Technische Hochschule Deggendorf
Fakultat Angewandte Informatik

Studiengang Master Angewandte Informatik

ERKENNUNG VON BOSARTIGEM
NETZWERKVERHALTEN IN
ALLIANZ-UNTERNEHMENSNETZWERKDATEN

DETECTION OF MALICIOUS NETWORK BEHAVIOR
IN ALLIANZ COMPANY NETWORK DATA

Masterarbeit zur Erlangung des akademischen Grades:
Master of Engineering (M.Eng.)
an der Technischen Hochschule Deggendorf

Vorgelegt von: Priifungsleitung:
Aida Nikkhah Nasab Prof. Dr. Fischer
Matrikelnummer: 22208964

Erganzende Prifende:
Am: March 2025 Zineddine Bettouche

Erklirung
Name des Studierenden: Aida Nikkhah Nasab

Name des Betreuenden: Prof. Dr. Fischer

Thema der Abschlussarbeit:
Erkennung von bosartigem Netzwerkverhalten in Allianz-Unternehmensnetzwerkdaten. . .

1. Ich erklire hiermit, dass ich die Abschlussarbeit gemaf} § 35 Abs. 7 RaPO (Rahmenpriif-
ungsordnung fiir die Fachhochschulen in Bayern, BayRS 2210-4-1-4-1-WFK) selbsténdig
verfasst, noch nicht anderweitig fiir Prifungszwecke vorgelegt, keine anderen als die
angegebenen Quellen oder Hilfsmittel benutzt sowie wortliche und sinngeméfie Zitate
als solche gekennzeichnet habe.

Deggendorf, ...

Datum Unterschrift des Studierenden

2. Ich bin damit einverstanden, dass die von mir angefertigte Abschlussarbeit tiber die Bib-
liothek der Hochschule einer breiteren Offentlichkeit zuginglich gemacht wird:

(O Nein
(O Ja, nach Abschluss des Priifungsverfahrens
(O Ja, nach Ablauf einer Sperrfrist von ...Jahren.

Deggendorf, ...

Datum Unterschrift des Studierenden

Bei Einverstandnis des Verfassenden vom Betreuenden auszufiillen:

Eine Aufnahme eines Exemplars der Abschlussarbeit in den Bestand der Bibliothek und die
Ausleihe des Exemplars wird:

(O Befiurwortet
(O Nicht befurwortet

Deggendorf,

Datum Unterschrift des Betreuenden

Abstract

This thesis offers a comprehensive examination of the BAYWATCH framework, an advanced
system designed for monitoring, detecting, and analyzing data patterns, applied to both real-
world and synthetic datasets. The research delves into the theoretical underpinnings of BAY-
WATCH, outlining its algorithmic architecture, essential components, and the innovative meth-
ods it utilizes for real-time anomaly detection and data pattern recognition. Through a sys-
tematic evaluation, the study assesses the framework’s performance in controlled experimen-
tal settings and its effectiveness in complex, real-world scenarios. The findings indicate that
BAYWATCH not only exhibits robust performance and adaptability across diverse data envi-
ronments but also reveals significant sensitivity to parameter configurations and noise fac-
tors present in live datasets. Furthermore, a comparative analysis with existing methodologies
highlights BAYWATCH’s strengths and identifies areas for optimization. The insights gained
from this research contribute to a deeper understanding of data monitoring systems and of-
fer practical recommendations for future improvements, thereby advancing the application of
intelligent data analysis techniques in both academic research and industry practice.

Contents

Abstract

1.

Topical Overview

1.1. Problem Statement
1.2. Methodology Overview
1.2.1. Data Extraction and Prepration
1.2.2. Whitelist Creation and Filtering
1.2.3. TimelInterval Analysis
1.24. BandpassFiltering
1.2.5. Power Calculation and Normalization
1.2.6. Behavior Detection and Threshold Analysis
1.2.7. Validation and Continuous Improvement
1.3. Research Objectives
1.3.1. ResearchQuestions
1.4. Structureof Thesis
Background
2.1. Cybersecurity Landscape
2.1.1. Emerging Trends and Challenges
2.2. Advanced Persistent Threats (APTs) and Covert Tactics
2.2.1. Case Studiesof APT Attacks
2.3. Enterprise Networks
2.3.1. Key Aspects of Enterprise Networks
2.3.2. Vulnerabilities in Enterprise Networks
24. Band-PassFiltering
2.5. Periodicity in Network Communication
2.5.1. Importance in Cybersecurity
2.6. Time SeriesDatabases. L L
2.6.1. Characteristics of Time Series Databases
262, InfluxDB
27. Summaryo

Related Work

Methodology

4.1. Overview of the BAYWATCH Framework

4.2. Whitelist Analysis
4.2.1. Universal Whitelisting

<

W W W NN DNDNDNDN R P = -

O O O 0 0 N 1 Gl

— e e e e
NN == =

15

19
19
20
20

vii

Contents

viii

4.2.2. Local Whitelisting
4.3. Time Series Analysis
4.3.1. Algorithm Overview
4.3.2. Candidate Discovery Using FFT
43.3. Pruning Using Bandpass Filtering
4.3.4. Verification Using Autocorrelation
4.3.5. Handling Multiple Periodicities
4.4. Suspicious Indicator Analysis. o
4.5. Investigation and Verification
45.1. FeatureSet
452, Classifier.
4.53. Bootstrapping Process 000 L
4.6. RealDataSource.
4.6.1. Data Structure and Schema
4.6.2. DataCollectionandScale
4.6.3. Data Management and Preprocessing
4.6.4. Challenges with Real-WorldData
4.7. Artificial DataSource L
4.7.1. Design of Artificial Data L.
472, JitterRanges.
4.73. Scenarios Tested
4.74. Integration with Real-WorldData
4.8, SUMMAIY o e e e e e e e
Data Analysis
5.1. Visualization of URL Request Counts
5.2. 24-Hour URL Visit Analysis
5.3. Time Interval Analysis of URL Requests
5.4. Distribution of Hosts Based on Unique URLs Contacted
Implementation
6.1. Experimental Setup
6.2. Whitelisting Mechanism for URL Filtering
6.3. Average Power Calculation
6.4. Band-PassFiltering
6.5. Beaconing Data Generation.
6.6. Fast Fourier Transform (FFT)
6.7. Autocorrelation
6.8. Behavior Detection
6.9. Algorithm Output
6.10. SUMMAIY o e e e e e e e e
6.11. NextSteps

21
21
21
21
22
22
23
23
23
23
24
24
24
24
25
26
26
26
27
27
28
28
28

29
29
31
33
35

37
37
38
39
40
41
42
42
43
43
44
45

7. Experiments

7.1. Validation and Testing

8. Results and Discussions

Contents

8.1. Detection of Beaconing Behavior
8.1.1. Algorithm Development and Implementation
8.1.2. Data Collection and Preprocessing

8.1.3. Validation and Testing

8.2. Impact of Periodicity in Network Communication
8.2.1. Identification of Regular Intervals
8.2.2. Differentiation Between Benign and Malicious Periodicity
8.2.3. Impact on False Positives and Negatives
8.2.4. Case Studies and Empirical Evidence

9. Conclusion and Future Work

9.1. Conclusion

9.2. Future Work

A. Appendix
A.l. Algorithm Implementation . .
A.2. Data Analysis Implementation

47
47

53
53
53
53
54
54
54
54
54
55

57
57
57

59
59
62

ix

1. Topical Overview

1.1. Problem Statement

In the modern world it is important to protect the information and to ensure the security of the
network systems as much as it is important for organizations. Like so many others, companies
create a large number of user log data every day. It is closely watched for any signs of potential
security threats and it is rich with potential insights. However, as cyber attacks become more
sophisticated and complex especially APTs, there is the need to have strong and preventive
cybersecurity measures in place. The major challenge is how to effectively sort through this
huge amount of log data to determine the malicious events and respond to them before they
lead to any damage. This research is aimed at enhancing the cybersecurity postures of an
organization with a view to detecting APT and other threats early enough in order to protect
the network infrastructure.

1.2. Methodology Overview

The methodology followed for this research systematically detects and analyzes the beaconing
behavior of network traffic. Several steps are involved in handling this, starting with data
collection where both real and artificial datasets have been gathered to ensure that the analysis
is substantial.

Advanced data preprocessing on the collected datasets has been carried out in cleaning and
preparing the datasets for analysis. It’s an important step in which noise and irrelevant infor-
mation that might distort results can be removed. First, the pre-processing step will ensure
that the format of data is appropriate to the analysis step. It would enable better detectability
of the beaconing pattern. Thus, the methodology refines the data in order to give more preci-
sion to the algorithm in detecting the subtle signs of beaconing behavior that would have been
impossible if the approach is relaxed.

1.2.1. Data Extraction and Prepration

These involve gathering large-scale amounts of data across network traffic; it shall further
include the variation of attribute varieties such as time stamps, source and destination IP ad-
dresses, and URLSs visited. The raw data then has an extensive preprocessing step, filtering out
irrelevant information, normalizing the data format, and filling in missing values; thus, after
the cleaning is performed, structured data will come forth for advanced analytics. The various
analytical techniques used to become more familiar with the data will explain how these URLs
would behave on a certain day. The different analyses possible on the data can reveal the pat-

1. Topical Overview

tern, anomalies, and trends hidden in this dataset, and that gives interesting insights into the
network activity or user behavior.

1.2.2. Whitelist Creation and Filtering

To enhance the efficiency of the analysis, a whitelist of trusted URLs is created. This whitelist
is based on known safe domains and frequently accessed URLs within the organization. By
filtering out these trusted URLs, the methodology focuses on potentially suspicious activities,
reducing the noise and improving the accuracy of the detection process.

1.2.3. Time Interval Analysis

A critical aspect of the methodology is the analysis of time intervals between successive net-
work requests. By calculating the time differences between consecutive requests to the same
URL, the methodology identifies patterns that may indicate beaconing behavior. This analysis
helps in distinguishing regular, benign activities from irregular, potentially malicious ones.

1.2.4. Bandpass Filtering

To further refine the analysis, bandpass filtering is applied to the time interval data. This tech-
nique isolates specific frequency components within a defined range, effectively filtering out
noise and irrelevant fluctuations. The filtered data highlights significant patterns and period-
icities, which are crucial for detecting beaconing behavior.

1.2.5. Power Calculation and Normalization

The concept of "power” is introduced to quantify the frequency of network requests. By calcu-
lating the power for each URL and normalizing it against the average power, the methodology
identifies URLs with unusually high or low request frequencies. This step helps in pinpointing
URLSs that exhibit abnormal behavior, warranting further investigation.

1.2.6. Behavior Detection and Threshold Analysis

The final stage involves the detection of suspicious behavior based on predefined thresholds.
URLs with power values exceeding the threshold are flagged for further scrutiny. This step en-
sures that only the most significant anomalies are investigated, optimizing the use of resources
and enhancing the overall effectiveness of the detection process.

1.2.7. Validation and Continuous Improvement

The methodology is validated using both synthetic and real-world datasets, ensuring its robust-
ness and reliability. Continuous feedback and refinement are integral to the process, allowing
the methodology to adapt to evolving network traffic patterns and emerging threats. This iter-
ative approach ensures that the detection system remains effective and up-to-date.

1.3. Research Objectives

In summary, the methodology combines advanced data analysis techniques with practical
filtering and detection strategies to identify beaconing behavior within network traffic. By sys-
tematically addressing each stage of the process, the methodology provides a comprehensive
framework for enhancing network security and mitigating potential threats.

1.3. Research Objectives

The main goal of this research is to improve the network security of Allianz Company by
finding and using better ways to spot and respond to possible cyber threats. The focus is mainly
on advanced persistent threats (APTs), which are known for being sneaky and long-lasting. To
do this, the research aims to:

1. Develop Advanced Detection Techniques: Create methods to identify potential threats
early, focusing on the unique behaviors of APTs.

2. Implement Proactive Security Measures: Establish protocols that enable quicker re-
sponses to detected threats, reducing the risk of data breaches.

3. Educate and Train Staff: Provide training for employees to recognize and respond to
potential security threats effectively.

4. Evaluate and Update Security Policies: Continuously assess and refine the company’s
security policies to adapt to new and evolving cyber threats.

1.3.1. Research Questions

The research is guided by the following key questions:
» How can beaconing behavior be effectively detected within Allianz Company’s network?

« What is the impact of periodicity in network communication on the detection of mali-
cious behavior?

1.4. Structure of Thesis

This section outlines the organization of the chapters in this thesis. The structure is designed to
systematically address the research objectives and questions outlined above, ensuring a com-
prehensive understanding of the problem and the proposed solutions.

Chapter 2 provides the background necessary for understanding the context of this research.
It begins with an introduction that sets the stage for the subsequent discussions. This chapter
delves into the cybersecurity landscape, highlighting the current state of cybersecurity and
the challenges enterprises face. It then explores advanced persistent threats (APTs) and their
covert tactics, providing a detailed examination of how these threats operate and the sophisti-
cated methods they employ. Additionally, this chapter discusses enterprise networks, focusing
on their structure, functionality, and the inherent vulnerabilities that make them targets for

1. Topical Overview

cyberattacks. Finally, it introduces the concept of periodicity in network communication, ex-
plaining its relevance to detecting malicious activities.

Chapter 3 is dedicated to a review of related work. It begins with an overview of the BAY-
WATCH framework, then an exploration of various methods for APT beaconing detection. The
chapter then discusses peer-based tracking techniques and presents a systematic review of the
literature on APT beaconing detection. Further, it examines the use of DNS logs for malware
beaconing detection and the application of Al-driven approaches to identify malicious bea-
coning. The chapter concludes with a discussion on local periodic communication behavior,
providing a comprehensive overview of existing research and highlighting gaps that this thesis
aims to address.

Chapter 4 focuses on the methodology adopted for this research. It begins with the design
of the proposed method, outlining the theoretical foundation and the rationale behind the cho-
sen approach. This is followed by a detailed description of data extraction and preparation
processes, ensuring the data used is both relevant and reliable. The chapter also covers data
preprocessing techniques, time interval analysis, and data enhancement methods. Band-pass
filtering is introduced as an important step in the methodology, followed by a discussion on
the evaluation criteria used to assess the effectiveness of the proposed solution.

Chapter 5 details the implementation of the proposed method. It starts with an explanation of
the experimental setup, describing the environment and tools used for the experiments. This
chapter also introduces a whitelisting mechanism for URL filtering, aimed at reducing false
positives. It then describes the process of average power calculation and the application of
band-pass filtering to the data. The chapter concludes with a discussion on behavior detection,
explaining how the proposed method identifies malicious activities.

Chapter 6 presents the experiments conducted to validate the proposed method. It includes
sections on validation and testing, detailing the procedures and metrics used to assess the per-
formance of the method. An in-depth analysis of the algorithm’s output is provided, focusing
on the detection of malicious behavior. This chapter aims to demonstrate the efficacy of the
proposed method through empirical evidence.

Chapter 7 covers the results and discussions, summarizing the key findings of the research. It
provides a critical analysis of the results, discussing their implications and relevance to the field
of cybersecurity. This chapter also highlights the contributions of the research, emphasizing
how it advances the current state of knowledge.

Chapter 8 concludes the thesis by summarizing the main findings and providing insights into
future work. It outlines potential avenues for further research, suggesting how the proposed
method can be refined and extended. This chapter aims to provide a comprehensive conclu-
sion to the thesis, tying together the various elements and emphasizing the significance of the
research. In summary, the structure of this thesis is designed to provide a logical and coherent
progression from background information and related work to methodology, implementation,
experiments, and results, culminating in a comprehensive conclusion and suggestions for fu-
ture research.

2. Background

This chapter provides the background necessary for understanding the context of this re-
search. It begins with an overview of the cybersecurity landscape, emphasizing the current
state, emerging trends, and persistent challenges faced by organizations. It then explores Ad-
vanced Persistent Threats (APTs) and their sophisticated, covert tactics that pose significant
risks to enterprise networks. The discussion also covers the concept of periodicity in network
communication, crucial for detecting anomalies in cybersecurity contexts. Finally, the chapter
delves into the role of time series databases, with a specific focus on InfluxDB, in managing
and analyzing the vast amounts of data generated in cybersecurity operations.

The field of cybersecurity is continually evolving, with new threats emerging as technology
advances. Understanding these threats and the strategies to counter them is crucial for protect-
ing sensitive information, ensuring the continuity of operations, and maintaining the integrity
of enterprise networks. This chapter lays the foundation for the research by discussing key
concepts and technologies relevant to cybersecurity, setting the stage for the detailed analysis
and solutions proposed in subsequent chapters.

2.1. Cybersecurity Landscape

The cybersecurity landscape is characterized by a dynamic and increasingly complex environ-
ment where various types of cyber threats continually evolve. Organizations across the globe
face numerous challenges in protecting their networks, data, and systems from these threats,
which range from malware and ransomware to sophisticated nation-state attacks.

Cybersecurity encompasses a wide range of practices, technologies, and strategies aimed
at safeguarding information and systems from unauthorized access, damage, or disruption.
It involves both proactive measures, such as implementing robust security architectures and
practices, and reactive measures, such as incident response and recovery strategies.

Figure 2.1 presents a global map of cybersecurity threats, illustrating the widespread nature
of these challenges. This visualization highlights regions most affected by various types of
cyber attacks, underscoring the global reach and impact of cyber threats.

2.1.1. Emerging Trends and Challenges

The rapid digitization of industries, the increasing reliance on cloud services, and the prolif-
eration of Internet of Things (IoT) devices have significantly expanded the attack surface for
cyber threats. These developments, while beneficial, have introduced new vulnerabilities that
attackers are quick to exploit. Additionally, the rise of ransomware as a service (RaaS) and the
growing sophistication of phishing attacks reflect the evolving threat landscape.

2. Background

LEGEND LOCATIONS

UNITED STATES
ROMANIA
CANADA
GERMANY

ATTACKS

(®) 1nFECTIONS

UNITED KINGDOM
BRAZIL

INDIA

FRANCE

SPAM

SQoRpESan

LIVE ATTACKS

Figure 2.1.: Global cybersecurity threat map [1]

Another significant challenge is the shortage of skilled cybersecurity professionals, which
hampers the ability of organizations to effectively defend against these threats. This gap is
exacerbated by the complexity of modern networks and the need for advanced tools and tech-
niques to detect and mitigate sophisticated attacks.

2.2. Advanced Persistent Threats (APTs) and Covert Tactics

Advanced Persistent Threats (APTs) represent one of the most sophisticated and dangerous
forms of cyber attacks. APTs involve prolonged, targeted efforts by attackers, typically state-
sponsored or highly organized criminal groups, aimed at stealing sensitive information, dis-
rupting operations, or compromising critical infrastructure. Unlike traditional cyber attacks,
which may be opportunistic and short-lived, APTs are characterized by their stealth, persis-
tence, and the significant resources devoted to them.

Figure 2.2 illustrates the lifecycle of an APT attack, highlighting the various stages involved,
from initial reconnaissance to exfiltration of data. Understanding these stages is crucial for
developing effective detection and mitigation strategies.

APT actors employ various covert tactics to remain undetected and achieve their objectives.
Some of these tactics include:

« Spear Phishing: Crafting highly personalized email messages that appear legitimate to
the recipient. These emails are designed to trick recipients into clicking on malicious
links or attachments, leading to the compromise of their credentials or systems.

+ Zero-Day Exploits: Exploiting previously unknown vulnerabilities in software or hard-
ware, which have not yet been patched by the vendor. This allows attackers to gain
unauthorized access to systems without triggering existing security defenses.

2.2. Advanced Persistent Threats (APTs) and Covert Tactics

Reconnaissance

Clearing Tracks e :
Initial Compromise

Data Exfiltration
Establishing Foothold

Lateral Movement

Internal Reconnissance

Figure 2.2.: APT attack lifecycle [?]

2. Background

Network
Performance
Monitoring

Network Enterprise
Security Network
Monitoring Monitoring

WAN and LAN
Monitoring

Hardware
Monitoring

Figure 2.3.: Enterprise network diagram

« Lateral Movement: After gaining initial access, attackers move within the compro-
mised network, exploring and compromising additional systems to find and exfiltrate
valuable data. This tactic often involves the use of legitimate administrative tools to
avoid detection.

« Command and Control (C2): Establishing a secure communication channel with the
compromised systems to remotely control them, issue commands, and exfiltrate data.

2.2.1. Case Studies of APT Attacks

Prominent examples of APT attacks include the Stuxnet worm, which targeted Iran’s nuclear
program, and the SolarWinds breach, which compromised numerous U.S. government agencies
and corporations. These cases underscore the potential impact of APTs on national security and
global business operations.

2.3. Enterprise Networks

Enterprise networks are the backbone of modern organizations, providing the necessary infras-
tructure for communication, data sharing, and operational efficiency. However, their complex-
ity and scale make them attractive targets for cyber attackers. Understanding the architecture,
components, and vulnerabilities of enterprise networks is for developing effective cybersecu-
rity strategies.

Figure 2.3 provides a visual representation of an enterprise network, illustrating the vari-
ous components such as servers, workstations, routers, and communication links, as well as

2.4. Band-Pass Filtering

potential points of vulnerability.

2.3.1. Key Aspects of Enterprise Networks

Enterprise networks typically consist of multiple interconnected subsystems, including:

+ Network Architecture: The physical and logical design of the network, including the
layout and interconnection of routers, switches, firewalls, and other network devices. A
well-designed architecture enhances security by segmenting the network and controlling
traffic flow.

« Security Protocols: Protocols such as TLS (Transport Layer Security) and IPSec (In-
ternet Protocol Security) protect data in transit. Additionally, firewalls, intrusion detec-
tion/prevention systems (IDS/IPS), and encryption mechanisms are employed to safe-
guard data and systems.

+ Access Controls: Policies and technologies that regulate who can access specific data
and resources within the network. This includes user authentication, role-based access
control (RBAC), and multi-factor authentication (MFA) to ensure that only authorized
personnel can access sensitive information.

« Network Monitoring and Management: Tools and practices for monitoring network
traffic, identifying anomalies, and managing network resources to maintain performance
and security.

2.3.2. Vulnerabilities in Enterprise Networks

Despite the implementation of robust security measures, enterprise networks remain vulnera-
ble to a variety of threats, including:

+ Insider Threats: Employees or contractors with legitimate access who misuse their priv-
ileges, either maliciously or negligently.

+ Advanced Malware: Malware is designed to bypass traditional security measures, often
delivered through phishing attacks or drive-by downloads.

« Misconfigurations: Incorrectly configured devices or systems that leave the network
open to exploitation.

« Supply Chain Attacks: Attacks that target the software or hardware supply chain,
introducing vulnerabilities that can be exploited after deployment.

2.4. Band-Pass Filtering

In network processing, bandpass filtering is a technique employed to dissect time-series data,
allowing the extraction of specific frequency components within a predefined range. This tech-
nique is particularly useful in analyzing patterns in HTTP requests. Bandpass filtering involves

2. Background

the application of a filter that selectively passes signals whose frequencies fall within a certain
range, known as the “bandpass” range. By isolating these specific frequencies, the technique
enables a focused examination of data that is most relevant to the analysis, effectively filtering
out noise and irrelevant information. This selective process enhances the clarity and preci-
sion of the data, making it easier to identify significant patterns and trends in HTTP requests.
For instance, in a dataset containing web traffic data, bandpass filtering can help highlight the
intervals and frequencies at which certain URLs are accessed, providing insights into user be-
havior and potential security threats. The ability to concentrate on a specific frequency range
allows analysts to zero in on the most pertinent signals, thereby improving the accuracy and
effectiveness of the analysis.

Furthermore, bandpass filtering aids in detecting anomalies and irregularities within the
network. By focusing on the relevant frequency components, it becomes easier to spot de-
viations from the norm, which could indicate unusual or suspicious activity. This method is
instrumental in the context of network security, where identifying and understanding these
anomalies is key for protecting against potential threats. In addition to its application in secu-
rity, bandpass filtering is also valuable for optimizing network performance. By understanding
the regular patterns of data flow and identifying any irregular spikes or drops, network admin-
istrators can make informed decisions to enhance the efficiency and reliability of the network.
This comprehensive approach ensures that only the most significant data is analyzed, leading
to more accurate and actionable insights. Overall, bandpass filtering is a powerful technique
in-network processing, enabling the extraction of meaningful information from large datasets.
By focusing on specific frequency components, it facilitates a detailed and precise analysis of
network interactions, helping to uncover important patterns and trends. This technique not
only improves the understanding of user behavior and network performance but also plays a
vital role in enhancing security by detecting potential threats and anomalies.

The bandpass filter formula can be expressed as:

o 1
B 1 + j(w_wlow) ’ 1 i j(whigh_w)
We

We

H(w)

Where:
« H(w) is the frequency response of the bandpass filter,
+ w is the angular frequency,
* Wiow is the low cut-off frequency,
* Whigh is the high cut-off frequency,
* w, is the critical frequency.

The bandpass filter selectively passes frequencies between the low cut-off frequency (wiow)
and the high cut-off frequency (whign), While attenuating frequencies outside this range. This
formula provides a mathematical representation of how the bandpass filter operates to isolate
specific frequency components within the defined range.

10

2.5. Periodicity in Network Communication

2.5. Periodicity in Network Communication

Periodicity in network communication refers to the recurring patterns observed in network
traffic over time. Detecting and analyzing these patterns can provide valuable insights into
normal and anomalous behavior within the network. In cybersecurity, periodicity analysis is
particularly useful for identifying stealthy activities, such as those conducted by APTs, which
may generate periodic communication to maintain control over compromised systems.

2.5.1. Importance in Cybersecurity

Understanding periodicity is crucial for the following reasons:

+ Anomaly Detection: Deviations from established periodic patterns can indicate the
presence of malware or other malicious activities.

» Traffic Analysis: Analyzing periodic traffic can help in identifying command and con-
trol (C2) communications used by attackers.

Resource Optimization: Periodicity analysis can be used to optimize network resources
by predicting traffic loads and adjusting resources accordingly.

2.6. Time Series Databases

Time series databases are specialized databases designed to handle time-stamped or time-series
data efficiently. This type of data is common in network activity logs, sensor readings, finan-
cial transactions, and many other applications where the sequence and timing of data points
are critical. Time series databases are optimized for high-frequency data writes and efficient
queries over time intervals, making them ideal for use in monitoring, alerting, and anomaly
detection in cybersecurity contexts.

2.6.1. Characteristics of Time Series Databases

Time series databases differ from traditional relational databases in several key ways:

« Time-Optimized Storage: Data is stored in a way that optimizes retrieval by time,
enabling fast queries across large datasets.

« Efficient Data Compression: Given the often high volume of data, time series databases
employ advanced compression techniques to reduce storage requirements.

+ High Throughput: They are optimized to handle high-frequency data writes and queries,
ensuring efficient data handling even under heavy load.

» Querying Capabilities: Time series databases support complex querying over time
intervals, which is for trend analysis and anomaly detection.

11

2. Background

2.6.2. InfluxDB

InfluxDB is a popular time series database known for its high performance and ease of use. It is
optimized for handling large-scale time-series data, providing powerful querying capabilities
and efficient storage.

Key Features of InfluxDB

« Time-Optimized Storage: InfluxDB uses a custom storage engine that efficiently writes
and reads time-series data.

« High Throughput: It can handle high write and query loads, making it suitable for
large-scale monitoring applications.

+ SQL-like Query Language (Flux): InfluxDB offers a powerful query language that is
both easy to learn and capable of complex data manipulations.

+ Retention Policies: Users can define retention policies to manage data lifecycle, auto-
matically deleting old data to save storage.

+ Integrations: InfluxDB integrates well with other tools and platforms, supporting var-
ious data inputs and outputs.
Applications in Cybersecurity

InfluxDB can be employed in cybersecurity for:

+ Real-Time Monitoring: Capturing and analyzing live data to detect anomalies and
potential threats.

« Historical Analysis: Storing historical data for trend analysis and forensic investiga-
tions.

« Alerting: Setting up alerts based on specific criteria to notify administrators of suspi-
cious activities.

» Visualization: Integrating with visualization tools like Grafana to create dashboards
that display network metrics and security insights.

Figure 2.4 illustrates the architecture of InfluxDB and how data flows through the system,
from ingestion to querying and visualization.
2.7. Summary

This chapter has provided a comprehensive overview of the cybersecurity landscape, APTs
and their covert tactics, enterprise networks, periodicity in network communication, and time
series databases, with a detailed focus on InfluxDB. These foundational topics are for under-
standing the subsequent chapters, which will delve deeper into related work, methodology,

12

2.7. Summary

Users Users
Ingest Query
Router Router
sand data t send quuwlto get result back
an Ingester a Querier
pde - .
pLommmmmee
get |
nm-yetvperalsled data !
xg?a 'l: CataloQ mer;a:ati :
Ingester1 Querier1 |||

i
i
'
|
:
i
|
'
|
i
i
i
i
i
|
!
i
|
' save
:
i
'
i
]
-

Object Storage
data files (Data) '
read/save read/save leav
meta data data files ::&s;atz d::;h?::lis
Compactor1 Garbage Collector

Figure 2.4.: InfluxDB Architecture [2]

13

2. Background

implementation, experiments, and results. The knowledge gained from this background will
inform the development and evaluation of advanced techniques for detecting and mitigating
cyber threats in enterprise networks.

14

3. Related Work

Hu et al. (2016) proposed BAYWATCH, a robust beaconing detection method designed to iden-
tify infected hosts in large-scale enterprise networks [3]. The method focuses on detecting
beaconing behavior, which is commonly exhibited by compromised hosts communicating with
external command and control servers. By analyzing network traffic patterns, BAYWATCH
can efficiently detect infected devices while minimizing false positives. The system is specif-
ically designed to scale in large enterprise environments, making it suitable for real-world
deployment. The authors validate BAYWATCH through extensive evaluation using real-world
network traffic, demonstrating its effectiveness in identifying infected hosts and improving
network security.

Zhang et al. (2023) introduced a global analysis approach for aggregation-based beaconing
detection across large campus networks [4]. Their method focuses on detecting beaconing be-
havior in network traffic by aggregating data from multiple sources within a campus network,
which enhances detection accuracy. The approach is designed to scale across large networks
and aims to minimize false positives by leveraging aggregation techniques. The authors val-
idate their method through extensive experiments on real-world campus networks, demon-
strating its effectiveness in identifying compromised hosts and improving network security in
large-scale environments.

Apruzzese et al. (2017) proposed a method for identifying malicious hosts involved in peri-
odic communications [5]. Their approach focuses on detecting abnormal periodic communica-
tion patterns in network traffic, which are often indicative of compromised hosts communicat-
ing with external servers. The authors introduce a novel technique for identifying such hosts
by analyzing the timing and frequency of communication sessions. The proposed method is
evaluated through experiments, demonstrating its effectiveness in identifying malicious hosts
and enhancing network security by targeting irregular communication patterns.

Seo and Lee (2018) proposed an abnormal behavior detection method to identify infected
systems using the APChain algorithm and behavioral profiling [6]. Their approach focuses on
analyzing system behavior to detect deviations from normal activity, which may indicate the
presence of malware or compromised systems. The APChain algorithm is used to model and
track the behavior of systems, allowing for the identification of anomalous patterns associated
with infected hosts. The authors validate their method through experiments, demonstrating
its effectiveness in detecting abnormal behaviors and enhancing system security in real-world
environments.

Huynh et al. (2016) focused on uncovering periodic network signals of cyber attacks [7].
The paper explores how periodic network traffic patterns can indicate cyber attacks, particu-
larly in the context of detecting covert channels used by attackers for command and control.
The authors propose a method to identify such periodic signals by analyzing network traffic
over time. Their approach highlights the importance of periodicity in revealing malicious ac-

15

3. Related Work

tivity and introduces a visualization technique to facilitate the detection of these patterns. The
study contributes to improving network security by enabling better detection of stealthy attack
signals.

Jang et al. (2021) proposed a method for detecting malicious beaconing communities us-
ing lockstep detection and co-occurrence graphs [8]. The paper introduces an innovative ap-
proach to identifying groups of compromised hosts involved in coordinated beaconing behav-
ior, a common indicator of malicious activity. By using lockstep detection and analyzing the
co-occurrence of network events, the method can effectively pinpoint these malicious commu-
nities. The authors present this approach as part of a patent (US Patent 10,887,323), contribut-
ing to the detection of advanced persistent threats (APTs) and enhancing network security by
identifying coordinated attacks.

Talib et al. (2022) conducted a systematic review on APT beaconing detection techniques [9].
The paper provides an extensive analysis of various methods used to detect Advanced Persis-
tent Threats (APT) based on beaconing behavior, which is a common communication pattern
in APT attacks. The authors review different detection techniques, including signature-based,
anomaly-based, and machine learning methods, highlighting their strengths and limitations in
identifying beaconing activities in network traffic. This review serves as a valuable resource for
researchers and practitioners aiming to enhance APT detection and improve network security
against sophisticated cyber threats.

Charan et al. (2021) explored the use of data mining and machine learning techniques for
Advanced Persistent Threat (APT) attribution and detection in their study on DMAPT [10].
The paper focuses on the application of various data mining and machine learning methods to
improve the identification and attribution of APTs, which are often difficult to detect due to
their stealthy nature. The authors discuss the effectiveness of different approaches in detecting
APTs and their potential for enhancing threat detection capabilities in network security. The
study provides valuable insights into the role of advanced analytics in tackling sophisticated
cyber threats.

Hagan et al. (2018) proposed a peer-based tracking method using multi-tuple indexing for
network traffic analysis and malware detection [11]. The approach aims to improve malware
detection by analyzing network traffic patterns using multi-tuple indexing, which allows for
more efficient tracking of peer interactions in the network. By examining the flow of traffic
between different peers, the method identifies suspicious activities that may indicate the pres-
ence of malware. The authors validate their technique through experiments, demonstrating
its effectiveness in detecting malicious traffic and enhancing network security by providing a
more granular analysis of peer behavior.

Shalaginov et al. (2016) focused on malware beaconing detection by mining large-scale DNS
logs for targeted attack identification [12]. The paper explores the use of DNS logs to detect bea-
coning behavior, which is commonly associated with malware communicating with external
command and control servers. By analyzing large-scale DNS traffic data, the authors propose
a method to identify targeted attacks based on the periodic patterns of beaconing. Their ap-
proach highlights the importance of leveraging DNS traffic for identifying malware infections,
contributing to enhanced detection capabilities in large-scale network environments.

Yeh et al. (2018) investigated a malware beacon of botnet by analyzing local periodic com-
munication behavior [13]. The paper focuses on identifying malware beaconing behavior in

16

botnets by studying the periodic communication patterns between infected hosts and their
command and control servers. The authors propose a method to detect these periodic behav-
iors, which are typically used by botnets to maintain control over compromised systems. Their
approach highlights the importance of analyzing local traffic patterns for detecting botnet in-
fections and contributes to improving malware detection techniques through the identification
of communication anomalies.

Borchani (2020) proposed an advanced approach to malicious beaconing detection using Ar-
tificial Intelligence (AI) [14]. The paper explores the application of Al techniques, particularly
machine learning algorithms, to enhance the detection of beaconing behavior associated with
malicious activity. By leveraging Al, the author aims to improve the accuracy and efficiency
of detecting beaconing patterns that indicate compromised hosts within a network. The study
demonstrates the potential of Al to significantly improve the detection and mitigation of threats
posed by beaconing malware, contributing to more effective network security solutions.

Enright et al. (2022) introduced a learning-based zero-trust architecture for 6G and future
networks [15]. The paper explores the integration of machine learning with zero-trust security
models to address the evolving security challenges in next-generation networks, particularly
6G. The authors propose a framework that combines learning-based techniques with zero-trust
principles to enhance the detection of malicious activity and improve overall network security.
The study contributes to the development of more adaptive and robust security architectures
for future networks, offering a promising solution to the emerging threats in 6G environments.

Van Ede et al. (2022) introduced Deepcase, a semi-supervised contextual analysis method
for security events [16]. The paper presents a novel approach that combines semi-supervised
learning techniques with contextual analysis to enhance the detection of security events. By
leveraging contextual information, Deepcase can identify complex patterns and relationships
in security data, improving the accuracy of event classification and anomaly detection. The
authors demonstrate the effectiveness of their approach in real-world security environments,
showing its potential to enhance the detection and response capabilities of security systems in
large-scale networks.

Ongun et al. (2021) introduced PORTFILER, a port-level network profiling approach for
detecting self-propagating malware [17]. The paper presents a novel method that profiles
network traffic at the port level to identify self-propagating malware, which often uses spe-
cific ports for communication and propagation. PORTFILER analyzes network behavior to
detect irregularities and patterns associated with malware activity. By focusing on port-level
communication, the approach improves malware detection, providing more accurate identifi-
cation of self-propagating threats in real-time. The authors demonstrate the effectiveness of
their method through experiments, showing its potential to enhance network security against
rapidly spreading malware.

Niu et al. (2020) proposed a method for detecting malware on the Internet of Unmanned
Aerial Vehicles (IoUAVs) by combining string matching and Fourier transformation techniques
[18]. The paper addresses the growing concern of malware targeting UAV networks and in-
troduces a hybrid approach that leverages string matching for identifying suspicious patterns
in network traffic and Fourier transformation for analyzing periodic behaviors associated with
malware. By combining these techniques, the authors enhance the detection accuracy of ma-
licious activities, offering a more robust solution to securing UAV-based networks. The study

17

3. Related Work

contributes to the advancement of IoT security, particularly in the context of UAV systems,
which are increasingly vulnerable to cyberattacks.

Duan et al. (2018) presented an approach for the automated generation and selection of in-
terpretable features for enterprise security [19]. The paper focuses on improving enterprise
security by developing methods for automatically generating and selecting meaningful, inter-
pretable features from large datasets. These features can be used in security models to detect
anomalies and potential threats more efficiently. The authors propose a framework that inte-
grates automated feature engineering with machine learning techniques to enhance security
monitoring systems. Their work contributes to the field by improving the interpretability and
performance of security analytics, making it easier for security teams to understand and re-
spond to potential threats.

Haffey et al. (2018) focused on modeling, analyzing, and characterizing periodic traffic on
a campus edge network [20]. The paper explores the behavior of periodic traffic patterns in
campus networks, which are often indicative of scheduled communications, including those
used by malware. The authors propose models to better understand and quantify these traffic
patterns, helping to distinguish between legitimate and potentially malicious activities. Their
work provides insights into how periodic traffic can be leveraged to enhance network security,
particularly in the detection of botnets and other forms of malware that use regular communi-
cation intervals.

Recent research has focused on various aspects of enterprise security and malicious activity
detection. Oprea et al. (2018) introduced MADE, a security analytics framework designed to
enhance threat detection in enterprise environments [21] . The framework leverages advanced
analytics to detect potential threats by analyzing large volumes of security data, enabling or-
ganizations to respond more effectively to cyber incidents. Ukrop et al. (2019) investigated the
perception of IT professionals regarding the trustworthiness of TLS certificates, highlighting
challenges in assessing certificate legitimacy and its implications for secure communications
[22] . In a related study, Vissers et al. (2017) explored the ecosystem of malicious domain reg-
istrations within the .eu top-level domain (TLD), providing insights into the strategies used by
attackers to exploit domain registration systems for malicious purposes [23] . Together, these
works contribute to the broader understanding of security challenges in modern networks and
propose solutions to improve detection and mitigation strategies.

18

4. Methodology

The BAYWATCH framework is a comprehensive methodology designed to identify stealthy
beaconing behavior in large-scale enterprise networks. Beaconing, a common behavior in
malware-infected hosts, involves periodic communication with a command and control (C&C)
infrastructure. Detecting such behavior is challenging due to the presence of legitimate pe-
riodic traffic (e.g., software updates, email polling) and the various strategies employed by
malware authors to evade detection. The BAYWATCH framework addresses these challenges
through an 8-step filtering approach, which iteratively refines and eliminates legitimate traffic
to pinpoint malicious beaconing cases. This chapter provides a detailed explanation of each
step in the BAYWATCH methodology.

4.1. Overview of the BAYWATCH Framework

The BAYWATCH framework consists of four main phases, each involving one or more filtering
steps. These phases are:

1. Whitelist Analysis: This phase eliminates known legitimate beaconing traffic using
universal and local whitelists.

2. Time Series Analysis: This phase identifies periodic communication patterns in the
remaining traffic using a robust periodicity detection algorithm.

3. Suspicious Indicator Analysis: This phase further filters out legitimate beaconing be-
havior by analyzing domain-specific indicators of malicious activity.

4. Investigation and Verification: The final phase involves manual investigation and ver-
ification of the remaining suspicious cases.

Figure 4.1 provides a detailed overview of the algorithm’s processing steps, which occur
in four distinct phases. In Phase 1, the input data undergoes whitelist analysis, where it is
categorized into two separate whitelists. The Universal Whitelist contains common, globally
trusted URLs such as major search engines (e.g., Google, Yahoo) and other widely recognized
platforms. The Local Whitelist, on the other hand, includes URLs that are specifically trusted
within the organization, such as internal Allianz resolution URLs. This step helps to filter out
trusted sources, ensuring that only potentially suspicious or unknown URLs are subjected to
further analysis in subsequent phases.

Phase 2 focuses on time series analysis, where the algorithm processes the data to detect
beaconing activity. Beaconing refers to the repeated communication of data to external servers,
which can indicate malicious activity or unauthorized data exfiltration.

19

4. Methodology

BAYWATCH Algorithm Steps

Whitelist Analysis Time Series Analysis Suspicious Indication Analysis Verification and Investigation
2 o > =
3 2|l 5 2
E - -
8 e[| E2(| 3
a.
Filter: Universal Local Beaconing Detection * Novelty Detection Investigation Workflow
Whitelist Whitelist * URL Token
* Result Ranking

Figure 4.1.: Algorithm steps

In Phase 3, the Suspicious Indication Analysis takes place. This phase is composed of several
sub-processes aimed at identifying and ranking suspicious URLs. It includes Novelty Detection,
which focuses on recognizing previously unseen or unusual patterns in the data; URL Token
analysis, which breaks down and examines specific elements of URLs for signs of malicious
intent; and Result Ranking, where URLs are ranked based on their likelihood of being malicious,
helping to prioritize further investigation. This step refines the list of suspicious indicators to
ensure that only the most relevant ones are brought forward for verification.

Finally, in Phase 4, the algorithm enters the Verification and Investigation phase. This is the
concluding step where the flagged URLs and potential threats are thoroughly investigated and
verified. This phase ensures that any suspicious activities are properly validated, confirming
whether they are legitimate threats or false alarms. The outcome of this phase directly informs
decision-making processes regarding the necessary actions to mitigate or resolve any identified
risks.

The following sections provide a detailed explanation of each phase and its corresponding
steps.

4.2. Whitelist Analysis

The first phase of the BAYWATCH framework focuses on reducing the workload of subse-
quent phases by eliminating known legitimate beaconing traffic. This is achieved through two
whitelisting mechanisms: universal whitelisting and local whitelisting.

4.2.1. Universal Whitelisting

The universal whitelist contains globally trusted destinations, such as popular search engines,
software update servers, and news feeds. These destinations are unlikely to be involved in
malicious beaconing unless they are compromised. The whitelist is dynamic and can be up-
dated with new trusted destinations. In the BAYWATCH framework, the universal whitelist

20

4.3. Time Series Analysis

is constructed using publicly available lists of popular domain names. These lists are curated
based on the popularity and trustworthiness of the domains, ensuring that only well-known
and widely used destinations are whitelisted.

4.2.2. Local Whitelisting

In addition to the universal whitelist, the BAYWATCH framework employs a local whitelist
that is specific to the environment being monitored. This whitelist is constructed by measuring
the popularity of destinations within the network. A destination is considered locally popular
if it is accessed by a significant portion of the hosts in the network. These locally popular
destinations are unlikely to be involved in malicious beaconing and are therefore whitelisted.

4.3. Time Series Analysis

The second phase of the BAYWATCH framework focuses on identifying periodic communi-
cation patterns in the network traffic. This phase is for detecting beaconing behavior, as it
analyzes the temporal regularity of communication between hosts and external destinations.
The time series analysis is performed using a combination of Fast Fourier Transform (FFT),
autocorrelation, and bandpass filtering to robustly detect periodic signals even in the presence
of noise and interruptions.

4.3.1. Algorithm Overview

The time series analysis algorithm is designed to detect periodic patterns in the communication
data. It operates on a sequence of timestamps representing the connections between a source
and destination pair. The algorithm consists of three main steps:

1. Candidate Discovery: This step identifies potential periodic components in the time
series using the Fast Fourier Transform (FFT). The FFT converts the time series from
the time domain to the frequency domain, allowing the algorithm to identify dominant
frequencies that may correspond to periodic behavior.

2. Pruning: This step filters out high-frequency noise and less feasible candidates using
statistical methods and bandpass filtering. The algorithm applies hypothesis testing to
determine the statistical significance of the candidate periods and removes those that do
not meet the significance threshold.

3. Verification: The final step verifies the validity of the remaining candidate periods using
the circular autocorrelation function (ACF). The ACF measures the similarity between
the time series and a shifted version of itself, providing a more fine-grained detection of
periodic behavior.

4.3.2. Candidate Discovery Using FFT

The candidate discovery step begins by transforming the sequence of connection timestamps
into a discrete time series. Let ' = {¢,%2,...} be the timestamps of connections between

21

4. Methodology

a communication pair. These timestamps are converted into an integer sequence x(n) =
{zo,z1,...,2N_1}, where z; > 0 indicates that a connection occurred at time interval ¢;,
and x; = 0 indicates no connection.

The Fast Fourier Transform (FFT) is then applied to the time series to identify dominant
frequencies. The FFT decomposes the time series into its frequency components, producing a
periodogram that shows the power of each frequency component. The periodogram is com-
puted as:

P(k) = [|X (k)I[?,

where X (k) is the FFT of the time series z(n), and k represents the frequency index. The
dominant frequencies in the periodogram correspond to potential periodic behaviors in the
time series.

However, the FFT alone is not sufficient for accurate periodicity detection due to several
limitations:

« The FFT can produce false positives for non-periodic signals, as it decomposes any signal
into sinusoidal components.

+ The FFT has limited resolution for low-frequency components, making it difficult to de-
tect long-period beaconing.

« The FFT is sensitive to noise and interruptions in the time series, which can distort the
periodogram.

To address these limitations, the BAYWATCH framework uses a permutation-based filtering
approach to determine a power threshold for identifying significant frequencies. This threshold
is calculated by shuffling the time series and computing the maximum power in the permuted
signal. Only frequencies with power above this threshold are considered as potential candidates
for periodic behavior.

4.3.3. Pruning Using Bandpass Filtering

After identifying candidate frequencies, the algorithm prunes the set of candidates to remove
high-frequency noise and less feasible periods. This is achieved using a combination of band-
pass filtering and hypothesis testing.

The bandpass filtering step removes high-frequency noise by focusing on the frequency
range of interest. In the context of beaconing detection, the frequency range is determined by
the expected beaconing intervals (e.g., from seconds to hours). The algorithm applies a band-
pass filter to the time series to isolate the frequency components within this range, effectively
removing noise outside the range of interest.

4.3.4. Verification Using Autocorrelation

The final step in the time series analysis is the verification of the remaining candidate periods
using the circular autocorrelation function (ACF). The ACF measures the similarity between

22

4.4. Suspicious Indicator Analysis

the time series and a shifted version of itself, providing a more accurate detection of periodic
behavior.

The ACF is calculated as:

=

ACE(7) :% 2(n) - 2(n +7),
n=0

where 7 is the time shift. If 7 corresponds to the true period, the shifted time series will
overlap with the original time series, resulting in a high correlation value. The algorithm veri-
fies each candidate period by calculating the ACF and retaining only those periods that exhibit
strong autocorrelation.

4.3.5. Handling Multiple Periodicities

In some cases, the time series may exhibit multiple periodic behaviors at different time scales
(e.g., a botnet that beacons every 5 seconds and every 2 hours). To handle such cases, the
BAYWATCH framework uses a Gaussian Mixture Model (GMM) to identify multiple underly-
ing periodic components. The GMM clusters the observed intervals into distinct groups, each
corresponding to a different periodicity. The algorithm then applies hypothesis testing to each
group separately to verify the validity of the candidate periods.

4.4. Suspicious Indicator Analysis

The third phase of the BAYWATCH framework focuses on distinguishing legitimate beaconing
behavior from suspicious behavior by analyzing domain-specific indicators of malicious activ-
ity. This phase involves several sub-steps, including novelty detection, URL token analysis, and
result ranking,.

4.5. Investigation and Verification

The final phase of the BAYWATCH framework involves the manual investigation and verifica-
tion of the remaining suspicious cases. This phase is for reducing false positives and ensuring
that only truly malicious beaconing cases are reported.

4.5.1. Feature Set

Each candidate case is represented by a set of features, including the source, destination, and a
series of time intervals. The BAYWATCH framework generates additional features, such as the
entropy of the time intervals, the n-gram histogram, and the compressibility of the symbolized
series. These features are used to train a classifier for automated classification of the candidate
cases.

23

4. Methodology

4.5.2. Classifier

The BAYWATCH framework employs a random forest classifier to classify the candidate cases
as either benign or malicious. The random forest classifier is trained using a small set of man-
ually investigated cases and their corresponding labels. The trained classifier is then applied to
the remaining cases to automate the classification process.

4.5.3. Bootstrapping Process

To minimize the manual investigation workload, the BAYWATCH framework employs a boot-
strapping process. A small set of candidate cases is manually investigated and used as a training
set for the classifier. The trained classifier is then applied to the remaining cases, significantly
reducing the number of cases that require manual investigation.

4.6. Real Data Source

The real-world data used in this study was collected from a large-scale enterprise network,
capturing user activities as they navigate various URLs throughout the workday. This dataset
provides a detailed perspective on user interactions, enabling an in-depth analysis of browsing
patterns and behaviors. The data is stored in JSON format, which offers flexibility and readabil-
ity, making it easier to manage and manipulate large volumes of information. Each entry in the
dataset records a specific user interaction, including precise timestamps and the URLs visited,
allowing for a chronological reconstruction of user activities. This level of detail is crucial for
identifying patterns and trends over time, such as peak usage periods or frequent transitions
between specific URLs.

4.6.1. Data Structure and Schema

The dataset is structured as a collection of JSON files, with each file containing detailed logs of
user interactions. Each entry in the JSON files includes the following fields:

« IP_Address: The IP_Address of the user’s device, providing a unique identifier for
each host

« logdate: The date and time of the user interaction, recorded in a standardized date-
time format.

« url_hostname: The hostname of the URL visited by the user.

« user: An optional field denoting the user identifier. For security reasons, usernames
are deliberately omitted during the import process.

The structure of the JSON files is defined by a Document Type Definition (DTD), which

ensures consistency and reliability across all entries. Below is an example of the JSON schema
used for the dataset:

24

10

11

12

13

14

15

16

17

4.6. Real Data Source

The structured format of the JSON files ensures that each entry is consistent and compre-
hensive, providing a reliable record of user activities for analysis.

4.6.2. Data Collection and Scale

The dataset was collected over the course of a single day, specifically a typical Tuesday workday,
generating nearly 73 gigabytes of information. This large-scale data collection captures the
following details:

Host Information: The IP addresses of the user devices, enabling the tracking of indi-
vidual hosts and their activities.

» Timestamps: Precise date and time of each user interaction, enabling temporal analysis
of browsing patterns.

+ URL Hostnames: The hostnames of the URLSs visited, providing insights into the desti-
nations of user traffic.

+ User Interactions: A chronological record of user activities, facilitating the identifica-
tion of trends and anomalies.

The dataset’s scale and granularity make it an ideal resource for analyzing user behavior,
identifying significant patterns, and supporting the development of effective beaconing detec-
tion strategies.

25

4. Methodology

4.6.3. Data Management and Preprocessing

To manage and analyze the dataset effectively, a sophisticated data management system was
implemented. The system leverages InfluxDB, a time-series database optimized for handling
high volumes of temporal data. The data management process involves the following steps:

1. Data Import: The dataset is imported into InfluxDB using custom Python scripts. These
scripts automate the creation of a dedicated "bucket” within InfluxDB, ensuring that the
data is organized and stored efficiently.

2. Schema Implementation: A predefined schema is applied to enforce data integrity
and consistency. This schema ensures that all entries adhere to the same format and
standards, facilitating smoother data processing and analysis.

3. Initial Data Analysis: The dataset is analyzed to understand its behavior, including:
« Observing overall data trends throughout the day.
+ Identifying the most frequently accessed URLs and calculating their averages.
» Analyzing the time intervals between requests.

« Examining the distribution of hosts and their activity patterns.

4.6.4. Challenges with Real-World Data

The real-world dataset presents several challenges that must be addressed to ensure accurate
and reliable analysis:

« Noise and Variability: Real-world network traffic is inherently noisy, with random
variations in connection timing due to network delays, retransmissions, and other fac-
tors. This noise can obscure periodic patterns and complicate the detection of beaconing
behavior.

« Missing Data: Devices may go offline or move out of the observation range, resulting in
gaps in the data. These gaps can disrupt the detection of periodic behavior and require
careful handling during analysis.

+ Legitimate Periodic Traffic: Many legitimate applications (e.g., software updates, email
polling) exhibit periodic behavior that resembles beaconing. Distinguishing between le-
gitimate and malicious periodic traffic is a key challenge in real-world data analysis.

4.7. Artificial Data Source

In addition to analyzing real-world network traffic, the BAYWATCH framework was evaluated
using artificial data to test its robustness and accuracy under controlled conditions. The arti-
ficial data was designed to simulate various types of beaconing behavior, including different
periodicities, noise levels, and evasion techniques commonly employed by malware authors. A
key feature of the artificial data is the introduction of jitter, which simulates random variations

26

4.7. Artificial Data Source

in the timing of beaconing events. This section describes the process of generating the artificial
data, the specific jitter ranges used, and the structure of the data.
4.7.1. Design of Artificial Data

The artificial data was generated to mimic the structure of real-world network traffic, while
allowing for precise control over the parameters of the beaconing behavior. Each artificial data
set consists of the following fields:

+ Host Information: The IP addresses of the user devices, enabling the tracking of indi-
vidual hosts and their activities.

« Timestamps: Precise date and time of each user interaction, enabling temporal analysis
of browsing patterns.

« URL Hostnames: The hostnames of the URLs visited, providing insights into the desti-
nations of user traffic.

» User Interactions: A chronological record of user activities, facilitating the identifica-
tion of trends and anomalies.

« Is Artificial: A tag (labeled as “yes”) was added to distinguish the artificial data from
real-world data. This tag ensures that the artificial data can be easily identified and sep-
arated during analysis.

4.7.2. Jitter Ranges

Jitter is a critical parameter in simulating real-world beaconing behavior, as it introduces ran-
domness into the timing of beaconing events. To evaluate the robustness of the BAYWATCH
framework, the following jitter ranges were used:

Jitter ranges: [2, 5, 10, 30, 60] seconds
Each jitter range represents a different level of perturbation in the beaconing behavior:

+ 2 seconds: Minimal jitter, simulating near-ideal conditions with very little variation in
beacon timing.

« 5 seconds: Low jitter, simulating slight variations in beacon timing due to minor net-
work delays.

+ 10 seconds: Moderate jitter, simulating more noticeable variations in beacon timing.

+ 30 seconds: High jitter, simulating significant variations in beacon timing, potentially
due to network congestion or intentional evasion techniques.

+ 60 seconds: Very high jitter, simulating extreme variations in beacon timing, which may
occur in highly unstable network conditions.

27

4. Methodology

4.7.3. Scenarios Tested

The artificial data was used to test the BAYWATCH framework under the following scenarios:

« Low Jitter: Beaconing behavior with minimal jitter (e.g., 2 seconds). This scenario tests
the framework’s ability to detect periodic behavior in near-ideal conditions.

« Moderate Jitter: Beaconing behavior with moderate jitter (e.g., 10 seconds). This sce-
nario tests the framework’s robustness to typical real-world perturbations.

« High Jitter: Beaconing behavior with significant jitter (e.g., 30 seconds). This scenario
tests the framework’s ability to handle more extreme variations in beacon timing.

« Very High Jitter: Beaconing behavior with very high jitter (e.g., 60 seconds). This sce-
nario tests the framework’s performance under highly unstable network conditions.

4.7.4. Integration with Real-World Data

The artificial data was used in conjunction with real-world network traffic to provide a compre-
hensive evaluation of the BAYWATCH framework. While the real-world data provides insights
into the framework’s performance in a production environment, the artificial data allows for
controlled testing of specific scenarios and edge cases. The is_Artificial tag ensures that the
artificial data can be easily distinguished from real-world data during analysis. This combi-
nation ensures that the framework is both robust to real-world perturbations and accurate in
detecting malicious beaconing behavior.

4.8. Summary

The BAYWATCH framework is a robust and scalable methodology designed to detect stealthy
beaconing behavior in large-scale enterprise networks. It operates in four main phases: Whitelist
Analysis, which eliminates known legitimate traffic using universal and local whitelists; Time
Series Analysis, which identifies periodic communication patterns using advanced signal pro-
cessing techniques such as Fast Fourier Transform (FFT), autocorrelation, and bandpass filter-
ing; Suspicious Indicator Analysis, which further filters out legitimate behavior by analyz-
ing domain-specific indicators like URL tokens and novelty; and Investigation and Verifica-
tion, where remaining suspicious cases are manually reviewed using a bootstrapping process
to minimize workload. The framework was evaluated using both real-world data, collected
from a large-scale enterprise network, and artificial data, which simulated various beacon-
ing scenarios with controlled jitter ranges (2, 5, 10, 30, and 60 seconds) and noise levels. The
integration of real-world and artificial data ensures a comprehensive evaluation, demonstrat-
ing the framework’s ability to reliably detect malicious beaconing behavior while remaining
robust to real-world perturbations and noise. This makes BAYWATCH a valuable tool for se-
curing enterprise networks against advanced cyber threats.

28

5. Data Analysis

This chapter delves into the heart of the research methodology, exploring the data analysis
process in detail. By examining the various analytical techniques and algorithms employed,
the chapter aims to provide a comprehensive understanding of how the dataset is processed
and interpreted to extract meaningful insights. The analysis encompasses a range of advanced
methods, including anomaly detection, pattern recognition, and machine learning algorithms,
all of which contribute to a robust framework for identifying and mitigating malicious beacon-
ing activities.

5.1. Visualization of URL Request Counts

To better understand the distribution and frequency of URL requests within the dataset, visual
representations are utilized. These visualizations help in identifying patterns and anomalies in
user behavior and resource utilization. The following figures provide insights into the request
counts for different URLs, using both logarithmic and linear scales for comparison.

Figure 5.1 provides a visual representation of the request counts for different URLs within
the dataset. The logarithmic scale on the Y-axis allows for a clearer comparison of the visit
frequencies across URLs with varying levels of activity. This visualization highlights the distri-
bution of request counts, showcasing the range of visit frequencies observed within the dataset.
By examining this distribution, it is possible to identify URLs with high visit counts, which may
indicate critical resources or frequently accessed services. Conversely, URLs with lower visit
counts may represent less frequently accessed or less critical components of the network. This
analysis provides valuable insights into user behavior and resource utilization, enabling orga-
nizations to optimize their network infrastructure and prioritize security measures effectively.

Figure 5.2 provides a linear scale representation of the request counts for different URLs
within the dataset. This visualization offers a more detailed view of the visit frequencies across
URLSs, highlighting the distribution of request counts with greater granularity. By examin-
ing this distribution, it is possible to identify URLs with varying levels of activity, ranging
from high-visit counts to low-visit counts. This analysis enables organizations to gain insights
into user behavior and resource utilization, facilitating informed decision-making and strategic
planning.

The logarithmic scale in Figure 5.1 allows for a clearer comparison of URLs with varying
request counts by compressing the scale for higher values and expanding it for lower values.
This makes it easier to identify both high and low-frequency URLs, providing a balanced view
of the data.

In contrast, the linear scale in Figure 5.2 presents the data with equal distances on the Y-axis
representing equal differences in request counts. This offers a more detailed view of URLs with
similar request counts but may obscure relative differences when the range of request counts

29

5. Data Analysis

10% 4

10° 4

Request Counts (Log Scale)

107 4

10!
URL Hostname Index
Figure 5.1.: Request counts of URLs (log scale)
80000
70000
60000
K] 50000
g 40000
H
30000
20000
10000

URL Hostname Index

Figure 5.2.: Request counts of URLs (linear scale)

30

5.2. 24-Hour URL Visit Analysis

60000 1

50000 4

40000 4

30000 1

Number of Visits

20000

10000

X K , K X K K o) £ < X X K K K g < . £ g
R A S A N R R - S A G
Hour of the Day

Figure 5.3.: Number of visit by hour (24 hours)

is large. The choice between logarithmic and linear scales depends on the specific aspects of
the data that need to be emphasized.

5.2. 24-Hour URL Visit Analysis

To gain insights into the temporal patterns of URL visits, a 24-hour analysis is conducted. This
analysis helps in understanding the distribution of user activity throughout the day, identify-
ing peak usage times, and detecting periods of lower activity. Such temporal analysis is for
recognizing trends and potential anomalies in user behavior.

Figure 5.3 illustrates the number of visits to different URLs over a 24-hour period. The x-axis
represents the hours of the day, while the y-axis indicates the number of visits to each URL.
This visualization provides a clear overview of the distribution of visits throughout the day,
highlighting peak usage times and periods of lower activity. By examining this data, it is pos-
sible to identify trends and patterns in user behavior, which can be instrumental in detecting
anomalies or suspicious activities. This analysis serves as a foundational step in understanding
the dataset’s behavior and establishing a baseline for further investigations. As shown, the dis-
tribution of visits predominantly falls within the range of 0-500, which is significantly higher
compared to the rest.

From the figure, it is evident that certain URLs exhibit high activity levels during the initial
hours but experience a sharp decline, with their visit counts approaching zero around 04:00.
This observation led to the categorization of URL activity into two distinct periods: day activity,
which begins at 00:00 and ends at 04:00, and night activity, which spans from 04:00 to 24:00. To
better understand these terms and analyze the patterns, the average number of visits during
each period was calculated. This analysis provides valuable insights into how URL activity

31

5. Data Analysis

2500 4

2000 +

=

¥,]

(=]

(=]
I

Average Number of Visits
g
(=]

500 ~

T T
00:00-04:00 (Day Average) 04:00-24:00 (Night Average)

Figure 5.4.: Average number of visits during day and night

fluctuates throughout the day and highlights significant differences in usage between the two
time frames, enabling more effective resource allocation and decision-making based on user
behavior.

Figure 5.4 compares the average number of visits during two distinct time ranges: from
00:00 to 04:00 ("Day Average”) and from 04:00 to 24:00 ("Night Average”). The "Day Average”
is represented by a light blue bar, which shows an average number of visits slightly exceeding
2,000. On the other hand, the "Night Average” is depicted with an orange bar, which is taller
and indicates a higher average of approximately 2,500 visits. The chart effectively highlights
that the visitation rate is higher during the later time period, with the bars labeled clearly and
a descriptive title ("Day vs. Night Average Visits”) at the top. Additionally, the y-axis repre-
sents the average number of visits, ranging from 0 to 2,500, with consistent scaling and proper
spacing for visual clarity. This analysis provides valuable insights into user behavior patterns
and resource utilization, enabling organizations to optimize their network infrastructure and
enhance security measures effectively.

32

5.3. Time Interval Analysis of URL Requests

time_interval

10°

Count of Intervals (Log Scale)

© o & o o
4 » o & &
Time Interval (Seconds)

Figure 5.5.: Time interval 0-65s (log scale)

5.3. Time Interval Analysis of URL Requests

To understand the temporal dynamics of user interactions, an analysis of the time intervals be-
tween requests for different URLs is conducted. This analysis helps in identifying patterns and
trends in the timing of user activities, which can be crucial for optimizing network resources
and enhancing security measures.

Figure 5.5 illustrates the distribution of time intervals between requests for different URLs
within the dataset. The logarithmic scale on the Y-axis allows for a clearer comparison of the
time intervals across URLs with varying patterns of activity. The X-axis demonstrates the bins,
which are divided into 90 bins. These bins are structured as follows: from 0 to 65 seconds, each
second has its own bin. This visualization highlights the variability in time intervals between
requests, showcasing the range of durations observed within the dataset. By examining this
distribution, it is possible to identify URLs with distinct time interval patterns, which may in-
dicate specific usage behaviors or interaction trends. This analysis provides valuable insights
into the frequency and timing of user interactions, enabling organizations to optimize their
network resources and enhance security measures effectively. As can be seen in the figure,
the requests are decreasing across the entire time range, but every 10 seconds, the value is
slightly higher than the previous second. This pattern is consistent across all URLs, indicating
a common behavior in the dataset. This observation suggests that the time intervals between
requests follow a specific pattern, which may be indicative of regular user activity or system
behavior. By analyzing these patterns, organizations can gain valuable insights into user be-
havior and resource utilization, enabling them to optimize their network infrastructure and
enhance security measures effectively.

Figure 5.6 illustrates the distribution of time intervals between requests for different URLs
within the dataset, with the Y-axis represented on a logarithmic scale. The X-axis demonstrates

33

5. Data Analysis

102

Count of Intervals (Logarithmic Scale)

10°

& N & & & & & & & & & s &
RS RO O .-,ﬁ“@é“ & Qe“\\

S & &S S S SES S S S S S
& & & 0§ S
[A G A A A A A

Time Interval (minutes)

Figure 5.6.: Time interval in minutes (log scale)

the bins, which are divided into 31 bins. These bins are structured as follows: Each bin shows
the requests in minutes. To ensure that beaconing behavior at the edge of each minute is
not missed, the number is shown with +30 seconds. This visualization provides a detailed
view of the time intervals between requests, highlighting the variability in durations observed
within the dataset. By examining this distribution, it is possible to identify URLs with distinct
time interval patterns, which may indicate specific usage behaviors or interaction trends. This
analysis offers valuable insights into the frequency and timing of user interactions, enabling
organizations to optimize their network resources and enhance security measures effectively.
As can be seen in the figure, the requests are decreasing across the entire time range, but every
minute, the value is slightly higher than the previous minute. This pattern is consistent across
all URLs, indicating a common behavior in the dataset. This observation suggests that the
time intervals between requests follow a specific pattern, which may be indicative of regular
user activity or system behavior. By analyzing these patterns, organizations can gain valuable
insights into user behavior and resource utilization, enabling them to optimize their network
infrastructure and enhance security measures effectively.

both figures 5.5 and 5.6 provide a detailed view of the time intervals between requests for
different URLs within the dataset. The logarithmic scale on the Y-axis allows for a clearer com-
parison of the time intervals across URLs with varying patterns of activity. The scale is in loga-
rithmic because, in the linear scale, the differences in time intervals were not shown as clearly.
The differences between the bins were too large. The X-axis demonstrates the bins, which are
divided into 90 bins for seconds and 31 bins for minutes. These bins are structured to capture
the variability in time intervals between requests, showcasing the range of durations observed
within the dataset. By examining this distribution, it is possible to identify URLs with distinct
time interval patterns, which may indicate specific usage behaviors or interaction trends. This
analysis provides valuable insights into the frequency and timing of user interactions, enabling

34

5.4. Distribution of Hosts Based on Unique URLs Contacted

17500 1

15000 1

12500 4

10000 1

Number of Hosts

7500

5000

2500

1 2 3 4 5 6 7 8 9 10
Number of Unique URLs Contacted

Figure 5.7.: Distribution of hosts

organizations to optimize their network resources and enhance security measures effectively.
The consistent patterns observed in the time intervals between requests suggest a regularity
in user behavior or system interactions, which may be indicative of normal network activ-
ity. By analyzing these patterns, organizations can gain valuable insights into user behavior
and resource utilization, enabling them to optimize their network infrastructure and enhance
security measures effectively.

5.4. Distribution of Hosts Based on Unique URLs Contacted

To analyze the interaction patterns of hosts within the network, a bar chart is used to illustrate
the distribution of hosts (IP addresses) based on the number of unique URLs they contacted.
This analysis helps in understanding the concentration of network activity and identifying key
services or domains being accessed.

Figure 5.7 The bar chart provides an analysis of the distribution of hosts (IP addresses) based
on the number of unique URLs they contacted. The X-axis represents the number of unique
URLs contacted by each host, ranging from 1 to 10, while the Y-axis depicts the total count
of hosts for each corresponding category. Each bar in the chart indicates how many hosts
interacted with a specific number of unique URLs. The data reveals a clear trend: the majority
of hosts engaged with only a small number of unique URLs. Specifically, the highest number
of hosts, approximately 17,500, connected to exactly two unique URLs. This is followed closely
by the category of hosts that connected to only one unique URL, which includes around 15,000
hosts. As the number of unique URLs increases beyond two, there is a steady decline in the
number of hosts. For instance, significantly fewer hosts contacted 4 or more unique URLs,
and the numbers continue to diminish as the variety of URLs increases. This pattern suggests
that most network activity is concentrated on a limited set of destinations, with relatively few

35

5. Data Analysis

hosts interacting with a wide range of URLs. Such insights could be valuable for understanding
traffic patterns, identifying key services or domains being accessed, and optimizing network
performance or security measures. The visualization highlights the sparsity of hosts interacting
with a larger variety of destinations, emphasizing the importance of focusing on the most
commonly accessed URLs in any further analysis or intervention.

36

6. Implementation

This chapter introduces the implementation of the proposed methodology within Allianz Com-
pany’s network infrastructure, delving into the intricate process of adapting the system to in-
tegrate seamlessly with the company’s extensive log data. It begins by exploring the necessary
adjustments made to align the methodology with Allianz’s specific log data formats and struc-
tures, highlighting the critical decisions in parameter selection and the strategic use of various
analytical tools. The chapter aims to provide a comprehensive evaluation of the performance
metrics derived from this implementation, offering a detailed analysis of the methodology’s ef-
ficacy. Supported by visualizations such as graphs and charts, this analysis facilitates a clearer
understanding of complex data and key findings.

Furthermore, the chapter rigorously assesses the methodology’s effectiveness in detecting
malicious behavior, providing an in-depth examination of detected anomalies, their correlation
with potential security threats, and the system’s responsiveness. This assessment underscores
the practical value of the methodology, demonstrating its significant impact on enhancing net-
work security. By presenting concrete evidence of the methodology’s success in identifying
and mitigating threats, the chapter establishes a foundation for discussing advanced security
strategies.

The insights gained from this implementation are important for Allianz, as they pave the way
for continuous improvement initiatives and the development of more robust security measures.
This chapter sets the stage for broader discussions on enhancing network security, offering a
clear pathway for future chapters to explore advanced techniques and strategies aimed at for-
tifying Allianz’s network infrastructure against the ever-evolving landscape of cyber threats.
Through this comprehensive examination, the chapter not only highlights the immediate ben-
efits of the methodology but also its long-term potential to significantly bolster Allianz’s cy-
bersecurity framework.

6.1. Experimental Setup

This section details the adaptation process to integrate the methodology within Allianz Com-
pany’s network infrastructure. Initially, adjustments were made to ensure compatibility with
the company’s log data, involving comprehensive data mapping and transformation to align
with the methodology’s requirements. This step was key to guarantee that the raw data could
be accurately interpreted and utilized by the detection algorithms. Stringent measures were
taken to address any discrepancies or inconsistencies encountered during the integration pro-
cess. These measures included validating data integrity, standardizing log formats, and resolv-
ing any anomalies to ensure seamless integration.

For testing purposes, an experimental framework was established. This framework was de-
signed to cover a wide range of scenarios, from routine network operations to sophisticated

37

6. Implementation

simulated cyber-attacks. These scenarios were crafted to assess the methodology’s perfor-
mance under diverse conditions, providing a realistic and thorough evaluation. The scenarios
mimicked real-world network behaviors, encompassing various types of user activities, net-
work loads, and potential threat vectors. This comprehensive testing ensured that the method-
ology was robust and applicable in practical settings, capable of handling the dynamic nature
of real-world network environments.

Additionally, real data sourced from Allianz Company was utilized to validate the methodol-
ogy’s efficacy under authentic operational conditions. This real-world validation was a critical
component of the adaptation process, as it provided invaluable insights into the methodol-
ogy’s performance in a live environment. The use of genuine operational data bolstered the
credibility and relevance of the methodology, demonstrating its practical utility in addressing
real-world cybersecurity challenges. By evaluating the methodology against actual network
traffic and user behavior, the team could identify and address any limitations, fine-tuning the
system to enhance its effectiveness.

Throughout the testing phase, data collection was conducted rigorously, capturing a com-
prehensive array of network activities and events. This extensive data collection ensured a rich
dataset for analysis, encompassing a wide variety of normal and abnormal behaviors. The col-
lected data served as the foundation for subsequent analyses, enabling a thorough and detailed
evaluation of the methodology’s effectiveness in detecting and mitigating malicious behavior
within Allianz Company’s network infrastructure. The analysis focused on identifying pat-
terns and anomalies indicative of malicious activity and assessing the accuracy and reliability
of the detection algorithms.

The comprehensive approach to adaptation and testing detailed in this section underscores
the methodology’s readiness for real-world deployment. By ensuring data compatibility, rig-
orously testing under diverse scenarios, and validating with real-world data, the methodology
is demonstrated to be not only theoretically sound but also practically effective. This robust
process lays a solid foundation for enhancing Allianz’s network security, providing a reliable
tool to tackle the complex cybersecurity issues faced by the organization. The insights and
results garnered from this extensive testing phase set the stage for further refinement and op-
timization, ensuring that the methodology remains effective against evolving cyber threats.

6.2. Whitelisting Mechanism for URL Filtering

In the heart of Allianz Company’s expansive network infrastructure, a pivotal decision was
made to bolster its security framework: the establishment of a robust URL whitelist. This action
was driven by the need to strengthen monitoring and enhance the safety of the company’s
online activities. The idea was simple yet profound—by creating a safe space within the system
where only trusted URLs would be allowed to flourish, potential risks could be minimized, and
network security maximized.

The process of curating this whitelist involved a meticulous selection of URLs. These were
determined by several criteria, each designed to ensure that only the most legitimate and use-
ful links were included. URLs that employees visited regularly, those associated with company
resolutions, and other trusted websites made it onto the list. On the other hand, URLs that did

38

6.3. Average Power Calculation

not meet these predefined conditions were excluded from the whitelist. These exclusionary
decisions were not arbitrary; instead, they stemmed from a deep understanding of what con-
stituted a potential threat to the network. Suspicious IP addresses, known malicious domains,
and unauthorized access points all triggered exclusion, thereby preserving the integrity of the
company’s digital infrastructure.

The function at the core of this process was designed to filter and process URLs with pre-
cision. It carefully examined each one against the exclusion criteria and sifted out those that
posed a threat. What remained was a curated list of URLs that were deemed safe and, more
importantly, relevant. This refined subset of URLs, free from the noise of irrelevant or danger-
ous data, allowed for more focused analysis, enabling security teams to zoom in on genuine
threats. It also made the data easier to interpret, fostering clearer and more actionable insights.

By ensuring that only safe URLs entered the system, the whitelist function served as a key
tool in the network’s defense. It reduced the amount of data to be analyzed, cutting through the
clutter and allowing for faster and more accurate detection of potential security breaches. This
streamlined approach, which prioritized clarity and relevance, empowered analysts to identify
anomalies in the network more effectively, making it easier to pinpoint suspicious activity and
prevent breaches before they escalated.

As the team at Allianz worked tirelessly to perfect this methodology, it became clear that the
whitelist was more than just a protective measure—it was a vital cog in the larger machine of
network security. Its careful design and implementation underscored a strategic approach to
safeguarding digital assets, ensuring that every step taken was one toward a more secure and
resilient system. The precision with which the whitelist function was crafted, and the clarity
it brought to network analysis, was a testament to the team’s commitment to protecting the
company’s online environment. Through this careful curation of data, the organization could
focus on what mattered most—securing the network while minimizing the risk of potential
cyber threats.

6.3. Average Power Calculation

The process of calculating the power of requests is a critical component of analyzing network
activity and discerning meaningful patterns within large datasets. This methodology unfolds
as a sequential progression, beginning with the preliminary task of filtering URLs based on a
predefined whitelist. Once this filtration is complete, the focus shifts to the intricate process of
determining the power associated with each URL.

At the heart of this approach lies the notion of request power, a concept that quantitatively
captures the frequency dynamics of network interactions. Specifically, this metric is derived by
analyzing the temporal intervals between successive requests made to the same URL hostname.
Each interval represents the duration elapsed between two consecutive requests, effectively
capturing the rhythm and regularity of access patterns. By measuring these intervals across
the dataset, the power of each URL is computed, providing valuable insights into the underlying
behavioral trends.

The process begins with the creation of a dictionary, often referred to as the power dictio-
nary, which serves as the repository for storing these calculated values. For every request

39

6. Implementation

encountered in the dataset, the corresponding time interval is computed by subtracting the
timestamp of the last occurrence from that of the current request. These intervals, measured
in seconds, form the basis for assessing the frequency of access. Each time interval is then
mapped to its occurrence count within the dictionary, where the count represents the number
of times a specific interval has been observed. As this iterative process unfolds, the dictio-
nary gradually accumulates a comprehensive record of interval frequencies, encapsulating the
temporal dynamics of the dataset.

Upon completion of this calculation phase, the next step involves computing the average
power across all URLs. This average serves as a benchmark against which individual URL
powers are evaluated. The normalization process entails subtracting this average from the
power values of each URL. This critical step ensures that the analysis focuses on relative de-
viations rather than absolute values, thereby highlighting URLs that exhibit unusual activity.
Notably, URLs with normalized power values that fall below zero are deemed indicative of
non-malicious behavior and are excluded from further analysis. Conversely, those with posi-
tive values proceed to subsequent stages of scrutiny, marking them as potential candidates for
deeper investigation.

This analytical framework offers a robust mechanism for distinguishing normal network be-
havior from anomalies. By systematically identifying URLs with significant deviations in ac-
cess frequency, the methodology enhances the detection of patterns that may signal malicious
intent. The exclusion of URLs with negative power values serves to streamline the analysis, en-
abling a sharper focus on high-priority cases. Moreover, the iterative nature of this calculation
process facilitates continuous refinement, allowing the methodology to adapt dynamically to
the evolving landscape of network activity.

Beyond its technical utility, the calculation of request power provides profound insights
into the behavioral dynamics of users and systems. By revealing the cadence of interactions
and the distribution of access intervals, it paints a detailed picture of network usage patterns.
These insights are invaluable not only for identifying potential security threats but also for
understanding the broader context of network operations. The power dictionary, as the tangible
output of this process, serves as a foundational tool for exploring these patterns. Its structured
representation of time intervals and their corresponding power values offers a precise lens
through which the intricacies of network activity can be examined.

In essence, the request power calculation methodology exemplifies the fusion of quantita-
tive rigor and analytical depth. It transforms raw data into actionable intelligence, equipping
analysts with the tools needed to navigate the complexities of modern network environments.
Through its emphasis on precision, scalability, and adaptability, this approach underscores its
pivotal role in fortifying network security and advancing the frontier of behavioral analytics.

6.4. Band-Pass Filtering

Bandpass filtering is an advanced signal processing technique used to refine time-series data
by isolating specific frequency components within a defined range. The method operates by
allowing only those components of a signal whose frequencies lie within a certain interval to
pass through, while suppressing or attenuating those outside this range. This selective filter-

40

6.5. Beaconing Data Generation

ing approach is instrumental in reducing noise, enhancing clarity, and extracting meaningful
patterns from complex datasets. In the context of network traffic analysis, this technique is par-
ticularly valuable for identifying periodic behaviors or anomalies that occur within a specific
frequency spectrum.

The process begins by setting lower and upper frequency boundaries, defined in seconds,
to determine the target frequency range. These boundaries are normalized using the Nyquist
frequency, which is half the sampling rate of the data, ensuring that the filtering criteria align
with the temporal resolution of the dataset. Validation checks are performed to ensure that the
normalized thresholds fall within an acceptable range, thereby avoiding computational errors.
The Butterworth filter, known for its smooth frequency response and minimal distortions, is
employed for this purpose. Unlike other filters, the Butterworth design maintains a balanced
trade-off between precision and computational efficiency, making it well-suited for processing
large or sensitive datasets.

To ensure accuracy and minimize phase distortions, the filtering process applies a forward
and backward pass on the data, effectively refining the signal. This dual-pass approach pro-
duces a dataset containing only the frequency components that meet the specified criteria. For
network traffic analysis, the bandpass filter can, for instance, evaluate the time intervals associ-
ated with URLs. By retaining only those URLs with temporal patterns falling within the target
frequency range, the filter ensures that the analysis focuses on the most relevant components.

The practical implementation in your research involves defining specific lowcut and highcut
frequencies, such as 1 second and 1 hour, respectively. This range captures patterns of interest
while excluding noise and irrelevant fluctuations. The filtering process not only reduces the
dataset’s complexity and volume but also amplifies the significance of the retained informa-
tion. By systematically excluding URLs with unimportant temporal dynamics, the technique
supports a more focused and effective analysis of network behaviors.

This methodology has proven critical for cybersecurity applications, where detecting subtle
variations in traffic patterns can reveal potential threats or anomalies. For example, identify-
ing periodic spikes in requests to specific URLs within a defined frequency band can indicate
malicious activity or abnormal network behavior. The refined dataset resulting from bandpass
filtering forms a robust foundation for further analysis, enabling researchers to derive accurate,
actionable insights.

In addition to improving analytical precision, the computational efficiency of the bandpass
filtering process makes it suitable for processing datasets of varying sizes. While the method is
efficient for moderately sized datasets, optimizations such as parallel processing or alternative
algorithms can further enhance performance for very large datasets. Overall, this technique
plays a pivotal role in the comprehensive study of network traffic dynamics, contributing to
a deeper understanding of meaningful patterns and supporting the overarching goals of the
research.

6.5. Beaconing Data Generation

To simulate beaconing behavior, synthetic data was generated to replicate periodic URL access
patterns. The logic behind this data generation involved creating intervals of uniform duration

41

6. Implementation

between successive accesses for each URL while varying the start times and values for individ-
ual URLs. Specifically, each URL’s activity was designed to start at different time offsets, such as
5 minutes, 10 minutes, and so on, ensuring that their patterns did not overlap perfectly on the
timeline. Additionally, unique y-axis values were assigned to each URL to simulate real-world
variations in behavior.

This approach ensured that the generated dataset demonstrated beaconing-like periodicity
without perfect alignment among different URLs. The resulting data served as a realistic foun-
dation for subsequent analysis using FFT and autocorrelation.

6.6. Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) was applied to analyze the periodicity of the generated bea-
coning data. FFT transforms time-domain data into the frequency domain, allowing the identi-
fication of dominant frequencies within the dataset. The logic of FFT involves decomposing the
time-series data into its constituent sinusoidal components, thereby revealing the frequency
characteristics of the periodic intervals.

When applied to the generated beaconing data, the FFT was expected to highlight a spike
at low frequencies. This spike corresponds to the periodic nature of the beaconing behavior,
reflecting the presence of long-duration periodic patterns in the dataset. The FFT analysis
provided critical insights into the underlying periodicity of the data and validated the uniform
interval design implemented during data generation.

The analysis using FFT confirmed the successful implementation of beaconing data genera-
tion. The FFT revealed the periodic components. The FFT results were instrumental in identify-
ing the dominant frequencies and periodic patterns within the dataset, providing a quantitative
basis for understanding the beaconing behavior. By leveraging the FFT function, organizations
can gain deeper insights into the temporal dynamics of network traffic and identify potential
security threats more effectively.

6.7. Autocorrelation

The autocorrelation function was used to measure the self-similarity of the generated data
over varying time lags. This method calculates the degree of correlation between the data and
a shifted version of itself, quantifying how well the intervals align at different lags.

In this implementation, the autocorrelation of the beaconing data exhibited a high correla-
tion at lag 0, representing perfect similarity. However, due to the intentional offset in the start
times of the intervals for each URL, the autocorrelation values decreased rapidly as the lag in-
creased. This ensured that no consistent repetitive patterns appeared, validating the staggered
start times and the designed variability in the dataset.

The combined analysis using autocorrelation confirmed the successful implementation of
beaconing data generation. The autocorrelation highlighted the lack of consistent repetition
among URLs, reflecting the staggered and realistic nature of the generated data. This analysis
provided valuable insights into the temporal dependencies and patterns within the dataset,
enhancing the understanding of beaconing behavior.

42

6.8. Behavior Detection
6.8. Behavior Detection

In the final stage of the algorithm, behavior detection is performed to determine the rele-
vance and significance of the URLs retained after the filtering process. This stage is critical
for identifying potentially malicious or anomalous URLs. The process begins with establishing
a threshold value, which is determined through a combination of extensive experimentation
and leveraging past experiences.

The experimentation phase involves testing various threshold levels against historical data
to evaluate their effectiveness in flagging suspicious activities without generating excessive
false positives. Insights from previous network security incidents and the specific operational
context of the network further refine this threshold. By integrating empirical data with histor-
ical knowledge, the threshold is calibrated to balance sensitivity and specificity. Once defined,
this threshold becomes the standard against which URL behavior is measured. URLs exhibit-
ing characteristics that surpass this threshold are flagged for further investigation, as they may
indicate potential security threats or deviations from normal network behavior.

This behavior detection step transforms filtered data into actionable intelligence, enabling
network administrators and security professionals to focus on the most critical and relevant
threats. By filtering out noise and highlighting significant anomalies, this stage enhances the
cybersecurity framework’s overall effectiveness, ensuring the network remains secure against
evolving threats.

6.9. Algorithm Output

The algorithm’s output provides a targeted overview of URLs requiring detailed examination.
Each URL is compared against a predefined threshold of 500, and those exceeding this threshold
are flagged for potential concerns. Such URLs are prioritized for closer investigation due to
their deviation from normal behavior, which could indicate possible security threats or unusual
activity.

This alert system is for prioritizing high-risk URLs, allowing security analysts to concentrate
on the most significant issues. By efficiently filtering out less critical data, the system improves
threat detection accuracy and minimizes false positives. Analyzing flagged URLs can uncover
hidden patterns or attack methods that might otherwise be missed. This proactive alert mech-
anism is integral to effective threat management, facilitating early detection and response to
mitigate risks and safeguard the network against potential breaches.

The algorithm’s ability to promptly identify and address potential threats demonstrates its
effectiveness in reinforcing network security. By streamlining the detection process and fo-
cusing on high-priority URLSs, the system enhances the organization’s cybersecurity posture
and resilience. The algorithm’s output serves as a valuable tool for security analysts, provid-
ing actionable insights and enabling informed decision-making to protect the network against
emerging threats.

43

6. Implementation

6.10. Summary

In this chapter, we delved into the intricacies of preprocessing network activity data, focusing
on the creation and utilization of a whitelist and the application of bandpass filtering to enhance
data analysis. The primary learnings from this chapter include:

« Whitelist Creation:

— We defined a function to create a whitelist by filtering out URLs based on specified
exclusion criteria. This function plays a crucial role in curating a subset of URLs for
further analysis, ensuring that only relevant and trustworthy URLs are retained.

— We discussed the importance of excluding irrelevant or untrustworthy URLs to im-
prove the accuracy and interpretability of subsequent analyses.

— Performance considerations were examined, highlighting the efficiency of the whitelist
creation process and its scalability for larger datasets.
» Bandpass Filtering;:

- A function for applying bandpass filtering to the power values of network activ-
ity data was introduced. This function isolates significant frequency components
within a specified range, reducing noise and enhancing the clarity of the dataset.

— The role of bandpass filtering in refining the dataset and focusing on the most rele-
vant data was emphasized, contributing to a more robust understanding of temporal
patterns and behaviors within the network.

— We explored the performance implications of the filtering process and discussed

potential optimizations for handling large datasets.
» Functional Analysis:

— Both functions were defined with detailed explanations of their parameters, func-
tionality, and performance considerations. This structured approach ensures that
the functions are well-documented and easy to understand for future use and mod-
ification.

« Function to Calculate Autocorrelation:

— Computes the autocorrelation of a time series of power values.

— Measures similarity between a signal and its lagged version over time.

— Useful for identifying patterns, periodicity, and trends in the data.

— Uses the acf method from the statsmodels library to compute autocorrelation values
up to a specified lag.

— Helps detect time-dependent structures, periodicities, noise levels, and potential
anomalies in the dataset.

« Function to Calculate Fourier Transform:

44

6.11. Next Steps

— Performs a Fourier Transform on the time series of power values.
— Decomposes the time-domain signal into its frequency components.
— Useful for analyzing periodic behaviors or oscillations in power data.

— Uses the fft method from the scipy.fit library to compute the discrete Fourier trans-
form (DFT).

— Provides frequencies and corresponding amplitudes, highlighting dominant fre-
quencies and their correlation with system events or behaviors.

6.11. Next Steps
Building on the foundational work presented in this chapter, the next steps involve:

+ Implementing Additional Preprocessing Techniques:

— Investigate and implement additional preprocessing techniques to further enhance
data quality and relevance. This may include methods such as data normalization,
anomaly detection, and more sophisticated filtering techniques.

Integrating the Preprocessed Data into Analytical Models:

— Utilize the preprocessed data in advanced analytical models to uncover deeper in-
sights into network behavior. This could involve machine learning algorithms, sta-
tistical analyses, and other data mining techniques.

Evaluating and Validating the Methods:

— Perform rigorous evaluation and validation of the preprocessing methods to ensure
their effectiveness and reliability. This includes testing the methods on different
datasets and scenarios to assess their generalizability and robustness.

+ Automating the Preprocessing Pipeline:

— Develop an automated preprocessing pipeline that seamlessly integrates the whitelist
creation and bandpass filtering functions. This will streamline the data preparation
process, making it more efficient and scalable for real-time applications.

« Documenting and Sharing Findings:

— Document the findings and methodologies in detail to facilitate knowledge sharing
and reproducibility. This includes creating comprehensive reports, code documen-
tation, and potentially publishing the results in academic journals or conferences.

By following these next steps, we can build upon the foundation established in this chapter,
advancing our understanding and capabilities in network activity data analysis. This progres-
sion will not only enhance the accuracy and effectiveness of our analytical models but also
contribute to the broader field of network security and behavior analysis.

45

7. Experiments

In this experimental chapter, the algorithm’s capability to detect malicious data undergoes
a rigorous inspection. Data from various days is collected to encompass various scenarios,
ensuring a comprehensive evaluation of the algorithm’s performance across different condi-
tions. Once the data is gathered, it is processed through the algorithm to assess its ability to
identify potentially harmful content. The primary focus of this chapter lies in evaluating the
algorithm’s effectiveness in detecting malicious content and its consistency over time. Special
attention is given to the URLs flagged as suspicious by the algorithm, which are closely exam-
ined to gain deeper insights into their functionality and potential areas for enhancement. By
scrutinizing these flagged URLs, the chapter aims to uncover patterns and behaviors that might
indicate malicious activity, providing valuable feedback for refining the algorithm. This chap-
ter comprehensively evaluates the algorithm’s performance, utilizing real-world data to gauge
its effectiveness and explore avenues for improvement. The findings from this analysis not
only demonstrate the algorithm’s current capabilities but also highlight opportunities for fur-
ther development, ensuring its continued relevance and robustness in detecting evolving cyber
threats. Through this detailed examination, the chapter aims to bolster the algorithm’s ability
to safeguard the network, contributing to the overall security infrastructure of the system.

7.1. Validation and Testing

To affirm the efficacy of beaconing detection, the methodology undergoes rigorous testing us-
ing diverse datasets, simulating a range of scenarios that reflect various web traffic patterns.
This comprehensive validation process is undertaken to ensure that the algorithm operates re-
liably across different frequency ranges and adapts seamlessly to the dynamic nature of HTTP
requests. By employing datasets that encompass a wide array of traffic behaviors—from nor-
mal browsing activities to more erratic patterns indicative of potential security threats—the
testing aims to demonstrate the filter’s robustness and versatility. Each dataset is crafted to
mimic real-world conditions, providing a realistic context for evaluating the bandpass filter’s
performance. The results from these tests offer critical insights into the filter’s ability to isolate
relevant frequency components while effectively minimizing noise and irrelevant data.

Furthermore, this validation process helps in identifying any potential weaknesses or limi-
tations of the bandpass filter, guiding subsequent refinements and optimizations. The ultimate
goal is to ensure that the beaconing detection consistently enhances the accuracy and reliabil-
ity of the data analysis, regardless of the variability in web traffic patterns. By confirming its
adaptability and precision, this rigorous testing phase substantiates the filter’s integral role in
the overall methodology, cementing its contribution to the accurate detection and analysis of
network behaviors.

47

7. Experiments

Validation Steps:

1. Diverse Datasets: The beaconing detection is subjected to rigorous testing using datasets
that exhibit varying frequencies of HTTP requests, each embodying distinct traffic pat-
terns. These datasets are carefully curated to represent a broad range of real-world web
traffic scenarios, from sporadic and unpredictable requests to highly regular and pre-
dictable beaconing activity. By employing such a diverse set of datasets, the aim is to
thoroughly evaluate the filter’s adaptability and effectiveness. This comprehensive ap-
proach ensures that the filter can robustly identify beaconing activity amidst different
traffic environments, including those with fluctuating request intervals, mixed legitimate
traffic, and potential noise. Ultimately, this testing strategy is designed to refine the bea-
coning detection mechanism, enhancing its accuracy and reliability across a wide array
of web traffic conditions, thereby improving its practical applicability in detecting mali-
cious or anomalous behavior in varied network contexts.

2. Performance Metrics: To evaluate the method’s performance, the methodology em-
ploys metrics and the preservation of relevant frequency components. These metrics
serve as quantitative indicators, allowing for a thorough assessment of the filter’s ability
to discern and retain meaningful signal components while minimizing noise.

3. Real-world Scenarios: The beaconing technique is rigorously evaluated on historical
datasets containing documented instances of diverse HT TP request patterns within Al-
lianz Company’s network. This real-world testing ensures that the filter can effectively
handle the complexities and nuances inherent in actual network traffic scenarios, further
validating its practical utility.

By subjecting the method to these comprehensive validation steps, the methodology aims to
establish its reliability and robustness in handling a wide array of web traffic patterns. The re-
sults obtained from this testing process contribute to the confidence in the filter’s performance,
reinforcing its role as a valuable tool in the analysis of HTTP request patterns over time.

Figure 7.1 illustrates the results of the Fast Fourier Transform (FFT) analysis conducted on the
beaconing data. The graph displays the frequency spectrum of the data, highlighting the dom-
inant frequencies present in the dataset. The spike at low frequencies indicates the presence of
periodic patterns within the data, confirming the successful generation of beaconing-like be-
havior. The FFT analysis provides valuable insights into the temporal dynamics of the dataset,
revealing the underlying frequency components that characterize beaconing activity. By lever-
aging the FFT function, organizations can gain deeper insights into the periodic behaviors of
network traffic, enabling more effective detection of malicious or anomalous activities.

Figure 7.2 illustrates the results of the autocorrelation analysis conducted on the beaconing
data. The graph depicts the autocorrelation values at different lag intervals, showcasing the
self-similarity of the dataset over time. The high correlation at lag 0 indicates perfect similar-
ity, while the rapid decrease in correlation values at subsequent lags reflects the intentional
variability in the start times of the intervals for each URL. This analysis validates the staggered
start times and realistic nature of the generated data, providing valuable insights into the tem-
poral dependencies and patterns within the dataset. The autocorrelation function serves as a

43

7.1. Validation and Testing

600
= (saml.allianz.com)
(examplel.beacon.com)
(m4v4ar4c5.stackpathcdn.com)
500 - 3 ¥ 1

400 g 2

300 A 8 2 n

Amplitude

200 4

100

Frequency (Hz)

Figure 7.1.: FFT

powerful tool for detecting time-dependent structures, periodicities, noise levels, and potential
anomalies in the data, enhancing the understanding of beaconing behavior and network dy-
namics. In this broad-lag plot, the orange line (examplel.beacon.com) stands out with a much
higher autocorrelation than the other two signals over a very large range of lags. This indicates
that the orange dataset has a long-lasting or slowly decaying correlation structure, remaining
significantly correlated with itself at high lag values. Meanwhile, the blue (saml.allianz.com)
and green (m4v4r4c5.stackpathcdn.com) lines are relatively small in comparison, suggesting
that they lose their correlation more quickly or do not exhibit strong long-range patterns. Be-
cause of the large scale, details of the blue and green signals are overshadowed, but you can
still observe their initial peaks near lag 0 and a subsequent decay in autocorrelation.

Figure 7.3 offers a mid-level look at the autocorrelation patterns. The green line continues
to show strong, evenly spaced spikes, confirming a periodic structure that extends beyond
very short lags. The orange line exhibits a few notable peaks, but they are neither as large
nor as regularly spaced, implying a less consistent periodicity. The blue line remains relatively
smooth, suggesting a mild or more complex pattern—perhaps an overlap of smaller periodic
components or sporadic events. Overall, this figure helps clarify how the signals behave at in-
termediate time scales: one remains strongly periodic (green), another has weaker or irregular
peaks (orange), and the third shows moderate oscillations (blue).

Figure 7.4 the green line (m4v4r4c5.stackpathcdn.com) becomes the most prominent, dis-
playing strong, regularly spaced spikes. This behavior is typical of a highly periodic sig-
nal—suggesting repeated events at specific intervals. The blue line (saml.allianz.com) shows
a moderate, wavelike pattern that oscillates and gradually diminishes, indicating some peri-

49

7. Experiments

1.0 = (saml.allianz.com)
(examplel.beacon.com)
e (mM4v4rdc5.stackpathcdn.com)
0.8
5 06
+—
]
g
o
3
3 044
0.2
0.0
0 20000 40000 60000 80000
Sequence Offset
Figure 7.2.: Autocorrelation
1.0 4 —— (saml.allianz.com)
(examplel.beacon.com)
— (Mm4v4r4c5.stackpathcdn.com)
0.8
5 0.6
+—
o
£
5]
8 b rre el e e b e, AR e BV, hri et gt
3 0.4
0.2
0.0
T T T

T 1
0 200 400 600 800 1000
Sequence Offset

Figure 7.3.: Autocorrelation

50

7.1. Validation and Testing

1.0 4 —— (saml.allianz.com)
(examplel.beacon.com)
—— (m4v4rdc5.stackpathcdn.com)
0.8
5 0.6 -
=]
Lol I
£
o
§ ’ \/\/\/\/\/§ VAV | U | B
S 0.4 -
=4
0.2 4
0.0 4 L-—] k- L}
T T T T

0 20 40 60 80 100
Sequence Offset

Figure 7.4.: Autocorrelation

odic or quasi-periodic behavior but not as pronounced. By contrast, the orange line (exam-
plel.beacon.com) remains relatively low in this short-lag region, suggesting fewer short-term
repeated events or a more random short-range pattern. This zoomed-in view clearly exposes
short-term periodicities that were hidden on the larger scale.

51

8. Results and Discussions

The implementation of the methodology within Allianz Company’s network infrastructure
represents a pivotal advancement in enhancing network security and resilience. This chap-
ter provides a detailed discussion of how beaconing behavior can be effectively detected and
the impact of periodicity in network communication on the detection of malicious behavior.
The methodology’s application involved several key steps, each contributing to the robustness
of the network monitoring and security measures.

8.1. Detection of Beaconing Behavior

To address the question of how beaconing behavior can be effectively detected within Allianz
Company’s network, several strategies and methodologies were employed and evaluated:

8.1.1. Algorithm Development and Implementation

The core of the detection process involved the development and implementation of advanced
algorithms tailored to identify beaconing behavior. These algorithms were designed to analyze
network traffic for recurring patterns indicative of beaconing. Key methods included:

«+ Pattern Recognition Algorithms: These algorithms scan for regular intervals in net-
work communication, a hallmark of beaconing activity often used by malware to main-
tain contact with a command-and-control server.

« Threshold Analysis: A critical component of the detection system involved setting
thresholds for communication frequencies. URLs with communication intervals exceed-
ing these thresholds were flagged for further investigation.

8.1.2. Data Collection and Preprocessing

Effective detection required comprehensive data collection and preprocessing:

« Network Monitoring: Continuous monitoring captured a wide array of network activ-
ities, including data packets, source and destination addresses, timestamps, and commu-
nication frequencies.

+ Filtering and Aggregation: Known benign traffic was filtered out, and similar types
of communication were aggregated to reduce noise and focus on potentially malicious
activities.

53

8. Results and Discussions

8.1.3. Validation and Testing

To ensure the effectiveness of the detection methods:

« Synthetic and Real-World Data: The algorithm was tested on both synthetic datasets
and real-world traffic from Allianz’s network.

+ Integration with Existing Systems: The detection mechanisms were integrated with
Security Information and Event Management (SIEM) systems to enable automated alerts
and responses, and incident response teams were notified for further investigation.

8.2. Impact of Periodicity in Network Communication

The second research question addresses the impact of periodicity in network communication
on the detection of malicious behavior. Periodicity significantly affects detection capabilities,
as detailed below:

8.2.1. Identification of Regular Intervals

« Time-Series Analysis: Network traffic was analyzed as time-series data to detect reg-
ular communication intervals. Techniques such as bandpass filtering was employed to
identify periodic patterns.

» Baseline Establishment: A baseline of normal network behavior was established to
identify deviations that might indicate malicious activity. Communication frequencies
that deviated from this baseline were flagged as suspicious.

8.2.2. Differentiation Between Benign and Malicious Periodicity

« Contextual Analysis: Not all periodic communications are indicative of malicious be-
havior. Contextual analysis helped distinguish between normal periodic activities (e.g.,
scheduled updates) and potentially harmful beaconing.

« Anomaly Detection Algorithms: Algorithms trained on periodicity patterns of nor-
mal traffic helped identify anomalies. Techniques such as clustering and classification
were used to differentiate benign from malicious behavior.

8.2.3. Impact on False Positives and Negatives

« Reduction of False Positives: Accurate modeling of normal periodic patterns helped
reduce the number of false positives, ensuring that alerts were actionable.

« Handling False Negatives: Sensitivity adjustments in detection algorithms ensured
that subtle periodic patterns associated with stealthy beaconing were not missed, mini-
mizing false negatives.

54

8.2. Impact of Periodicity in Network Communication

8.2.4. Case Studies and Empirical Evidence

« Real-World Examples: Analysis of real-world cases of beaconing behavior provided
empirical evidence on the effectiveness of periodicity-based detection methods.

« Continuous Learning and Adaptation: The detection system was designed to adapt
to evolving patterns of network traffic, ensuring ongoing effectiveness in identifying new
and emerging threats.

The comprehensive evaluation of the methodology demonstrated its efficacy in handling
diverse network traffic scenarios and real-world cybersecurity challenges. The methodology,
which included advanced algorithms for detecting beaconing behavior, robust data prepro-
cessing techniques, and the use of periodicity in network communication, proved effective in
identifying and mitigating malicious activities. The integration of these methods with Allianz
Company’s existing security infrastructure highlighted the importance of continuous monitor-
ing and proactive response strategies in maintaining network security. The promising results
from this implementation provide a strong foundation for future research and further enhance-
ment of network security measures.

55

9. Conclusion and Future Work

9.1. Conclusion

The thorough study of the dataset provided valuable insights into network security, particularly
in the detection of beaconing activities that may indicate potential threats. This examination
involved a deep dive into the data, encompassing its various aspects and collection methods,
which laid a solid foundation for understanding how networks can detect and respond to sus-
picious signals effectively.

Systematic data collection, cleaning, and processing were important to ensuring the dataset’s
accuracy and reliability. The gathering of relevant information, removal of inconsistencies or
errors, and careful preparation for analysis were steps that validated the conclusions drawn
from the data. These steps ensured that the findings were both accurate and actionable.

A significant component of the methodology was the implementation of a *whitelist” mech-
anism alongside specialized filtering and analysis techniques. The whitelist, which consists of
trusted entities or activities within the network, plays an important role in focusing attention
on potentially harmful signals while minimizing the impact of irrelevant noise. This strate-
gic filtering enhanced the network’s ability to detect threats more effectively by isolating and
addressing only the potentially malicious activities.

The evaluation of time intervals between actions, combined with data enhancement tech-
niques and specialized filtering methods, yielded valuable insights into potential malicious
beaconing activity. These analyses illuminated underlying patterns and behaviors within the
network, aiding in the identification of anomalies that could signify suspicious or harmful ac-
tions. The study highlighted the importance of proactive monitoring and response strategies in
mitigating cybersecurity risks, demonstrating the broader significance of data-driven method-
ologies in fortifying network security.

In an era where organizations face increasingly sophisticated cyber threats, the insights from
this research can guide strategic decision-making and resource allocation. By leveraging these
findings, organizations can enhance their protection of critical digital assets and bolster their
defenses against evolving threats.

9.2. Future Work

Building on the findings and methodology presented in this study, several promising avenues
for future research and development can be explored:

1. Enhanced Detection Algorithms: Refining and optimizing beaconing detection algo-
rithms can significantly improve accuracy and reduce false positives. Future research
could explore novel approaches, such as deep learning techniques, which may provide

57

9. Conclusion and Future Work

new insights into anomaly detection in network behavior. These advancements could
lead to more effective threat mitigation strategies and enhanced detection capabilities.

. Real-Time Monitoring Solutions: Investigating real-time monitoring solutions can

enable prompt detection and response to emerging threats, thereby minimizing poten-
tial damages caused by malicious activities. The development of automated response
mechanisms could streamline incident response procedures, reducing the burden on cy-
bersecurity personnel and enhancing the overall efficiency of threat management.

. Behavioral Analysis Across Diverse Networks: Extending the study to analyze net-

work behavior across a variety of organizational networks can reveal commonalities and
variations in malicious activities. Understanding the unique challenges faced by differ-
ent industries and sectors could lead to the development of tailored security measures
that address specific threats more effectively. This cross-network analysis could provide
valuable insights into how different environments respond to and manage cybersecurity
risks.

. Integration with Machine Learning Techniques: Exploring the integration of ad-

vanced machine learning techniques for anomaly detection can augment the capabilities
of beaconing detection systems. Leveraging historical data and learning from past inci-
dents can help these systems adapt to evolving cybersecurity threats, enhancing proac-
tive defense mechanisms. Machine learning models can be trained to recognize subtle
patterns and adapt to new types of attacks, improving overall detection and response.

. Collaborative Research Initiatives: Engaging in collaborative research with industry

partners and cybersecurity experts can foster innovation and the development of proac-
tive security solutions. Joint research initiatives can facilitate the exchange of knowledge
and resources, addressing complex cybersecurity challenges more effectively. Collab-
oration can lead to the creation of comprehensive solutions that benefit from diverse
expertise and perspectives, driving progress in the field of network security.

Pursuing these avenues for future research and development will help advance the field of

cybersecurity, strengthening defenses against emerging threats and safeguarding the integrity
of digital infrastructures. By continuing to innovate and adapt, the cybersecurity community
can better protect critical assets and respond to the dynamic landscape of cyber threats.

58

A.

Appendix

A.1. Algorithm Implementation

from influxdb_client import InfluxDBClient
from datetime import datetime

import pandas as pd

import matplotlib.pyplot as plt

from scipy.signal import butter, filtfilt

def

def

calculate_request _power(request_list):
power _dictionary = {}
last _date_time = request_list[0][”_time™]

for request_dict in request_list:
current _date_time = request_dict[”_time”]

if isinstance(current_date_time, str):
current _date_time = datetime.strptime(current_date_time, ”%Y-%m-%
dT%H: %M: %S . %£Z”)

time_delta = int((current_date_time - last_date_time).total_seconds()

)

power _dictionary[time_delta] = power_dictionary.get(time_delta, 0) +
1
last_date_time = current_date_time

power _dictionary = dict(sorted(power_dictionary.items()))

return power_dictionary

bandpass_filter(data, lowcut_time, highcut_time, sampling_rate, order=4):
nyquist = 0.5 * sampling_rate

lowcut = lowcut_time / nyquist

highcut = highcut_time / nyquist

if lowcut >= 1 or highcut >= 1:

raise ValueError(”Digital filter critical frequencies must be 0 < wn
< 1”)

59

39

40

42

43

44

46

47

48

49

50

51

53

54

55

56

67

82

83

84

85

86

87

88

A. Appendix

b, a = butter(order, [lowcut, highcut], btype=’band’)
filtered_data = filtfilt(b, a, data)
return filtered_data

InfluxDB connection details
url = ”http://localhost:8086”
token = »***e»

org = ”Student”
bucket = ”Net”
influx_username
influx_password

Sk k ok kD

Sk k ok kD

try:
Create an InfluxDB client
client = InfluxDBClient(url=url, token=token, org=org)

Query data from InfluxDB

query = f’from(bucket:”{bucket}”) — range(start: 2023-08-01T00:00:00Z,
stop: 2023-08-02T00:00:00Z)°

tables = client.query_api().query(query, org=org)

Extract points from the result
points = [record.values for table in tables for record in table.records]

Process and organize the InfluxDB data
print (”Processing InfluxDB Data:™)
extracted_influx_objects = {}

for point in points:
url_hostname = point.get(”url_hostname”)

Check if url_hostname is already in the dictionary
if url_hostname not in extracted_influx_objects:
extracted_influx_objects[url_hostname] = []

Append under the corresponding url_hostname
extracted_influx_objects[url_hostname].append(point)

Print the extracted InfluxDB data for debugging
print (point)

Create a whitelist to filter out unwanted URLs
def create_whitelist(data, exclusion_criteria):
whitelist = {url: requests for url, requests in data.items() if not
any(exclusion in url for exclusion in exclusion.criteria)}
return whitelist

Define exclusion criteria for URLs
exclusion._criteria = [’allianz’, ’res’]

Create a whitelist based on the exclusion criteria

whitelist = create_whitelist(extracted_influx_objects, exclusion_criteria

)

60

90

91

92

93

94

95

96

97

98

99

102

103

104

106

107

108

109

110

111

112

113

114
115

116

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

A.1. Algorithm Implementation

print(”Filtered URLs based on whitelist:”)
for url_hostname in whitelist:
print (url_hostname)

Create a table of power for each URL hostname with bandpass filtering
in terms of time

print(”“nPower Table with Bandpass Filtering in Terms of Time:”)

for url_hostname, requests in whitelist.items():
print (£”URL Hostname: {url_hostname}”)
power _dictionary = calculate_request_power(requests)

Print the power dictionary for debugging
print (”Power Dictionary:”, power_dictionary)

Extract keys and values from the power dictionary
time_intervals = list(power_dictionary.keys())
power _values = list(power_dictionary.values())

Apply bandpass filtering in terms of time
lowcut_time = 5 # 5 seconds
highcut_time = 1000 # 1000 seconds

Check if there are enough elements to calculate sampling rate
if len(time_intervals) >= 2:
sampling _rate = 1.0 / (time_intervals[1] - time_intervals[0])
Sampling frequency

try:
filtered_power_values = bandpass_filter(power_values, lowcu
time, highcut_time, sampling_rate)
except ValueError as e:
print(f”Error: {e}”)
filtered_power_values = power_values

Print the filtered power values for debugging
print(”Filtered Power Values:”, filtered_power_values)

Calculate the average power
average_power = sum(filtered_power_values) / len(filtered_power
values)

Print the average power for debugging
print (”Average Power:”, average_power)

Subtract average power from all power values
adjusted_power_values = [power - average_power for power in
filtered_power_values]

Print the adjusted power values for debugging
print(”Adjusted Power Values:”, adjusted_power_values)

Remove negative powers
non_negative_power _values = [max(0, power) for power in adjuste
power _values]

#

t_

d_

61

138

139

140

141

142

143

144

146

148

149

150

151

152

A. Appendix

Get indices for the time range of interest (5 to 1000 seconds)
time_range_indices = [i for i, t in enumerate(time_intervals) if
5 <=t <= 1000]

Print the time range indices for debugging
print (”Time Range Indices:”, time_range_indices)

Plot the adjusted data within the specified time range

plt.plot([time_intervals[i] for i in time_range_indices], [non_
negative _power_values[i] for i in time_range_indices], label=
url _hostname)

Check if there are multiple URLs in the whitelist before creating
legend

if len(whitelist) > 1:
plt.legend()

plt.xlabel(”Time Interval (seconds)”) # Change x-axis label
plt.ylabel(”Adjusted Power”) # Change y-axis label
plt.title(”Adjusted Power over Time”) # Change the chart title
plt.show()

except Exception as e:

print(f”An error occurred: {e}”)

A.2. Data Analysis Implementation

import pandas as pd
import matplotlib.pyplot as plt
from scipy.signal import butter, filtfilt

#

Function to calculate request occurrence

def calculate_request_occurrence(request_list):

62

occurrence_dictionary = {}
last_date_time = None

for _, request_row in request_list.iterrows():
try:
current _date_time = pd.to_datetime(request_row[”_time”])

if last_date_time is not None:
time_delta = int((current_date_time - last_date_time).total_
seconds())

Add the occurrence to the occurrence dictionary
occurrence._dictionary[time_delta] = occurrence_dictionary.get
(time_delta, 0) + 1

last_date_time = current_date_time

A.2. Data Analysis Implementation

22 except (ValueError, TypeError) as e:

23 print (£”’Error in row: {_}, Timestamp value: {request_row[’_time’]
}, Error message: {e}”)

24

25 # Sort the dictionary for better visualization

26 occurrence_dictionary = dict(sorted(occurrence_dictionary.items()))
27

28 return occurrence._dictionary

29
3 |# Function to apply bandpass filtering in terms of time

51 |def bandpass_filter(data, lowcut_time, highcut_time, sampling_rate, order=4):
32 nyquist = 0.5 * sampling_rate

33 lowcut = lowcut_time / nyquist

34 highcut = highcut_time / nyquist

35

36 if lowcut >= 1 or highcut >= 1:

37 raise ValueError(”Digital filter critical frequencies must be 0 < Wn
< 17)

38

39 b, a = butter(order, [lowcut, highcut], btype=’band’)

40 filtered_data = filtfilt(b, a, data)

41 return filtered_data

42
43 |# CSV file path for the cleaned and modified data
4 |csv_file_path = r’C:“Allianz“4“1125“Modified_Beaconing.csv’

45

16 | try:

47 # Read data from CSV file and explicitly convert ”_time” to datetime

48 df = pd.read_csv(csv_file_path)

49 df[”_time”] = pd.to_datetime(df[”_time”], format="%H:%M:%S.%f’, errors=’
coerce’)

50

51 # Process and organize the CSV data

52 print(”Processing CSV Data:”)

53 extracted_csv_objects = {}

55 for _, row in df.iterrows():

56 url_hostname = row.get(”url_hostname”)

58 # Check if url_hostname is already in the dictionary
59 if url_hostname not in extracted_csv_objects:

60 extracted_csv_objects[url_hostname] = []

61

62 # Append under the corresponding url_hostname

63 extracted_csv_objects[url_hostname] .append(row)

65 # Print the extracted CSV data for debugging
66 print (row)

67

68 # Create a whitelist to filter out unwanted URLs

69 def create_whitelist(data, exclusion_criteria):

70 whitelist = {url: requests for url, requests in data.items() if not
any(exclusion in url for exclusion in exclusion_criteria)}

7 return whitelist

63

89

90

91

92

93

94

95

96

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112
113

114

115

116

117

118

119

120

121

A. Appendix

64

Define exclusion criteria for URLS
exclusion_criteria = [’allianz’, ’res’]

Create a whitelist based on the exclusion criteria
whitelist = create_whitelist(extracted_csv_objects, exclusion_criteria)

print(”Filtered URLs based on whitelist:”)
for url_hostname in whitelist:
print (url_hostname)

Create a table of occurrence for each URL hostname with bandpass
filtering in terms of time
print (”“nOccurrence Table with Bandpass Filtering in Terms of Time:”)
peak_url_hostname = None
peak_occurrence_value = 0
for url_hostname, requests in whitelist.items():
print (£”URL Hostname: {url_hostname}”)
occurrence_dictionary = calculate_request_occurrence(pd.DataFrame(
requests))

Print the occurrence dictionary for debugging
print(”Occurrence Dictionary:”, occurrence._dictionary)

Identify peak occurrence value and corresponding URL hostname
if occurrence_dictionary:
max _occurrence_value = max(occurrence_dictionary.values())
if max_occurrence_value > peak_occurrence_value:
peak_occurrence_value = max._occurrence._value
peak_url_hostname = url_hostname

Extract keys and values from the occurrence dictionary
time_intervals = list(occurrence_dictionary.keys())
occurrence_values = list(occurrence_dictionary.values())

Apply bandpass filtering in terms of time
lowcut_time = 5 # 5 seconds
highcut_time = 1000 # 1000 seconds

Check if there are enough elements to calculate sampling rate
if len(time_intervals) >= 2:
sampling_rate = 1.0 / (time_intervals[1] - time_intervals[0]) #
Sampling frequency

try:
filtered_occurrence_values = bandpass_filter(occurrence._
values, lowcut_time, highcut_time, sampling_rate)
except ValueError as e:
print(f”’Error: {e}”)
filtered_occurrence_values = occurrence_values

Print the filtered occurrence values for debugging
print(”Filtered Occurrence Values:”, filtered_occurrence_values)

A.2. Data Analysis Implementation

122 # Calculate the average occurrence

123 average_occurrence = sum(filtered_occurrence_values) / len(
filtered_occurrence_values)

124

125 # Print the average occurrence for debugging

126 print(”Average Occurrence:”, average._occurrence)

127

128 # Subtract average occurrence from all occurrence values

129 adjusted_occurrence_values = [occurrence - average_occurrence for

occurrence in filtered_occurrence_values]
130

131 # Print the adjusted occurrence values for debugging

132 print(”Adjusted Occurrence Values:”, adjusted_occurrence_values)
133

134 # Remove negative occurrences

135 non_negative_occurrence_values = [max(0, occurrence) for

occurrence in adjusted_occurrence_values]
136
137 # Get indices for the time range of interest (5 to 1000 seconds)
138 time_range_indices = [i for i, t in enumerate(time_intervals) if
5 <=t <= 1000]

139

140 # Print the time range indices for debugging

141 print(”Time Range Indices:”, time_range_indices)

142

143 # Plot the adjusted data within the specified time range

144 plt.plot([time_intervals[i] for i in time_range_indices], [non.-

negative_occurrence_values[i] for i in time_range_indices],
label=url_hostname)

145

146 # Print the URL hostname with the peak occurrence

147 if peak_url_hostname:

148 print (£”“nURL Hostname with Peak Occurrence: {peak_url_hostname}”)

149 print(f”Peak Occurrence Value: {peak_occurrence_value}”)

150

151 # Check if there are multiple URLs in the whitelist before creating
legend

152 if len(whitelist) > 1:

153 plt.legend()

154

155 plt.xlabel(”Time Interval (seconds)”) # Change x-axis label

156 plt.ylabel(”Adjusted Occurrence”) # Change y-axis label

157 plt.title(”Adjusted Occurrence over Time”) # Change the chart title
158 plt.show()

159
10 | except Exception as e:

161 print(£”An error occurred: {e}”)

65

Bibliography

(1]

(2]

[5]

Bitdefender, “Global cybersecurity threat map,” accessed: 2024-08-13. [Online]. Available:
https://threatmap.bitdefender.com/

InfluxData, “Influxdb 3.0 system architecture,” accessed: 2024-08-13. [Online]. Available:
https://www.influxdata.com/blog/influxdb- 3-0-system-architecture/

X. Hu, J. Jang, M. P. Stoecklin, T. Wang, D. L. Schales, D. Kirat, and J. R. Rao, “Baywatch:
robust beaconing detection to identify infected hosts in large-scale enterprise networks,”
in 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2016, pp. 479-490.

Y. Zhang, H. Dong, A. Nottingham, M. Buchanan, D. E. Brown, and Y. Sun, “Global analysis
with aggregation-based beaconing detection across large campus networks,” in ACSAC
’23: Proceedings of the 39th Annual Computer Security Applications Conference, 2023, pp.
565-579.

G. Apruzzese, M. Marchetti, M. Colajanni, G. G. Zoccoli, and A. Guido, “Identifying ma-
licious hosts involved in periodic communications,” in 2017 IEEE 16th International Sym-
posium on Network Computing and Applications (NCA). 1EEE, 2017, pp. 1-8.

[6] J. Seo and S. Lee, “Abnormal behavior detection to identify infected systems using the

apchain algorithm and behavioral profiling,” Security and Communication Networks, vol.
2018, no. 1, p. 9706706, 2018.

N. A. Huynh, W. K. Ng, A. Ulmer, and J. Kohlhammer, “Uncovering periodic network sig-
nals of cyber attacks,” in 2016 IEEE Symposium on Visualization for Cyber Security (VizSec).
IEEE, 2016, pp. 1-8.

[8] J. Jang, D. H. Kirat, B. J. Kwon, D. L. Schales, and M. P. Stoecklin, “Detecting malicious

beaconing communities using lockstep detection and co-occurrence graph,” Jan. 5 2021,
uS Patent 10,887,323.

M. A. Talib, Q. Nasir, A. B. Nassif, T. Mokhamed, N. Ahmed, and B. Mahfood, “Apt bea-
coning detection: A systematic review,” Computers & Security, vol. 122, p. 102875, 2022.

P.S. Charan, P. M. Anand, and S. K. Shukla, “Dmapt: Study of data mining and machine
learning techniques in advanced persistent threat attribution and detection,” Data Mining-
Concepts and Applications, p. 63, 2021.

67

https://threatmap.bitdefender.com/
https://www.influxdata.com/blog/influxdb-3-0-system-architecture/

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

M. Hagan, B. Kang, K. McLaughlin, and S. Sezer, “Peer based tracking using multi-tuple
indexing for network traffic analysis and malware detection,” in 2018 16th Annual Confer-
ence on Privacy, Security and Trust (PST). IEEE, 2018, pp. 1-5.

A. Shalaginov, K. Franke, and X. Huang, “Malware beaconing detection by mining large-
scale dns logs for targeted attack identification,” International Journal of Computer and
Systems Engineering, vol. 10, no. 4, pp. 743-755, 2016.

Y.-R. Yeh, T. C. Tu, M.-K. Sun, S. M. Pi, and C.-Y. Huang, “A malware beacon of botnet by
local periodic communication behavior,” in 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), vol. 2. IEEE, 2018, pp. 653-657.

Y. Borchani, “Advanced malicious beaconing detection through ai,” Network Security, vol.
2020, no. 3, pp. 8-14, 2020.

M. A. Enright, E. Hammad, and A. Dutta, “A learning-based zero-trust architecture for 6g
and future networks,” in 2022 IEEE Future Networks World Forum (FNWF). 1EEE, 2022,
pp. 64-71.

T. Van Ede, H. Aghakhani, N. Spahn, R. Bortolameotti, M. Cova, A. Continella, M. van
Steen, A. Peter, C. Kruegel, and G. Vigna, “Deepcase: Semi-supervised contextual analysis
of security events,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp.
522-539.

T. Ongun, O. Spohngellert, B. Miller, S. Boboila, A. Oprea, T. Eliassi-Rad, J. Hiser, A. Not-
tingham, J. Davidson, and M. Veeraraghavan, “Portfiler: port-level network profiling for
self-propagating malware detection,” in 2021 IEEE Conference on Communications and Net-
work Security (CNS). 1EEE, 2021, pp. 182-190.

W. Niu, X. Zhang, X. Zhang, X. Du, X. Huang, M. Guizani et al, “Malware on internet of
uavs detection combining string matching and fourier transformation,” IEEE Internet of
Things Journal, vol. 8, no. 12, pp. 9905-9919, 2020.

[19] J. Duan, Z. Zeng, A. Oprea, and S. Vasudevan, “Automated generation and selection of

[20]

68

interpretable features for enterprise security,” in 2018 IEEE International Conference on
Big Data (Big Data). 1EEE, 2018, pp. 1258—1265.

M. Haffey, M. Arlitt, and C. Williamson, “Modeling, analysis, and characterization of pe-
riodic traffic on a campus edge network,” in 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MAS-
COTS). IEEE, 2018, pp. 170-182.

A. Oprea, Z. Li, R. Norris, and K. Bowers, “Made: Security analytics for enterprise threat
detection,” in Proceedings of the 34th Annual Computer Security Applications Conference,
2018, pp. 124-136.

M. Ukrop, L. Kraus, V. Matyas, and H. A. M. Wahsheh, “Will you trust this tls certificate?
perceptions of people working in it,” in Proceedings of the 35th annual computer security
applications conference, 2019, pp. 718-731.

Bibliography

[23] T. Vissers, J. Spooren, P. Agten, D. Jumpertz, P. Janssen, M. Van Wesemael, F. Piessens,
W. Joosen, and L. Desmet, “Exploring the ecosystem of malicious domain registrations in
the. eu tld,” in Research in Attacks, Intrusions, and Defenses: 20th International Symposium,
RAID 2017, Atlanta, GA, USA, September 18-20, 2017, Proceedings. ~ Springer, 2017, pp.
472-493.

69

	Abstract
	Topical Overview
	Problem Statement
	Methodology Overview
	Data Extraction and Prepration
	Whitelist Creation and Filtering
	Time Interval Analysis
	Bandpass Filtering
	Power Calculation and Normalization
	Behavior Detection and Threshold Analysis
	Validation and Continuous Improvement

	Research Objectives
	Research Questions

	Structure of Thesis

	Background
	Cybersecurity Landscape
	Emerging Trends and Challenges

	Advanced Persistent Threats (APTs) and Covert Tactics
	Case Studies of APT Attacks

	Enterprise Networks
	Key Aspects of Enterprise Networks
	Vulnerabilities in Enterprise Networks

	Band-Pass Filtering
	Periodicity in Network Communication
	Importance in Cybersecurity

	Time Series Databases
	Characteristics of Time Series Databases
	InfluxDB

	Summary

	Related Work
	Methodology
	Overview of the BAYWATCH Framework
	Whitelist Analysis
	Universal Whitelisting
	Local Whitelisting

	Time Series Analysis
	Algorithm Overview
	Candidate Discovery Using FFT
	Pruning Using Bandpass Filtering
	Verification Using Autocorrelation
	Handling Multiple Periodicities

	Suspicious Indicator Analysis
	Investigation and Verification
	Feature Set
	Classifier
	Bootstrapping Process

	Real Data Source
	Data Structure and Schema
	Data Collection and Scale
	Data Management and Preprocessing
	Challenges with Real-World Data

	Artificial Data Source
	Design of Artificial Data
	Jitter Ranges
	Scenarios Tested
	Integration with Real-World Data

	Summary

	Data Analysis
	Visualization of URL Request Counts
	24-Hour URL Visit Analysis
	Time Interval Analysis of URL Requests
	Distribution of Hosts Based on Unique URLs Contacted

	Implementation
	Experimental Setup
	Whitelisting Mechanism for URL Filtering
	Average Power Calculation
	Band-Pass Filtering
	Beaconing Data Generation
	Fast Fourier Transform (FFT)
	Autocorrelation
	Behavior Detection
	Algorithm Output
	Summary
	Next Steps

	Experiments
	Validation and Testing

	Results and Discussions
	Detection of Beaconing Behavior
	Algorithm Development and Implementation
	Data Collection and Preprocessing
	Validation and Testing

	Impact of Periodicity in Network Communication
	Identification of Regular Intervals
	Differentiation Between Benign and Malicious Periodicity
	Impact on False Positives and Negatives
	Case Studies and Empirical Evidence

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Algorithm Implementation
	Data Analysis Implementation

