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Malware Beaconing

Detection by Mining

Large-scale DNS Logs for Targeted Attack
Identification

Andrii Shalaginov, Katrin Franke, Xiongwei Huang

Abstract—One of the leading problems in Cyber Security today
is the emergence of targeted attacks conducted by adversaries with
access to sophisticated tools. These attacks usually steal senior level
employee system privileges, in order to gain unauthorized access to
confidential knowledge and valuable intellectual property. Malware
used for initial compromise of the systems are sophisticated and
may target zero-day vulnerabilities. In this work we utilize common
behaviour of malware called “beacon”, which implies that infected
hosts communicate to Command and Control servers at regular
intervals that have relatively small time variations. By analysing
such beacon activity through passive network monitoring, it is
possible to detect potential malware infections. So, we focus on
time gaps as indicators of possible C2 activity in targeted enterprise
networks. We represent DNS log files as a graph, whose vertices
are destination domains and edges are timestamps. Then by using
four periodicity detection algorithms for each pair of internal-external
communications, we check timestamp sequences to identify the
beacon activities. Finally, based on the graph structure, we infer the
existence of other infected hosts and malicious domains enrolled in
the attack activities

Keywords—Malware detection, network security, targeted attack.

I. INTRODUCTION

ARGETED Attacks are a type of threat in which

actors actively pursue and compromise a target entity’s
infrastructure, while preserving anonymity [1]. In contrast to
Advanced Persistent Threat (APT) attacks, targeted attacks
are not carried by states; they have a rather narrow
scope and are performed by a community of attackers.
These attackers have a certain level of expertise and have
sufficient resources to conduct their activities over a long-term
period. They can adjust their attacks to counter the victim’s
defence. APT and Targeted Attacks have clearly proven
themselves capable of penetrating common security solutions
like anti-virus, intrusion detection systems and endpoint
protection software [2]. Moreover, they can remain undetected
for months at a time, all while siphoning off valuable
data or carrying out destructive actions. Using the Mandiant
Compromise assessment schema [3], attacks on networks
often consist of several main stages: Initial hosts compromise,
Downloading additional payload, Command and Control
(C2) communication, Steal target data. So, installation of a
conventional commercial anti-virus solution on a system is
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not a sufficient safeguard against attack; it is also necessary to
incorporate network-related indicators of malware infections.
Current signature-based security solutions are only capable of
handling known threats that are based on the artefacts found
during malware sample analysis. Knowing this to be the case,
attackers are resorting to ever more sophisticated techniques
to evade detection and maintain persistence. Behaviour based
detection on network events might be able to unveil some
malicious activities unknown to traditional static analysis
methods, gut it is still susceptible to evasive measures. In this
work we consider C2 communication as a key indicator of
compromised systems.

The first objective of malware execution used in targeted
attacks is to exploit a specific vulnerability and establish
a privileged process in the target system. This process
downloads an additional malicious payload, which will
then attempt to contact the malicious C2 [4]. Additionally,
propagation of the access compromise beyond the target
system requires opening an external communications channel
to the C2 server. This behaviour will leave a record of
itself in network flow and DNS logs, which provides us
with a chance to identify the infected internal hosts and
external malicious domain names. Analysis of malware that
were previously identified in targeted attacks has uncovered
common behavioural characteristics exhibited by the infected
hosts’ “beacons”. According to Trend Micro research in
detection of APT [5] the beacon in network traffic is(are)
communication packet(s) sent inside of the network at regular
intervals, which may be found using DNS requests or URLs.
Beacons can be used for a variety of purposes such as
obtaining new tasks from a C2 server, downloading updates,
etc. To evade detection, almost all malware will take some
measures to hide their footprint. In the compromised networks,
nearly all APT malware uses some form of obfuscation on
the outbound callback [5]. Additionally, they will not use
common blacklisted domains like ”.cn” or ”.ru”. Furthermore,
they do not fast-flux through the IP addresses. In many cases,
attackers use rented servers in legitimate data centers. They
can also use exploits deployed on whitelisted websites for
the first hop in C2. Such communication obfuscation is often
not a standard algorithm that can be decoded, but rather a
proprietary or an embedded steganographically into benign
objects. One example is the WEBC2 [6] backdoor family
used in an APT attack, which is capable of downloading
and executing a payload. Then, it attempts to communicate
with its C2 once a week (for example, Thursday at 10:00
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AM). Command Five Pty Ltd [7] presented a report on
an investigation into several Advanced Thread Attacks in
2012, where they identified some malware that attempt to
communicate with their C2 infrastructure at frequent intervals.
This implies that beacon interval can reveal such regularities.

This paper is aimed at periodicity detection in timestamps
from large-scale enterprise DNS log data for malicious
communication detection. We pursue several goals: (i)
Timestamps analysis in DNS log files to identify malicious
beacons, (ii) Revealing potentially infected individual hosts
and the full scope of attack events based on the detected
beacons, (iii) Feasibility study of application of periodicity
algorithms for beacon detection with respect to speed and
obfuscation resilience. We also believe that higher frequency
beacon detection is enabled by their consistent in time series.
However, there are multiple challenges that are described
below. In addition, we implemented the experiments based
on Graphlab Create [8], which achieved near real time
processing and detection ability [9]. In contrast to Opreal
et al. [10], we present to apply periodicity detection, rather
than a belief propagation framework from graph theory. Using
such an approach, we are able to achieve high accuracy and
computational speed.

The paper is organised as follows. Section II presents
the state of art in malware beaconing. Section III explains
our targeted attack detection methodology, including data
pre-processing, the beacon detection module and the inference
module. Afterwards, the experiments are introduced in Section
IV which is followed by an analysis of the results in Section
V. Conclusions and discussions are given in Section VI.

II. CHALLENGES WITH ZERO-DAY MALWARES AND TARGETED
AtTtACKS DETECTION

Network beaconing activity is prevalent in many
applications and protocols. For example, Network Time
Protocol (NTP) [11], Rich Site Summary (RSS) feeds [12],
automated software patching or updating that keep alive traffic
in long lived sessions may also appear as beacons. Therefore,
most of beacons are not malicious, while malicious beacons
are sourced from infected hosts where the malware repeatedly
attempts to establish remote connectivity with a malicious C2
server. Since malicious beacons only account a tiny part of all
beacons, this leads to a high false positive rate for malware
beacon detection methods. Additionally, not all malware
exhibits beacon behaviour during the infection process. Some
malware agents will randomise their communication intervals,
emulating legitimate communications behaviour. Others may
take advantage of multiple channels to hide by using a single
unique channel for a short period of time as described by van
Duijn [13], where PCAP files were used to detect beacons.
We do not consider malware with cloaking since this is out of
the scope of the paper. We believe that periodicity detection,
even obfuscated, may be a strong indicator of malware.

A. C2 in Malware Control

First,
created and under which circumstances.

we need to understand how the beacons are
Gu et al. [14]
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studied two common methods of C2 communications: Push
and Pull. Push describes an active communication model
in which an attacker controls compromised hosts directly
through C2 server, while Pull refers to a passive mode, in
which the server periodically sends jobs to an attacker and
later retrieves the results. Furthermore, OpenDNS presented
following topologies in early 2000, commonly found in
C2 architectures [15]: Centralized, before 2003, includes a
single C2 server controlled by an attacker based on IRC
or HTTP/HTTPS protocols, Distributed, before 2006, binds
P2P peers that are able to communicated between each other
and C2 server, hybrid that are currently in use (like Zeus),
combines functionality of two previous topologies to create
more resilient and advanced model. According to the white
paper, DNS tunnelling has recently become popular in hybrid
architectures and it is considered to be relatively unexplored
area.

B. Case Study of Malware Beaconing

To understand the work mechanism of a beacon, we refer to
the user guide of beacon payload examples by Cobalt Strike
[16], which is a commercial product for modelling APT and
targeted attacks. For example, it can use the SMB protocol to
create a beacon that can also use protocols like HTTP or DNS.
Even through the concrete techniques used in target attacks
varies; the behaviour indicates similar properties, which could
let us understand beacons from a broader point of view. The
initial task is to start a beacon listener to use malicious payload
and specify the port number which used to transmit traffic, the
payload provides two communication channels. After a list
of domains are provided as described in Fig. 1, the malware
checks for tasks and downloads them over HTTP or DNS.

beacon
HTTP or DNS

meterpreter
TCP

Fig. 1 Scheme of "Beacon” payload as designed by Cobalt Strike [17]

Later, it goes through these domains each time it has to use
its beacon to signal back to C2. In case one domain fails or is
blocked, the malware will go to sleep and wait until the next
domain is available. Multiple domains or hosts use resilience
to network communication defence activity.

According to Cobalt Strike, one of the most important
malware functions is the specifically tuned sleep function,
which specifies how long the malware has to wait between
checks. The malware supports asynchronous and interactive
communications. Asynchronous communication is low and
slow, the malware will call back to the C2 server, download
the task and then go to sleep. Interactive communication is
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frequent and fast, the malware communicates to the C2 server
in real time. These two types of communication methods are
defined by the sleep function. If the sleep time is set to O
seconds, then the malware will beacon back to the C2 server
two times per second to maintain persistent communication.
Otherwise, if the sleep time is to non-zero, like 20 seconds,
then the malware will beacon every 20 seconds. What is more
interesting, the malware can vary these intervals, using 20%
jitter factor to vary the sleep time interval.

The above example only specifies one type of C2 server;
in order to improve persistent ability, Cobalt Strike also
provides distributed operation functionality, which means
multiple servers are involved in distributed beaconing. In this
case, it means multiple IP address. If a sub-group of C2 servers
failed, it is still hard to block all the malicious activities that
rely on other server. However, larger number of C2 servers
increases the probability of detection, because too frequent
connections may unveil the malicious footprint. This is also
called Low latency C2 due to its frequent beaconing. Thus
the author of the malware will usually prefer to have a sleep
time of no less than five minutes, while a longer sleep time is
even better. This long beacon interval behaviour is called High
latency C2, since longer beacon time leads to an inability to
detection it. This can be explained by the sparsity of malware
communication traffic in the context of a much higher number
of benign communication activities.

C. DNS Logs as a Source for Compromise Indicators

DNS can be considered as one of the malware beaconing
methods that is difficult to detect. The problem is related
to the fact that DNS server functionality is a core of the
Internet communication. The network communication is based
on the FQDN (fully qualified domain name) to ease human
memorizing and add a flexible level of topology abstraction.
According to the Google DNS tutorial [18], one of the main
DNS records is A that maps FQDN human-understanable
address to physical IP addresses. OpenDNS made a study [15]
in which DNS tunnelling was described as a contemporary
technique. When malware requests a host, the infected
machine sends a DNS query for an IP of C2 server to the
internal/external DNS. By returning the DNS response, C2
can send a TXT record that may consist of 184 bytes of
base63 encoded data as was studied by Farnham et al. at SANS
[19]. Therefore, it can be a potential way of hiding malware
job-scheduling. The advantage of this approach for an attacker
is that there is an enormous amount of benign DNS records,
which make it is difficult to detect malware communication.
Therefore, we can state that analysis of DNS logs need to
be done with respect to periodic communications to detect
possible targeted attacks and infected hosts. The following
challenges can be named:

1) The sleep time is not predictable. There is no preliminary
knowledge about the time when malware becomes active
and sends beacons.

2) Multiple period usage. Attackers utilise one time interval
for a period of time and then change to another time
interval under some logical event or scheduling, or even
use unique time intervals every time.

International Scholarly and Scientific Research & Innovation 10(4) 2016

3) Time variation. Attackers take measures to prevent
detection of the connection/communication between the
compromised host and the C2 server, by varying the sleep
time to make it appear as if it were a known-to-be-good
communication. Command Five research made a study
on sequences of communications for different protocols
as presented in Fig. 2. We can see that experts have to
look into the logs to be able to detect such variations
manually.

TY¥PICAL BEACON INTERVAL®
(SECONDS]
LURK 26

PrOTOCOL

X-Shell C601 36

Update? 1to 13,1243, 16, 10443 or 200 £15

Murcy 11

Oscar 1222, 13, 15,16, (55 or 15525), (7.5.8.50r 15) ,
(45, 55, 106)

BB B

DB 4092

Qdigit 60

* Commas indicate that the interval changed between victims.

Brackets indicate that a variety of intervals were observed from

a single computer.

Fig. 2 Common time intervals between communications used in different
attacks [20]

4) Noise. The target host can sleep for a short period of time,
while the malware can be asleep longer.

5) Multiple channels usage. A host may beacon to a single
server for a limited time and then shift to another server.

6) Benign beacon. Some benign applications, like system
updates or mailing clients, produce regular beacons.

7) Needle in a haystack. A large enterprise generates huge
amount of logs. So, tracking of a relatively minute
amount evidence within large scale DNS log files is
like looking for a needle in a haystack and there are
also time restrictions. IT security managers hope to
detect malicious activity as fast as possible and once the
malicious action has taken place, a warning should be
generated.

8) Near real time detection. Beacon detection is not aimed at
protection, yet identification of malicious beacon events
as soon as possible reduces costs for enterprise. It might
be hard to make it real time due to vast amount of network
traffic. Also because the malware only broadcasts back to
C2 servers after it has been launched, the deletion or theft
of data on the targeted network has already begun. Hence,
identifying malicious beacon events as soon as possible
helps to reduce defence costs for targeted enterprise.

We can see that the majority of these challenges can be met
by applying periodicity detection. However, many things need
to be considered when analysing real DNS logs.

D. Periodicity Detection in Communication

Periodicity detection and mining can be used in different
areas and represent a set of methods targeted at finding events
that happen frequently with some deviations according to
survey by Chitharanjan [21]. From the literature, we can see
that there can be found a number of works that apply beacon
detection in network traffic communication. Wang et al. [22]
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proposed a circular autocorrelation based periodicity detection
algorithm to detect repeating communications. However, they
use a confidence value to evaluate detected events which will
cause high false positive rate. Qiao et al. [23] proposed a
method to detect P2P bots by mining the regional periodicity.
They applied the PARPER algorithm, which is also an
autocorrelation based algorithm, to identify the repeated events
launched by malware C2. Their work is the first mention of
a partial periodicity detection method that also handles noise.
Van [13] also used an autocorrelation method to detect beacon
events. Both methods examine all of the network traffic,
but they are unable to identify individual events with high
precision. The latest work by Parunak et al. [24] used a simple
mathematical method to identify beacon events, but their
method can only handle simple noise. However, their work is
the first to analyse beacon sleep time and they hold the opinion
that malware beacons can be differentiated from legitimate
beacons through the sleep time. To the authors’ knowledge,
there has not been any work done on the application of
symbolic periodicity detection for mining DNS logs with
the intent to detect and understand malicious beaconing.
Timestamps in DNS logs can also be considered as periodic
events that can be linked to targeted attacks and malware.

III. PROPOSED METHODOLOGY FOR BEACONING AND TARGETED
ATTACKS DETECTION

This section contains the insights into the proposed
methodology, including beacon detection and attack capture
modules. Our goal is to create methods for DNS log analysis
and events correlation. We present the following goals that
need to be achieved by our method:

1) Low Latency. We assume that the time interval of the
beacon is short enough that the infected hosts will
communicated with the C2 server several times (> 3) per
day. Hence, we look into data that was generated over a
whole one day to detect frequent beacon behaviour.

a) Detection on Single Host. Given any infected host, find
the malicious domain which the host beacons to. Then,
identify the other potential malicious domains involved
in the attack.

b) Detection on Entire Enterprise Network. Try to detect
attacks when no infected hosts are given on the selected
date.

2) High Latency. We only consider malware communication
at a fixed time every day, disregarding if it will
communicate to the C2 server afterwards. Hence, we
consider weekly data as a whole to detect high latency
beacons.

No matter which C2 communication method is used (push
or pull), the infected hosts will send feedback information to
the C2 server. This will leave evidence on the DNS query
record. Therefore we are only concerned with the A record
type DNS log (A record DNS corresponds to IPv4, which
is the IP address type most frequently utilized by attackers).
It demonstrates queries from the internal host to the internal
DNS server. However, the address queried from the internal
DNS server may either point to the internal client or to a

International Scholarly and Scientific Research & Innovation 10(4) 2016

client outside enterprise. Thus, we extract logs that query
external client addresses through the internal DNS server. Our
suggested methodology is represented in Fig. 3. The purpose is
to present it as a framework, suitable for different enterprises.

“degree™>10

T win “degree”<10 “weight”<3
1 2. v 3. v 4,
DNS A-record Filterin Graph Degree,
extraction g extraction weights
“degree"<10
6 5 3<"welght"<100
a Black/white Beacon
Report «— Expert analysis <+— : ". !
listing detection
‘ Manual analysis T Possible infected
> Setl 4

Fig. 3 Proposed iterative methodology of attacks detection from DNS
A-records

The steps of the beacon detection in DNS logs are as
follows:

1) A-records extract only IPv4 addresses from the DNS
logs, since they are the most commonly used addresses.
TXT records and their content are beyond our scope for
now. The following 6 types of records are extracted:
Query from internal machine to internal DNS server,
from internal DNS server to internal DNS server, from
internal DNS server to external DNS server with three
corresponding responses.

2) The main task of data pre-processing is representing the
filtered log data as an undirected graph, which provides
an clear representation of the log file and communications
between internal hosts and external domains. The graph’s
vertices represent host IP address and domain names,
while each edge corresponds to one query from an
internal host to an external machine. The attribute of the
edge is the timestamp of the query. With this step, we
intend to decrease the extracted log size. We introduce
the “degree” attribute, which is assigned to each domain
visited by internal hosts and records the number of
individual hosts in the enterprise that visited this domain.
We are only concerned by domains with a “degree”
greater than 10. We think that domains visited by more
than 10 hosts in an enterprise is a benign domain, while
“degree” < 10 can be malicious. Even through there’s
a possibility that more than 10 hosts are infected in one
targeted attack, we believe that IT departments have the
ability to identify such large scale attack activities in an
enterprise. The results are put into SEr 1 as sketched in
Fig. 4. So the "degree” > 10 threshold works as a white
list and gets additional input from the Step 4.

3) Here we introduce another attribute, “weight”, which
denotes the number of times the host queries the specific
domain. In this case, each domain has a “degree” and
each individual host-domain pair has "weight” attributes.
Then, we only take into consideration host-domain pairs
with “weight” value greater than 3 and less than 100. The
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+
| domain |
3

zeffirelli.webb.bin
nosediving.webb.bin
bdisvlwuhr
abnwbl.webb.bin
mo.abjpyljom5x.wad
economists.webb.bin
antitoxins.webb.bin
ajénfbavg7larzdvelagdiod26...
bh46vyl7931lvgw-ggemind0z-8...
necessitating.webb.bin
+ + +

e R s X X

Fig. 4 Example of content in SEr 1, where "degree” < 10

reason for this is that in real time processing mode, if a
host query to one domain more than 100 times during
a short time, we assume that such anomaly behaviour
will obviously detected by security products employed in
enterprise; for example, malware utilizing Domain name
Generation Algorithms (DGAs). Another concern is time
consumption, since it takes more time to identify beacons
from larger quantities of queries, we are planning to
implement our method on a parallel processing platform.
The results of this step are preprocessed data that are
placed in St 2 as shown in Fig. 5.

+ +. + +

| domain | host | weight |

+ + + +
promissory.webb.bin 74.92.157.192 1
frequent.a.glazes.wad 74.92.208.83 1
a.v.promoting.wad.friend.noe 74.92.208.83 2
cot.adtn3qg.wad 74.92.208.83 1
yolks.acp.val 74,92.29.150 2
cot.aapB-ryBdse5a.wad 74.92.254.164 2
cot.odin.sampler.don 74.92.49.40 2
footpaths.webb.bin 74.92.39.42 2
cot.aauw2-x-1lwcl7a.wad 74.92.94.119 2
genial.intermarriages.wad 74.92.83.44 1

+ + + +

Fig. 5 Example of content in SET 2, where any of the domains were visited
less than 10 times (degree”< 10) and not connected to any hosts more than

4)

5)

3 times ("weight”< 10)

Then, an undirected graph is created to represent the
resulting log records along with information from Ser 2.
It contains edges with the domains queried by its host 1, 2
or 3 times. We believe that a host, which exhibits beacon
behaviour, should connect to the C2 server for at least
4 times. SET 2 is only used when we consider data as a
stream and the content in this set will dynamically change
over time. However, when we look the entire day’s logs as
a whole, we do not have to be concerned with St 2 since
we only need the corresponding edges whose weights are
greater than 3. After filtering with SET 1, we represent
our log data as an undirected graph which could help us
to easily understand and analyse the log file. The graph’s
vertices represent host IP address and domain names, one
edge corresponds to one query from an internal host to an
external machine. The attribute of the edge is the query’s
timestamp. Figs. 6 and 7 represent mappings of internal
to external hosts and graph representations, respectively.

The beacons are detected based on the resulting data and
represented by a graph.

By using expert knowledge, SET 3 is composed from
detected possible infected hosts. SET 3 is a list of beacons
detected, each beacon is a host-domain pair, which is
marked as malicious or benign.
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Fig. 7 Subgraph for a specific host

A. Beacon Detection Method

Here, we describe the analysis of preprocessed “suspicious”

timestamps for beacon detection, as well as the choice of
method, which includes four candidate periodicity detection
algorithms. Fig. 8 presents a diagram of the method.

L L3 3. 4.
Raw Time Timestamp Time variation
Ti p L e eusing bl
: -
Set3 «— Processing 4— Periodicity Mapping to

Detection letters

Fig. 8 Periodicity detection method

1) Proposed Suspicious Periodicity Detection Methodology:

The following steps are proposed:

a)

b)

)

691

In order to check whether the time interval between two
consecutive queries repeats over time, each timestamp is
first transferred as the time elapsed from the beginning of
the log collection, or the beginning of the period of interest,
for the sake of maintaining a consistent the order of events.
When it is convenient to gather all the timestamps for
each pair host-domain, a sequence of query timestamps
could be represented by a vector which has length equal to
the number of queries minus one. For example, if a host
”1” queries to external machine ”A” for 14 times, then its
time interval sequence will be represented by a vector with
length 13.

To prevent detection, an attacker may deliberately add time
variations to the fixed sleep intervals, making the time
interval vector resemble a randomly generated number. In
order to tackle this problem, our idea is to treat all the
numbers which are approximately equal to each other as
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equal numbers; this effectively smooths the time variation
within a certain scale. For instance, if 15 seconds time
variation is allowed in the case of 2,400 seconds sleep
intervals, then the entire time interval which is located
between 2,385 to 2,415 maps to 2,400.

d) Each digital number vector corresponds to a letter vector
in which different numbers are substituted by different
letters, similar letters are represented by a random letter.
A timestamp-letter transformation sequence is depicted in
Fig. 9. Since the periodicity detection algorithm requires
a different format of input: Letter or digital number, then
each digital number vector corresponds to a letter vector
in which different numbers are substituted by different
letters and similar letters are represented by a random letter.
For instance, (1,800, 1,800, 1,800, 3,600, 3600, 3,600) are
denoted in letter by vector (a,a,a,b,b,b) as well.

Raw timestamps

Fig. 9 Timestamps transformation in beacon detection method

e) The periodicity detection algorithm is applied to detect
whether there are suspicions domains that might be
beaconing to external hosts.

f) All infected domains are stored in the SEt 3.

2) Choices of Periodicity Detection Algorithms: Four
algorithms were selected based on the literature review for
Beacon detection: Suffix Tree Based (STNR) [25], Dynamic
time warping based (WARP) [26] and Convolution based
(CONV) [27] by Mohamed G. Elfeky in 2005, Autocorrelation
based (PARPER) [28] by Christos Berberdisin in 2002. Given
a time sequence denoted by an alphabet vector, the sequence
is called symbol periodic if individual symbols are repeated
periodically. The sequence is called segment periodicity if
we can divide the sequence into several segments with same
length, and all of the segments are approximately or exactly the
same. Another type of periodicity is called partial periodicity,
if a pattern or a segment is only repeated periodically in a
consecutive segment of the sequence. Note that in our case,
a time sequence can be denoted by an alphabet vector. So,
our tasks are to identify whether this sequence has periodic
component sequences, what’s the period and the repeated
pattern, even if there’s noise in the sequence.

B. Attacks Event Detection Module Based on Beaconing

After the malicious beacon has been identified, this step
searchers for other infected hosts and potential malicious
domains related to the target attack. We classify a potential
malicious domain as a “bridge domain” or a “rare domain”,
as mentioned earlier. The rules for detecting malicious
domains and hosts are depicted in Fig. 10, (b) and as follows:
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1) We assume that a host connected to a malicious domain
has been compromised directly or indirectly by the attack.
So all the hosts linked to domains which show malicious
beacon behaviour are considered infected hosts.

2) Domains lying on the shortest path and only connected
to the infected hosts are classified as "bridge domains”.
This is where the shortest path is defined as the path that
relates two hosts through one domain vertex only.

3) There’s a group of domains that are only queried by
one potentially infected host and not visited by benign
host before the beacon take place. We name those
domains as “rare domains”, which may be used to send
malicious e-mails or download additional malware to
bypass security checks before C2. So a large quantity of
“rare domains” may be malicious or benign. The purpose
of this step is to capture all malicious activity and to
narrow the analysis scale as much as possible.

Fig. 10 Structure of beacon interconnections

Suppose that a beacon between host 2 and domain c is
detected (the red dotted line), ¢ is also connected to host 1
and 2 (red straight line); according to the rules, they are also
potentially infected hosts. Domain e is linked to host 1 and
4 (except domain ¢ which is a beacon domain); therefore,
domain e is marked as a "bridge domain”. Domains a and g
are linked to hosts 1 and 4 respectively, and do not have links
with other hosts; hence, we classify domains a and g as "rare
domains”. Domains b and f are also linked with benign host
3, even though they link with infected host. So, we think that
such domains have less probability of being malicious.

IV. EXPERIMENTS

This section the describes the experimental setup. We divide
all experiments into two major parts: (1) Selection of the best
periodicity detection algorithm for the described task, (2) Test
of the beaconing analysis in DNS log files, to find out the best
performing periodicity detection algorithm.

A. Experimental Design

To perform both sets of experiments we used the following
hardware. Periodicity detection algorithms were implemented
in Python and tested using MacBook Pro (4 cores CPU and
16 GB RAM memory). For the beacon detection (low latency
and high latency), we utilized the VDS server available at
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the Testimon Research Group. It had 3 cores (6 threads)
of Intel(R) Core(TM) i7-3820 CPU @ 3.60GHz, 32 GB of
quad-channel RAM Kingston PC-1600, Ubuntu 14.04 64 bit
installation on RAID SSD plus 2TB of HDD space for DNS
logs pre-processing. For the second part of the experiments,
we utilized the recently introduced framework GrapHLAB
developed by Low [29], which is a fast Machine Learning
tool with parallel processing capabilities. This is an important
tool for mining the connection between the internal addresses
and external hosts.

B. Experimental Data

The data we used are DNS logs of the Los Alamos National
Laboratory published in 2013 '. They are real logs from
a large web-site but sanitised to conceal their origin and
the actual referenced host names. Those logs contain name
resolution requests from several simulated attacks, and include
different stages of initial infection: Including initial callbacks,
downloads of additional malware and C2 callbacks. When we
worked on this paper, only 15 days of data (more than 400G)
were available, each day containing a simulated attack. The
IP address and domain name involved in the attack give label
information. Days 09/3, 10/3, 14/3, 15/3, 17/3, 18/3, 19/3,
20/3, 21/3 have only one IP address that was labeled as an
infected host. Days 07/3, 08/3, 11/3, 12/3, 13/3 have multiple
infected IP addresses given. Then, day 22/03 has no infected
host. For each of the 15 days, there are multiple malicious
domain names documented according to the simulated attack.
The task is to identify as much of the attack (infected hosts
and malicious domains) as possible. We are only concerned
with the A record DNS log, which corresponds to the most
frequently used IP address type utilized by attackers: IPv4.
It demonstrates queries from the internal host to the external
client address through internal DNS server. The main idea
of data pre-processing is to represent the filtered log data
as a undirected graph. The graph’s vertices represent host IP
addresses and domain names. One edge corresponds to one
query from the internal host to an external machine.

C. Reliability Test of Periodicity Detection Algorithms

According to the challenges mentioned in Section II, the
periodicity detection algorithm should be capable of detecting
not only a single period sequence, but also multiple period
sequences that includes noise. More specifically, we should
test the reliability of beacon detection algorithm with respect
to following requirements:

o Various types of periodicity. There are three kinds
of periodicity: Symbol periodicity, Partial periodicity,
Segment periodicity. Symbol periodicity means only one
symbol in the time sequence is periodic. For example,
in S = afgathargaoka, only a repeats once every two
symbols. Partial periodicity means that only a part of the
sequence shows symbol periodicity. For example, we add
random letters in front of and at the end of sequence
S, giving us S = GHlafgathargaokaQIO, now S has

Uftp://ftp.lanl.gov/public/pflarr/
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a partial periodicity with the repeat pattern a starting
from position 3. Segment periodicity means the entire
sequence only contains a repeated pattern; for example,
S = abcabcabcabc, with repeat pattern abc which we call
a period. Segment periodicity may include the following
situations. (1) Some periods contain noise, while others
are clear periods; so we call it perfect periodicity. For
instance, in S = abdabcabcabc, the third position of
the first period is noise; when we change it to ¢, the
sequence will have perfect periodicity. However, if we
consider the period as ab which is a regular expression,
then the sequence S has perfect periodicity. (2) Another
situation is when the length of the period is one, which
means the sequence contains only one symbol, like S =
aaaaaaaaaa, this is a normal beacon with fixed sleep time
a and without time variation and noise.

Various length of period. The length of the period could
be longer than one symbol. However, in real cases the
length of period is not predictable. Thus, the detection
algorithm should be capable of automatic detection of
various period lengths. For example, if the malware sets
two beacon time intervals, the algorithm should identify
the beacon time sequence, even if the time sequence is
S = abababababab or S = aaaaaaabbbbbbbb.

Various length of sequence. The host-query-to-domain
time intervals could vary in a range from one to
thousands, which results in the length of time interval
sequence ranging from zero to thousands. In our
experiments, we only are concerned with the time interval
sequences that have length greater than 3 and less than
100. The algorithm should be able to detect beacons
of various sequence lengths and partial periodicity
or segment periodicity, independently of the symbol
periodicity.

Various kind of noises. Noise complicates detection, more
specifically; it will reduce the true positive rate. However,
we need to control the detection rate even when the
time interval sequence contains noise. This is always
the case in real-world communications systems. In our
time variation smooth module, noise will be generated
artificially, based on a random noise process probability
distribution. Hence, periodicity detection algorithms
should have strong resilience to various types of noises,
which including substitution, insertion, deletion, and even
mixtures of periods.

Time performance. Thereby, the time complexity of
detection algorithms should be as low as possible for the
sake of fast processing speed. A time interval sequence
could be a random sequence, a periodic sequence or
even a perfectly periodic sequence. Independently from
this fact, the longer the sequence, the more time will be
consumed. We implemented our experiments on a parallel
processing platform which will assign sequences with
different length and periodicity to different processors.
Thereby the time complexity of detection algorithm
should be as low as possible in order to achieve fastest
possible processing time.
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D. Low Latency Beacon

In the low latency beacon detection experiments, we looked
on the data as (1) a stream or as (2) a daily batch of data. Since
each day contains only one simulated attack, it means that all
of the documented attacks belong to low latency beacons (if
they have beacon behaviour). After the graph creation for an
entire day’s log file, the experiments are arranged as follows:

o Detection of on a single infected host. Given any one of
the infected hosts, detection of its beacon is an indicator
of malicious activity. For each given IP address, we
extract a subgraph that contains all the query logs that
belong to this host. For days 09/3, 10/3, 14/3, 15/3, 17/3,
18/3, 19/3, 20/3, 21/3, which only contain 1 infected host,
the subgraph contains vertices linked only to that host
directly. For other days, where multiple infected hosts
are documented, we choose any one host. Its subgraph
contains vertices which link to the given host through
less than four edges. It means that the distance between
vertices and a given host is less than 4. Afterwards, for
each domain vertex, we extract the processed time interval
sequence as the input to the selected periodicity detection
algorithm. If it shows beacon behaviour, an alert is raised.
Suppose that the beacon has been detected, the next step
is to use the detected beacon to find other infected hosts
(if exists) and malicious domains.

o Detection of attacks on entire enterprise network. In this
case, no preliminary knowledge is given, so we need to
detect the beacon and understand the malicious activity.
In this case, we will use all the data which documented
attack information as training data, while the last day
(22/3) is used as a test day and does not contain any
information regarding the attacks.

E. High Latency Beacon

This part of the experiments are used to understand high
latency beacons and test whether our methods are able to
detect them. 15 day’s data are divided into two group. The
1*" group contains the first 9 days of log files, the 2" one
contains the last 6 day’s data. The experiments are performed
in two parts. (1) For those 9 days, we first use 7 days as
training data, the 8th day as test data. Then, 8 days as training
data to test the 9th day’s data. (2) Further, the 9 days of data
are used to train our module, while last 6 day data are used
for testing. Similarly with the low latency beacon detection
scenario, a set of allowed time variations will be tested on all
the experiments.

V. ANALYSIS OF RESULTS

This section aims at testing whether the periodicity detection
algorithms are able to handle the various beacon detection
challenges mentioned earlier. Comparisons between four
algorithms are presented and the best performing algorithm
will be applied in our beacon detection method. First, we
define Confidence in period detection as the evaluation criteria:

number of success full detections

Confidence =

ey

total number of detection
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The value of the confidence will be in a range from 0.0 to
1.0. The higher the confidence value, the better the detection
algorithm performs.

A. Reliability of the Periodicity Detection Algorithms

In this experiment, we test reliability with various lengths
of period, which is set to a value in the range from
1 to 10. We generate this periodic sequence 11 times
using a random uniform distribution. For instance, if the
period is AB which has length 2, then the sequence will
be ABABABABABABABABABABAB. The experiments were
repeated 100 times, each time the length of period is fixed but
the content of the period is different. At the end, we count
the overall number of periods being detected and calculate the
Confidence value.

Then, we perform noise resilience tests with five types of
noise: replacement, insertion, deletion, mixture of insertion
and deletion, mixture of replacement, insertion and deletion.
The length of period is fixed to 5 and the elements of the
period are generated randomly from a uniform distribution as
well. Therefore, the total length of sequence is 50. The noised
components are randomly generated and added to random
positions. For example, if it is substitution noise and the
randomly generated position is 23, then the 23’ element in
the sequence will be replaced by another randomly generated
element which is totally different from all the other elements in
the sequence. The noise percentage increases gradually, until
it reaches 50%, which means there will be 24 elements added
to the original sequence. All experiments for resilience testing
were implemented 100 times. Fig. 11 shows the results of
these experiments.

Fig. 11 (a) indicates that all four algorithms are able to
detect different period lengths with confidence to almost 1.0.
Figs. 11 (b), (c) demonstrate the experiment results for noise
resilience testing. The abscissa represents the percentage of
noise added to the original sequence, the ordinate denotes the
Confidence, different algorithms are represented by different
markers. We can identify that STNR is the most reliable
algorithm against various types of noise and also various types
of periodicity.

B. Time Complexity Test

Three types of sequences are tested: Perfect periodicity with
one symbol, Perfect periodicity with multiple symbols in period
and Random generated sequence. The length of sequences
varied from 0 to 200. For the 1% and the 2"¢ type of the
sequences, the length was increased only a single time. For the
2" type, a new period was added at the tail of the sequence
each time.

Fig. 12 illustrates our test results. The abscissa represents
the the length of sequence and the ordinate denotes the
time consumed in seconds. The first type of sequence is
perfect periodicity, which contains only one symbol and is
depicted in the sub-figure (a). For example, the sequence S =
AAAAAAAAAAAA. Second type of sequence in the sub-figure
(b) represents perfect segment periodicity, for instance, S =
ABCABCABCABC. The third sequence in the sub-figure (c) is
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Fig. 11 Resilience to different types of noise

constructed with elements generated randomly from a uniform
distribution, like S = AJS DGASGAKLDVOIER.

Obviously, STNR and PARPER are the fastest algorithms
against all three types of sequences. No matter what kind
of sequence it is, processing time increased along with the
increase in sequence length and a periodic sequence take less
time to detect than a random sequence. Especially for STNR,
when the length of sequence increases from O to 200, there’s
no significant difference in the processing time. To sum up,
STNR performs much faster and is more stable than others
based on this test. A comparison of complexity estimation for
the four algorithms is given in Table L.

TABLE I
CoMPUTATIONAL COMPLEXITY OF THE PERIODICITY DETECTION ALGORITHMS
Algorithm STNR CONV WARP PARPER
Periodicity all type  segment segment  partial
Complexity on?) O(n-logan)  O(n?) )
Time performance  best average worse good
Noise resilience best worse worse average

C. Low Latency Beacon Detection

Here, we present the results of low latency beacon detection
based on the real DNS log data. We tested our method on 14
days’ worth of data (excluding the 15th day, which is used
to detect beacons on entire network). At the end, we detected
beacons in 11 of the given days. In the other three days, we
did not find out any beacons matching the documented attack,
but we detect other beacons in the infected hosts. Table V-C
lists the beacons we detected in each day. Column “Day”
is the time when the log file was generated, "IP” column
is the IP address of the infected host, "Number of Beacon”

International Scholarly and Scientific Research & Innovation 10(4) 2016

records the total number of beacons detected corresponding to
the infected hosts, the ”Sleep time” column is the fixed time
interval between each communication. If there is time variation
detected in the time sequence, ’yes” will be marked in time
variation column; this indicates that the time gap between each
two C2 varies slightly. The last column is the total number of
queries that were recorded in the DNS log file.

Looking at the sleep time column, we find that attackers
normally use only one fixed sleep interval for all infected
hosts. An exception can be seen in day 11, when the attacker
used slightly different sleep times for two infected hosts. For
the time variations in attacks, we find 8 out of 15 days are
using slight time variations. Since we set the allowed time
variation to 2 seconds, all the time variations are located in
range 0 to 2 seconds. However, it might be because an attacker
set the time variation deliberately or it was caused by a delay
in the package transfer between a router and a DNS server.

By designing an attack capture module into our method,
we detected 27 potentially infected hosts in total, while the
total number of documented infected hosts are 17. We also
found that if there are multiple machines enrolled in the
attack, like on days 07, 08, 11, 14, 15, 17, 21, then the
“bridge domains” that we defined are able to cover almost
all of the documented malicious domains. In addition, we
identified 6 extra suspicious beacon behaviours, in addition
to the documented attacks. The results are as in Table IV.

We also compared sleep time intervals used in each specific
attack. Only day 8 utilizes another unique sleep time, 1,863
seconds instead of 1,703. While days 14, 15 and 21 are using
the same sleep time as other C2 servers. Moreover, we tested
our method on an entire enterprise network instead of a single
host. The 14 day’s data are considered as training data, and the
last day’s data as test data. We detected 5,421 unique hosts that
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Fig. 12 Time performance test
TABLE 1T
Maticious BEAcON DETECTED WITH 28 TIME VARIATION
Day 1P Ne  of Malicious Domain Sleep Time  Time Ne of Query
Beacons Variation
07 74.92.150.58 1 aftible.noe 2,700  yes 13
07 74.92.11.100 5 aftible.noe 2,700  yes 10
07 74.92.229.13 1 aftible.noe 2,700  yes 9
08 74.92.196.178 1 lisped.val 1,703  yes 30
08 74.92.16.82 1 lisped.val 1,703 yes 26
08 74.92.65.93 1 lisped.val 1,703 yes 19
09 74.92.112.52 1 misorganisation.noe 600 no 29
10 74.92.83.97 1 glazes.inkly.k3 1,500  no 4
11 74.92.65.93 1 mine.starving.wad.f8 1,700  yes 10
11 74.92.20.216 1 mine.starving.wad.f8 1,704 yes 30
14 74.92.4.129 1 winterwolf.dx 600 no 24
15 74.92.120.47 1 orfitals.ok 7,200  no 13
17 74.92.65.174 1 blerf.nc 1,783  no 9
19 74.92.144.170 1 rainbow-.c3 603  no 14
20 74.92.255.55 1 xu-I18jwcexetd.wad 1,100  no 13
21 74.92.159.71 1 carcasonne.b- 1200 no 17
Total 16 20 11 1 - -
TABLE III

REesuLrs FOR ENTIRE EVENT CAPTURE

Day Infected host ”Rare domains”  ”Bridge domains”
74.92.150.58

07 74.92.229.13 124 2(2/3)
74.92.11.100
74.92.196.178

08 74.92.65.93 476 20(3/3)
74.92.64.222

09 74.92.112.52 174 0(0/3)

10 74.92.83.97 67 0(0/3)
74.92.65.93

11 74.92.20.216 48 3(3/3)
74.92.159.71
74.92.27.83

14 74.92.4.129 362 4(3/4)
74.92.16.82
74.92.120.47

15 94021754 142 96
74.92.65.174

17 749265.177 2253 10173)

19 74.92.144.170 3(2/4) 0(0/4)

20 74.92.255.35 5(2/4) 0(0/4)
74.92.159.71

2 4008872 665 20

beaconed to 40,377 unique domains in the training data, and
326 unique hosts beaconed to 1,649 unique domains in the test
data. This is quite a large number of beacons, which means that
beacons are very common behaviour in the network. Almost
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every host has installed some application that shows beacon
behaviour. This creates a challenge in distinguishing malicious
and benign beacon.

In all previous experiments of low latency C2 detection,
we set allowed time variation to 2 seconds. Also there is
a possibility that an attacker sets higher time variations to
escape detection. Hence, we allowed time variations up to 10
seconds. Then, we detected 23 new beacons over all infected
hosts. Through we have no idea whether those domains are
malicious or not, it provides clues for identifying malicious
beacons within small scale data.

Further, we analysed the time intervals used in detected
beacons. Fig. 13 (a) gives a distribution of sleep times which
we detected, most of the sleep times are found in the range
2-1,000 and around 4,000 seconds. While Fig. 13 (b) gives
statistics for concrete sleep times, the most common beacon
sleep time is 2 seconds, which means that most applications
frequently call back to their server. Other less popular sleep
times are 3,600 seconds, 1,800 seconds, 7,200 seconds, and
900 seconds. This demonstrates that most benign applications
prefer to use Integer multiplier of 5 minutes or 30 minutes
doe call backs to their server.

We compared the most common sleep time intervals used in
benign beacons and malicious beacons detected in the dataset,
as presented in Fig. 14. Most of malware sleep time intervals
are contained in the benign interval.
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TABLE IV
ExtrA INFECTED HOSTS DETECTED
Day 1P Malicious Domain  Sleep Time Time Variation Noise Ne of Query
08 74.92.64.222 lisped.val 1,863 no yes 47
14 74.92.16.82 winterwolf.dx 600 no no 57
14 74.92.27.83 winterwolf.dx 600 no yes 55
15 74.92.175.4 orfitals.ok 7,200 no no 6
15 74.92.244.3 orfitals.ok 7,200 no no 7
21 74.92.88.72 carcasonne.b- 1,200 no no 15
Total 6 4 4 - - -
TABLE V

ExtrA BEACON DETECTED WiTH TIME VARIATION TO 108

P Domain

Time interval sequence

74.92.120.47 cot.aaclaxygu9177nm7u.noe
74.92.83.97 aaqz7z-69qgdvzj.jeans.wad
74.92.83.97 ac3ak6imsj62a.bernard.crus...

[3636, 3607, 3603, 3600, 3602, 3602, 3603, 4805, 3643]
[606, 623, 605, 920, 606, 610, 621, 603 ... 614, ..., 605]
[3639, 7260, 3606, 3744, 3691, 3636, 3609, 3666, 3664,...]

min 2

max 28800

mean FTH.1725334000003
) 3627 DLBIIH00TES
quantiie0.01) jest) 2
Quantie0.25) e 3T

quantiefD.5 fest) 1800
cuantiielD.75) (ost) 3600

cuantfiel0.09) jest) 22177

sheap ¢
n thousands)

(a) Distribution of sleep time
Value Count Percent
2 23241 22.0829691003TE268%
36500 22376 21.261060514651666%
1800 11026 10.47GE0ETA2427T123%
6.7623807532971%
4.B2440424157197%
2.7811561704230168%
2.163543T840852234%
1.453764585154498%
1.450014D863600775%
1.383451 7H822545T1%

0.7762912850138726%

10800 655 0.622363270115161%

(b) Frequency of sleep time

Fig. 13 Histogram frequencies of detected sleep times for low latency
beacons

We have found that attackers use sleep times similar to
benign applications, like 600 seconds, 1,200 seconds and 7,200
seconds. Some of the sleep times used in malware are identical
to benign applications, which means that we cannot distinguish
malware through beacon sleep time only. However, many
benign applications prefer to use a common sleep time, like
5 minutes, 30 minutes, 60 minutes or 120 minutes. On the
other hand, malware prefer to use some rare and uncommon
sleep time, even though we cannot identify malware through
its sleep time only. So, unusual sleep times may indicate a
malicious beacon.
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Fig. 14 Sleep time intervals found for malicious and benign beacons, in
seconds

D. High Latency Beacon Detection

The last experiment was targeted on sleep time analysis in
high latency beacons. Days 8 to 14 were set as the first week
of data and days 9 to 15 as the second week. Allowed time
variations were limited to 60 seconds. Only the first connection
of each day is considered, because the first call back to server
for some malware (or benign application) may be at a fixed
time and afterwards creates call backs randomly. The results
are as Fig. 15 shows. For example, some applications may
check updates at a predefined time or call back to their server
once the host machine starts. However, some malware may
imitate those benign applications to hide their location. We
thought that if some new application or software called back
to one server at almost the same time every day, then this
application may be malware installed on the host, especially
for those hosts which do not update or install new applications
frequently, like a live server or a commonly used workstation.

E. Overall Performance of the Proposed Method

We implemented all experiments on the parallel processing
platform GraphLab, to be able to achieve fast processing
speed. The speed is almost always consistent (around 112,000
records), using on our hardware setup mentioned earlier,
regardless of the total number of events processed as given
in Table VI.

It can be seen that, on average, our method is able to
process 114,957 queries which contains 9,061 events per
second enrolled in beaconing. The average processing speed
for each day in DNS logs is shown in Fig. 16. We think that if
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TABLE VI
Numser o DNS Lo EVenTs AND TIME SPENT FOR PROCESSING PER EAcH DAy

Day Ne of DNS records Ne of beacon events Required time, sec
07 111,737,320 9,482,854 964
08 90,618,325 8,489,702 731
09 58,906,031 7,732,506 535
10 49,992,677 4,964,274 442
11 108,203,056 7,235,972 908
12 105,792,961 6,177,169 875
13 104,077,438 5,051,064 841
14 104,536,592 6,482,604 886
15 78,931,777 15,793,766 686
16 52,387,778 7,414,774 509
17 89,380,486 5,452,700 797
18 94,515,370 7,913,983 871
19 92,526,276 8,008,275 845
20 97,388,332 6,077,968 864
21 74,399,167 6,255,342 678

72003
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(b) Distribution of sleep time in week 2

Fig. 15 Distribution of sleep time for high latency beacon

we use CPUs with more threads, like Xeon Phi, the speed will
increase further. But still there is a limitation on the number of
operations that can be run in parallel and network bandwidth.
We can state that such processing speed is relative fast and
might be considered as real-time performance.

VI. CONCLUSIONS

Our work reviewed the state of the art in the beacon
behaviour analysis for attacks detection in DNS log files.
Previously, only a few papers focused on beacon detection
and almost all of them did not pay attention to time variations
in beaconing. In this work, tactics used in beaconing and
beacon detection challenges were summarised and compared
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Fig. 16 Comparison of average processing speed for each day

with various periodicity detection algorithms such as the
autocorrelation-based algorithms used in previous works.

We presented a malware beaconing detection method
which has not been presented before, to authors’ knowledge.
The experiment results demonstrate that a suffix tree-based
algorithm is the most reliable and fastest for beacon detection
and satisfy all specified requirements. Our method takes time
variation into account. Test results indicate that the method
can reliably handle large-scale time variations. Previous works
failed to detect 6 day’s beacon out of 15, while our work
detected more beacons, which could potentially originate from
infected hosts. These are the contributions by our attack
capture module. In addition, our experiments presented a
different view on differentiation between malicious beacons
and benign beacons, through sleep time analysis. It was shown
that an attacker may use the same sleep time intervals as
legitimate applications, yet an uncommon sleep time may
indicate the existence of malware. One of the future works
might be to create a bigger dataset which contains more attacks
and cover more tactics in beaconing.

Another contribution of our work is utilization of parallel
processing implementation using GraphLab library on a VDS
server. It is capable of near real-time DNS log processing. The
previous works did not pay much attention to this issue and
we think that developing fast and efficient beacon detection
mechanisms based on Machine Learning will benefit enterprise
security.
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