5 contains a NAT device

that accounts for all periodic traffic on this subnet. It forwards

traffic from end-user devices, and thus manifests a significant

amount of periodic traffic for end-user applications, including

P2P. Thus, this subnet is a hybrid of a managed and BYOD

subnet.

The unmanaged subnets tend to have many more instances

of outbound periodic traffic. This traffic is primarily UDP-

based, however TCP also has a significant presence. The UDP

instances are primarily on the user port range, reflecting P2P

applications. However, there is also lots of gaming-related pe-

riodic traffic. The TCP periodic traffic in the system port range

uses ports 80 and 443 almost exclusively. This periodic traffic

is directed primarily to software vendors, managed (cloud)

services, Web pages, CDNs, and various service providers.

Those in the user port range are composed primarily of P2P

traffic, however there are also lots of periodic traffic instances

with Apple, Skype, and managed service providers. The few

ICMP periodicities represent innocuous echo requests.

The inbound periodic traffic differs depending on the pur-

pose of the managed portions of the network. Though subnet

1 produced the least outbound periodic traffic, Figure 7(b)

shows that it receives the most inbound periodic traffic. The

TCP periodic traffic is directed to Web servers and a Linux

mirror site for OS updates. The UDP periodic traffic is mostly

NTP-related, with a few being DNS-related. Subnet 2 receives

periodic traffic from various service providers. The periodic

traffic received by subnet 3 is primarily P2P traffic directed

to a specific host. The inbound periodic traffic for subnet 5 is

related to the NAT devices, and has a similar composition to

the outgoing periodic traffic. The periodicities in ICMP traffic

on managed subnets are mostly ICMP echo requests, however

there are also lots of port unreachable messages.

On the unmanaged (BYOD) subnets, outbound periodic

traffic dominates the inbound periodic traffic. However, the

composition of each is similar, with both mostly composed

of UDP traffic. The UDP periodic traffic is almost all related

to P2P applications. A small portion is related to (persistent)

scanning that was attempting to locate NetBIOS-capable hosts.

Unlike the outbound periodic traffic, there were very few

instances of TCP periodic traffic. The TCP periodic traffic was

mostly generated by software vendors and managed services,

although there is little usage of ports 80 and 443. Most of the

TCP periodic traffic occurred on user/dynamic ports.

D. Service-Related Characteristics

Many of the periodicities observed in non-P2P traffic were

related to well-known service vendors. For this analysis, we

selected five representative service/software vendors for in-

depth analysis. These vendors represent the four major cate-

gories observed: software vendors, service vendors, managed

hosting vendors, and CDNs.

Figure 8 shows that each vendor has a distinct protocol/port

usage profile. These differences reflect the diversity of services

provided by each vendor.



Fig. 8. Vendor-based analysis of periodic traffic.

Microsoft is a software/service vendor for which the peri-

odic traffic uses TCP almost exclusively. Periodic traffic in the

system port range used only ports 80, 443, and 993. Instances

over ports 80 and 443 were related to Skype, Web application

hosting, software updates, and user information collection,

while those over TCP/993 were for Microsoft’s Outlook e-

mail service. They used periodic traffic on user/dynamic ports

to communicate with hosts on our network every 60 seconds.

Google’s periodic traffic relates to specific services. In-

stances in the system port range for both TCP and UDP

were concentrated on port 443 and directed towards Google’s

servers. Periodic TCP traffic in the user/dynamic port range

was directed towards our network, and provided Google’s

services (e.g., Hangouts) to hosts on our network.

Amazon uses periodic traffic for managed services. This

traffic primarily used TCP ports 80 and 443. Inspection of the

HTTP logs showed that these instances were not related to

Amazon’s hosting services themselves. Rather, the periodic-

ities were generated by the wide variety of applications and

Web pages that were being hosted on the servers. There were

also some ICMP echo requests directed to Amazon’s servers.

The Akamai periodic traffic had several distinct patterns.

The ICMP instances were other Akamai hosts making ICMP

echo requests to the Akamai node, and vice versa. Periodic

traffic in the user/dynamic port ranges for both UDP and TCP

were used by Akamai for internal testing and reporting. TCP

periodicities in the system port range were all conducted over

ports 80 and 443. Many of those over port 80 were related

to the Akamai Netsession Interface6, which periodically posts

logs to Akamai servers.

Valve is a multimedia vendor that provides video games

and game-related services. The periodic traffic was produced

by Valve’s Steam video game client. These instances occur

with a period of 1.5-2 minutes on UDP/27,000-UDP/27,037.

These port numbers7 are used by Steam for game client traffic,

game match-making, and in-home streaming.

6https://www.akamai.com/us/en/products/mediadelivery/
netsession-interface-faq.jsp

7https://support.steampowered.com/kb article.php?ref=8571-GLVN-8711

E. Visual Characteristics

Visualization can play a key role in the interpretation of

periodic traffic. To demonstrate this, we used Gephi8 to create

four examples of node-link diagrams in Figure 9. Each node

represents a host that either sends or receives periodic traffic.

Hosts internal to our network are light grey, while external

hosts are color-coded according to the protocol/port used by

the periodic traffic. Edges are the same color as the source,

thus outbound instances have grey edges, and inbound ones

have colored edges.

Figure 9(a) illustrates the results for our Akamai node.

This node exchanges periodic traffic with many external hosts,

using TCP (blue), UDP (red), and ICMP (yellow). These

instances form a dense mesh of primarily outbound edges.

P2P applications tend to form complex networks, as shown

in Figure 9(b) for BitTorrent. Each internal host has its own

cluster of external peers, but some nodes provide periodic

traffic between clusters.

Figure 9(c) illustrates the periodic traffic of the Sality

P2P botnet that we identified on our network. The internal

hosts of this P2P network generate periodic traffic directed

to many external hosts. Furthermore, many of these external

hosts receive probes from multiple internal hosts, thus creating

the complex relationships shown. These networks are quite

distinctive [36], and are easily identifiable.

Figure 9(d) shows an example of the ZeroAccess botnet. In

this example, the internal host is interacting with external peers

that are not shared with any other internal hosts. As a result,

the diagram resembles that for an internal service. However,

the use of UDP on non-system ports, and the primarily

inbound edges, make it visually distinct from Figure 9(a).

VII. CONCLUSIONS

In this paper, we provide a modeling methodology for the

detection, analysis, and characterization of periodic network

traffic. Our approach can be used to assess the state of well-

known network services (e.g., NTP, DNS, CDN), and also

detect P2P, gaming, cloud, scanning, and botnet traffic flows.

Despite its simplicity, our SQL-based method is surprisingly

powerful, offering deep insights into the characteristics of

periodic network traffic.

The main conclusions from our work are as follows. First,

periodic traffic is pervasive in modern network applications,

including gaming, CDN, P2P, cloud-based services, and mali-

cious traffic. Second, periodic traffic is diverse in its structural

properties, and often very transient in its existence. Third,

P2P applications account for about half of the periodic traffic

detected in our empirical study. We hope that our taxonomical

classification facilitates better understanding of the periodic

traffic ecosystem on a modern campus edge network.

There are several high-level implications from our work.

First, system administrators of managed infrastructure need to

know if any of their (critical) systems are exchanging periodic

traffic with unexpected places. Such communication patterns

8https://gephi.org/
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Fig. 9. Example visualizations of periodic network traffic.

may indicate compromised systems, or potential vulnerabili-

ties. Second, security analysts need to know if there are any

periodic probes from external organizations (e.g., on a security

blacklist) that are scanning their network. Such traffic could

indicate network reconnaissance prior to a potential attack.

Finally, we need to make periodic traffic information accessi-

ble and useful for network operators. For these purposes, we

regularly run our periodic traffic analysis scripts on a daily

basis, and report suspicious/malicious activities to our network

security team.

Future work is needed to further enhance our understanding

of periodic traffic. First, the irregularities in periodic traffic

warrant further investigation, since they dominate the periodic

traffic ecosystem, and are not detected easily. These irregu-

larities arise from network middleboxes (e.g., DHCP, NAT,

wireless APs) and user behavior (e.g., diverse applications

and devices, mobility, transient network connectivity), and are

challenging to analyze. Second, better methods are needed for

interpreting periodic traffic. It is often assumed that periodic

behavior is inherently suspicious [7], [13], [19], or that manual

review of this traffic is feasible [18], [22]. Our work indicates

that interpreting periodic traffic is not simple, and better auto-

mated methods are required. Finally, obfuscation of periodic

traffic is the next logical step for malware designers. We need

robust detection techniques for malicious traffic once these

periodic signals vanish.
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