
Mikrorechnertechnik

Ismail Shah Bin Iman Shah
Adham Beshr

DriveX

Overview
Objective
Hardware
Peripherals

LED Matrix

Servo Motor

BLDC Motor
Line-Scan Camera

Challenges

Implementation

Objective

The objective of this project is to enable the car to navigate the track
autonomously. By utilizing a line scan camera and integrating a
microcontroller, the car will be able to detect the track's boundaries and
adjust its movement accordingly. With real-time data processing and
precise control of motors and steering mechanisms, the car will follow
the track seamlessly, making decisions to stay on course without any
human intervention.

Hardware used

2) WS2812B
LED-Matrix

Single Line Capture: Captures one line
of an image at a time based on light
intensity.
Edge Detection: High value differences
in intensity indicate edges or changes
in the environment.
Real-Time Processing: Ideal for
tracking lines or detecting boundaries
in applications like track-following cars.

3) TSL1401R-LF
Linescan Camera

RGB LEDs: Individually addressable with
full RGB color control.
Single Data Line: Can be controlled
with just one data line.
Daisy Chain: Multiple WS2812B
matrices can be connected in a chain
for larger displays.
Bright Display: Ideal for lighting up the
track with vibrant colors.

Processor: ARM Cortex-M4, 180 MHz
Memory: 1 MB Flash, 256 KB RAM
I/O: Multiple GPIO, PWM, ADC, UART,
I2C, SPI
Power: 3.3V, low power consumption
Real-Time Processing: Ideal for
sensor and motor control
Sensor Support: Compatible with line
scan cameras and infrared sensors
Software: MCUXpresso IDE support

1) K66F NXP
Microcontroller

Hardware used

Uses 6-Step commutation to
control wheel movement efficiently.
Detects Back EMF to enable
sensorless operation and free
running.
Higher efficiency due to reduced
energy loss (no brushes).
Low maintenance since there are
no brushes to wear out.
Longer lifespan compared to
brushed DC motors.

4) BLDC Motor 5) H Bridge

Controls motor direction by
switching current flow.
Enables commutation in the BLDC
motor.
Works with PWM for speed and
torque control.
Allows braking and freewheeling.
Helps detect back EMF for rotor
position sensing.

6) Servo Motor

PWM Control: Uses PWM signals
to control the degree of
deflection (position).
Steering: Steers the direction of
the car by adjusting the servo's
angle.
Precise Movement: Allows for
precise adjustments in the car’s
orientation.
Efficient Control: Provides
smooth and accurate control for
steering mechanisms.

Peripherals used

GPIO FTM ADC

DMA SPI

Controls digital inputs and
outputs.
Crucial for controlling BLDC
commutation.
Allow image capturing.

Provides flexible timer
functionalities.
Used to generate PWM.

Used for capturing analog
signals from sensors like the
Line Scan Camera.
Crucial for allowing free
running of BLDC.

Efficiently transfers data
between peripherals and
memory.
Minimizes CPU load during
data transfer

Enables fast serial
communication with
peripherals.
Used in conjunction with DMA

Buffer of 3*3*8*8
Functions:

whiteLight()
resetLight()
rightLight()
leftLight()
sendLEDData()
ws2812b_spi0_edma_handler()

Bit Pattern:
 ~ 0xD26924 = 1101 0010 0110 1001 0010 0100
 ~ 0x924924 = 1001 0010 0100 1001 0010 0100

WS2812B LED-Matrix

DMA - Obtain data from the memory directly

SPI - Transfer data from the microcontroller to the LED-Matrix

Peripheral Utilised :

every 3 byte

} every 9 byte

}

LED Code

Period - 20ms

Servo Motor

FTM - PWM Signal to control the deflection

Peripheral Utilised :

centerServo() ~ 7.5turnLeft() ~ 5.0 turnRight() ~ 10.0

Functions:
void setServoPosition(float duty_cycle)

Duty Cycle = (Pulse Width / Period Lenght) x 100

Servo Motor Code

Utilises 3 “half” H-Brücke Module to induce
commutation
6 Phases (2 Active and 1 Inactive per phase)

Functions:
configure_off()
reconfigure_for_phase()
commute()
bldc_motor_set_speed()
bldc_force_commute_start()
motor_bemf_irq_handler()

BLDC Motor

ADC - Used to read the Back-EMF

FTM - Used to generate PWM signals for motor commutation.

GPIO - Controls the motor phase switching

Peripheral Utilised :

BLDC Code

BLDC Code

Image Size - 128
SI to start Clock Cycle to tell the sensor to starts
reading the light values.
1 pixel for each clock cycle , one at a time.

Functions:
ADC Interuppt handler
FTM Interrupt handler
findBlackLineRight()
findBlackLineLeft()
calculateDeviation()

Linescan Camera

ADC - To converts the Analogue signals to digital values

FTM - Sets an internal clock

GPIO - Signals the camera to start taking readings

Peripheral Utilised :

Line Scan Camera Code

Line Scan Camera Code

Challenges

Problems

Microcontroller tends to lose connection when
the intensity is too high across the LED-Matrix

Car is unable to move by itself when using
forced commutation. Not enough power to start
moving. The timing of the commutation is easily
disrupted.

Solutions

Use a lower intensity when configuring the LED-
Matrix

Used a free-running method. It triggers
commutation with its own timing based on the
Back-EMF.

Deviation values were positive for both
centerServo() and turnLeft() so there was a
problem in detecting left curves .

Implementing with only turnRight() and
turnLeft() instead of centerServo()..

THANK YOU!

